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Abstract

Edges in a digital image contain important information. At the lowest level of visual
processing, multi-scale techniques based on the linear scale-space theory can be applied to
edge detection for the purpose of generating a rich representation of image structure. We
look into the fundamentals of edge detection as well as the linear scale-space theory and
review some related approaches. In edge detection as well as in the scale-space theory, the
Gaussian kernel plays a key role. In order to analyze theoretically the problems caused
by discretization of the continuous Gaussian kernel, we investigate the difference between
the continuous Gaussian and the sampled Gaussian which is commonly used in practice.
The result of this investigation shows that the sampled Gaussian with a small scale is not

appropriate for approximating the continuous Gaussian.

Zusammenfassung

Kanten in einem digitalen Bild tragen wichtige Information. Bei der Extraktion solcher
Bildstrukturen kommt insbesondere Multi-Skalen-Methoden eine zentrale Bedeutung zu.
In diesem Bericht werden die Grundlagen der Kantendetektion, der linearen Skalenraum-
Theorie sowie verwandter Ansitze aufgearbeitet und bewertet. Dabei wird herausgear-
beitet, dafl das Gauflfilter eine sehr wichtige Rolle sowohl bei der Kantendetektion als auch
in der Skalenraum-Theorie spielt. Um die Problematik der Diskretisierung des Gauffilters
theoretisch zu analysieren, wird der Unterschied zwischen dem kontinuierlichen Gauffilter
und dem abgetasteten Gauffilter, das normalerwiese in der Praxis angewendet wird, un-
tersucht. Die Ergebnisse dieser Untersuchung zeigen, dafl das abgetastete Gauflfilter bei

kleinen Skalen nicht geeignet ist, das kontinuierliche Gauffilter anzunahern.
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1 Introduction

Important physical properties of a scene taken by a CCD camera are provided by changes of
intensities, which are generally called edges ([9], [12], [23], [31], [39]). Edges in the image
are locations where the intensity significantly changes from one level to a different one
([23], [24]), i.e., transitions from a bright region to a dark region, or vice versa ([5]). Edges
carry useful information about object boundaries, which can be used for image analysis
or object recognition. Edge detection is to detect, localize, and measure local intensity
discontinuities in terms of scales, contrast, orientation, and type. It denotes the process
of identifying physical boundaries of three-dimensional objects represented as intensity
changes in images. The correct recognition of objects in high-level computer vision also
depends on the reliability of the applied edge detection method.

In spite of the plethora of publications on computational edge detection due to its
importance in early visual processing, no precise and widely accepted mathematical def-
inition of edge is available both in computer and biological vision systems ([23], [24]).
One problem of edge detection is that the extracted edges do not necessarily correspond
to boundaries of objects. With the exception of high quality images resulting from con-
trolled image generation, edge detection typically results in spurious (noise-induced) edges
and gaps, which may be caused by several reasons : First, even a very simple scene may
contain a good deal of irrelevant detail, which may give rise to intensity changes in the
image. Besides, images are corrupted by noise and discretization artifacts. Moreover, it is
also very difficult to interpret effectively the characteristics of the scene given edges alone
since the intensity changes stem from various physical phenomena, e.g., local differences
in illumination, surface reflection, surface orientation, shadow, or texture.

The earliest edge detection schemes are based upon approximations of the intensity
gradient ([3], [19]). Approximations of the derivative were computed using the Robert’s
cross operator, the Sobel operator, the Kirsch operator, or the Prewitt operator. However,
those operators have the disadvantage that they assumed an underlying step edge and used
a fixed operator size (or, in mathematical terms, support). Given a biological motivation
(see e.g. [23], [24]), Marr and Hildreth [31] addressed the rotationally symmetric Laplacian

operator and the special property of the Gaussian kernel as being the only real-valued func-



tion that minimizes the product of the variances of the filter in the spatial and frequency
domain. Canny [13] considered the problem of determining an optimal smoothing filter of
finite support for detecting step edges. His approach behind the definition of such a filter
was to maximize a certain performance measure constituting a trade-off between detection
and localization properties subject to avoiding multiple responses for a single edge.

An important step forward was the introduction of multi-scale approaches. From the
viewpoint of multi-scale approaches related to edge detection, an object gives rise to differ-
ent types of edge structure on different scales depending on the physical nature of the edge;
only some of these stand out locally and seem to be more significant than others. There-
fore, a natural requirement is to measure the locally stable scale for each edge structure.
This is the main concept of multi-scale approaches to edge detection, which have been
theoretically grounded by the scale-space theory. The scale-space theory, as a relatively
new field, has established a well-founded and general multi-scale technique for image struc-
ture analysis, e.g., for 2-D, 3-D, and time series images. Given an image, its scale-space
representation generated by convolution with the Gaussian kernel is particularly useful for
analyzing image data at the lower levels in the chain of information processing of a visual
system ([29], [30]). One scientifically attractive aspect of the linear scale-space theory,
proposed first by Witkin [40] for a 1-D continuous signal and furthered by Koenderink [25]
for image structure in general, is its solid mathematical framework (see [1], [25], or [40]).
In particular, it is theoretically proved ([1], [41]) that the Gaussian kernel is the unique
kernel to generate the scale-space for continuous signals. The essence of the results from
the scale-space theory is, if one assumes that the first stages of signal processing should be
as uncommitted as possible and should not have any a prior: knowledge about the world
from which the signal stems, that the convolution of the initial signal with the Gaussian
kernel and its nth-order derivatives of different scale is singled out as a canonical class of
computational low-level processes (see e.g., [25]).

In edge detection as well as in the scale-space theory, the Gaussian kernel plays a
key role. However, when we deal with the Gaussian kernel in practice, we confront a
problem: Whereas the Gaussian kernel is theoretically assumed to be continuous in the

infinite spatial domain, we have to cope with discrete signals'. The problem lies in the

!Note that a few authors referred to “discrete signals” although, strictly speaking, “digital signals”



accuracy and validity of a sampled Gaussian which is commonly used for approximating
the continuous Gaussian kernel defined in the infinite spatial domain.

In this report, after surveying edge detection methods and related multi-scale ap-
proaches based on the linear scale-space theory, we investigate how mathematically dif-
ferent a sampled Gaussian kernel is from the continuous Gaussian kernel. This report is
organized as follows : In Section 2 we review fundamentals of edge detection such as the
Gaussian kernel, differentiation, filtering, and edge models. Then we survey some milestone
approaches to edge detection. In Section 3, after giving a brief address of the general con-
cepts of the scale-space theory and its properties, we look over some of the key multi-scale
approaches to edge detection. Then, we analyze the sampled Gaussian kernel in detail,
from which we investigate the numerical difference between the continuous Gaussian and
the sampled Gaussian in the case of a sampling period of one in 1-D as well as in 2-D and

3-D in Section 4. Finally, we summarize and present future work in Section 5.

would be the correct terminus technicus. For reason of convenience we here use the terminus, “discrete

signals”. Also, we here refer to “signals” as “image (or visual) signals”.
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2 Survey of Edge Detection

In this section, we review the fundamentals which are necessary to comprehend the basics of

the method of edge detection. Then we survey some milestone edge detection approaches.

2.1 Fundamentals

Edge detection is a means of generating compact descriptions from digital images such that
most of the structural information in an image is preserved. In general, the process of edge
detection essentially consists of three steps, i.e., filtering, differentiation, and description
([24], [39]). That is to say, an image intensity function should be smoothed by filtering
in order to reduce noise, and the presence of edges is detected through the differentiation
step. Then simple features resulting from the differentiation step, e.g., peaks (positive and
negative extrema) or zero-crossings, are used to describe edges. A Gaussian kernel essen-
tially plays a very important role in the whole process of edge detection. In Section 2.1.2
and Section 2.1.3, we will explain in detail filtering and differentiation, respectively. In
order to approach these tasks analytically, the early edge operators generally assume a
specific edge model; they are designed to locate step edges which can be mathematically
modeled by the Heaviside function for the 1-D case. Step intensity changes are important
because they usually correspond to sharp contrasts. Based on the step edge model, other

edge models can be analytically established, which will be addressed in Section 2.1.4.

2.1.1 The Gaussian Kernel

The Gaussian kernel has its origin in the normal distribution of random variables (measured

values). The 1-D Gaussian probability density function is given as

1 (z—p)?
G(z;0) = e

2mo

where o is the standard deviation of G and p is the mean value as the most probable value.
This probability density of the normal distribution taken as a convolution kernel (see below)
is referred to as the so-called Gaussian filter, Gaussian kernel, or simply Gaussian. In terms

of filtering (see Section 2.1.2) the Gaussian is applied to a signal f(z) through convolution



given by

Glaso) « fa) = [ " G 0) (@ - O)ie.

A remarkable property of the Gaussian kernel is that the Gaussian is the only real-
valued kernel which gives equality both in the spatial domain and in the frequency domain
([8], [10], [23], [24], [31]): The Fourier transform of the Gaussian is also a Gaussian. Let us
consider the Fourier transforms of the sinc function and the sinc? function, and compare

them with the Fourier transformed Gaussian function :
(a) sinc(r) o—e I(w)
(b) sinc?(r) o—e A(w)

(C) efmzz o—e efmuz

The Fourier transform of the sinc function is the unit rectangle function (a) and the Fourier
transformed sinc? function is the triangle function of unit height and area (b) (see e.g. [10],
[15] for details), while the Fourier transform of the Gaussian function is a Gaussian again
(c). These three transform pairs are illustrated in Fig. 1. In contrast to the other two
functions, the response of the Gaussian kernel is as narrow as possible in both the spatial
and the frequency domain, which minimizes the effects of aliasing introduced by a band-
limited filter ([8], [10]). It is noticeable that the bandwidth-duration product of a signal
cannot be less than a certain minimum value, which is the so-called uncertainty relation.
It is well-known that the Gaussian kernel minimizes the uncertainty (see page 12).

The higher dimensional Gaussian is the rotationally symmetric kernel that is separable
in Cartesian coordinates. Moreover, the higher dimensional Gaussian kernel is also sepa-

rable in convolution, which can be easily shown using the Fourier transform theorem ([10,



(a) sinc(z) (b) (w)

(c) sinc?(x) (d) Alw)

(e) efwzz (f) e—Trw2

Figure 1: Some Fourier transforms : The Gaussian achieves equality both in the spatial

domain and in the frequency domain.



pp. 245]). For example, in the case of the 2-D Gaussian kernel,

+o0 +o0
/ G(z)G(y)e™ (““”y)dxdy} * f(z,y)
o S B

[ we raa G(y)ejvydy}  £(2,1)

o0 —0o0

2.1.2 Linear Filtering

Convolution Linear filtering is shift-invariant. Therefore, it is realized by a convolution.
For two functions f(z), g(z) : R — IR, the convolution? denoted as f(z) * g(z) is defined
by the convolution integral as

+o0o

f(@)xg(x) = (f xg)(z) = - f(&)g(x — &)de.
The following properties of the convolution hold for all f,g,h: R — R :
e fxg=gxf (commutativity)
o (fxg)*h=fx(gxh) (associativity)
o fx(g+h)=(f*g)+ (f*h) (distributivity)
o (c-f)xg=c-(f*g) (cis a constant)

e O(fxg)/0x=0f/0xxg=fx0Dg/0x

Reducing Noise In machine vision as well as in most numerical problems, data are
noisy. Noise in the photon transduction process is ultimately unavoidable (]3], [19]). Un-

fortunately it is well known that differentiation is not robust against noise ([12], [39]).

2Sometimes ® is also used for the notation of the convolution operator.



Hadamard first introduced the definition of ill-posedness in the field of partial differential
equations. A problem is well-posed if i) its solution exists, ii) the solution is unique, and iii)
it continuously depends on the initial data. Ill-posed problems fail to satisfy one or more
of these criteria. The main idea behind solving ill-posed problems is to restrict the class
of admissible solutions by introducing suitable a priori knowledge. This can be exploited
through the formulation of the problem via variation calculus which imposes constraints
on the possible solutions or as statistical properties of the solution space. In particular, the
general term regularization is used for any method to make an ill-posed problem well-posed
(see e.g. [7], [34], [35], or [39]).

The aim of filtering is to reduce noise, and it can be understood as regularization. Edge
detection in case of noisy data realized by numerical differentiation is mildly ill-posed since
the solution does not depend continuously on the noisy input data ([39]). For example,
the Laplacian operator is sensitive to noise and thus, strictly speaking, not suitable for
applying it to edge detection as it is. Alternatively the Laplacian of Gaussian (LoG) may
be used to alleviate the problems caused by noise (see below).

Even a small amount of noise may perturb differentiation. Let us consider a function

~

f(z) given as
f(z) = f(z) + esinwe,

where the sin-term is meant to be simulating additive high-frequency noise. f(z) may be
close to f(x) according to standard norms (L?, L®, ---), provided e is sufficiently small. On
the other hand, df /dz may be much different from df /dz if w is large (viz, high-frequency

noise),

af _ df
— = — 4 wecoswe
dx dx ’

and it even becomes exponentially worse as the order of differentiation increases; the

second-order derivative is derived as

2 £ 2
% = % — wlesinwe,
x x
and generally the nth-order derivative is
rf d'f

+wlesi ( +"”)
= w"esin (wz + — ) .
dz™ dz™ ¢ 2
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This noise-induced effect can be reduced by using a lowpass filter, e.g., a Gaussian
filter. Let us consider a 1-D function f(z) formed by the Heaviside function #(x) with

additive high-frequency noise simulated by a sin-term such that
f(z) = H(z) + sin wyz.
As a lowpass filter, the Gaussian is applied through convolution
G(z;0) * f(z) = G(z;0) * (H(z) + sinwpz) .
Then, the first term is derived as

Gl;0) x H(z) = / T G(& oM — )de

= /_x G(&;0)dE
= &(z;0),

where ® is the error integral function, and the second term is derived as

G(z;0) ¥sinwpr = F "{F{G(z;0

~—

}- F{sinwpz}}

— F! {e—“zf : g (8(w — wo) — 6w + wo))}
1 oo w22 71'(5( ) 5( + )) ijd
= — e 2 .= W — W - w W + € W
o ) ; 0 0

I L A »
= e 2 -5(6]“")’”—6]“’0’”)

= e 2z sinwpyzr.

The noise convolved with the Gaussian filter exponentially decreases, whereas the Heaviside

function is blurred to the error function (see Section 2.1.4 for the ®-function).

Lowpass Filtering Linear lowpass filters are usually used in digital image processing to
suppress noise. So-called lowpass filters attenuate or, in the ideal case, even eliminate high-
frequency components in the frequency domain while leaving low frequencies untouched,
that is, only low frequencies “pass” the filter. Since high-frequency components characterize
edges, noise, and other sharp contrast details in an image, the net effect of lowpass filtering

is image blurring ([19]).
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Torre and Poggio [39] addressed a few conditions the Fourier transform of a lowpass

filter, F(w;0) (o is the scale parameter), should satisfy :
1. F(w;o) is bounded for o > 0 and all w.
2. F(w;o) is an even function with respect to w, and it belongs to Ls(—o00, +00).
3. F(w;o0)jw belongs to Ly(—o00, +00).
4. For every o > 0, it holds lim,| o F(w;o) = 0.
5. F(w;o) =+ 1as o — 0 and F(w;0) = 1.

Moreover they classified the three kinds of lowpass filters used in edge detection: A band-
limited filter for the frequency domain, a support-limited filter for the spatial domain, and
a minimal uncertainty filter.

If a filter is band-limited, its Fourier transform vanishes off out of a band limit. The
band-limited filter is an obvious choice for regularizing differentiation, since the simplest
way to avoid harmful noise is to filter out high frequencies that are amplified by the
differentiation effect as shown above. However, the band-limitedness in the frequency
domain causes the infinite support in the spatial domain, which is unrealistic in practice
(see Fig. 1, top row). Shanmugam et al. [37] used the band-limited filter for edge detection,
which will be reviewed in Section 2.2.1.

In practice, filters have a finite extension and are, therefore, support-limited in spatial
domain (compact support). Computational efficiency requires that the support of a filter
is as compact as possible. As an example shown in Torre and Poggio [39], let us consider
an ideal 1-D lowpass filter in the spatial domain which is the simplest even filter with a

strictly limited support I and unitary energy as

1
floy={ v =T
0 J|z|>1

Then, its Fourier transform F(w) is given by

Fl) = \/?sinc(dfw).

11




In this case, the filter fails to satisfy the third condition required for being a lowpass filter.
The third condition means that the Fourier transform of the first derivative of a lowpass

filter should belong to Ly(—00,+00). In other words, the condition

[ Fsort

must hold. The violation of this requirement can be simply shown :

2
*© 2sin(fw) . 2,
/oo (\/; » ]w) dw —‘ I/oosm (Tw)dw
2w 1 |
=7 {5 - Es1n(2[w)]

. w 1
= L}g{)lo 2 {7 + o2 Sln(2Iw)]

< o0

o0

—o0

= OQ.

This is the reason why the class of support-limited filter introduces back in its differenti-
ation high frequencies in the same amount as they are removed by this type of filtering
([19], [39]).

A band-limited filter has theoretically infinite spatial support since it is band-limited in
the frequency domain. The drawback of support-limited filters is that they are regularizing
only in a weak sense. Accordingly, it is natural to try to find an optimal compromise
between these two types of filters, since the one in the spatial domain and the other in the
frequency domain are conflicting. A measure of the spread of a function f € Ly(IR) in the
spatial domain and in the frequency domain is related by the uncertainty principle ([10],

[39]), denoted as AU, which is defined as AU = XQ :
J 3@ — &) f(2)de

X? =
[2 Payde
T = /+°° rf?(z)de,
o LSl _ar Fera
[2 2| F(w) |? dw
W= /+°°w | F(w) |? dw,

12



where X? is the variance of f2(z), Z is the mean value of = being weighted according to the
distribution of f2(z), and Q2 and @ are corresponding to those of the Fourier transform,
respectively. The uncertainty principle states that AU = X > 7 (see [10, pp. 160-163] for

its proof). The Gaussian kernel is the only real-valued function which gives the minimum

uncertainty, i.e., 7. The Gaussian also satisfies all five conditions required for a lowpass
filter. On this ground Marr and Hildreth [31] have proposed the Gaussian as the optimal

filter.

2.1.3 Differentiation

Most edge detection methods are based on a local derivative operator. The magnitude of
the gradient of an image can be used to detect the presence of edges. Alternatively the sign
change of the Laplacian can be used to determine where the edge is, since the second-order
derivative of intensity change in images has a zero-crossing at the mid point of a gray-level

transition.

Gradient In the case of a 2-D intensity function f(z,y), the gradient of f at a given
point (x,y) is defined as

of
oo (F (%)

of
fy dy

where V is the nabla operator. The gradient vector points to the direction of the maximum
rate of change of f at (z,y). The gradient magnitude (or, respectively, gradient vector

norm) given by

| Vil=y/f2+ 1]

is used as measure of the intensity change.

Laplacian The gradient (or, synonymously, nabla) operator employed twice to a scalar

valued function f in IR? or IR? results in the Laplacian operator® expressed by V2 = V7.V,

3Tt is sometimes denoted by A.
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and the Laplacian of f(z,y) is defined by

V2f = o1 + o1,

ox?  0y?
The Laplacian is a non-directional operator and has been extensively used due to its com-
putational convenience. Being used for detecting edges, however, it has disadvantages ([3])
: First, the useful information of the edge direction is lost. Second, being an approxima-
tion to the second derivative, the Laplacian is more sensitive to noise than the first-order
derivative operator. And third, the locus of the zero-crossing strongly depends on e.g. the
local curvature of the object boundary to be detected (see e.g. [32]). For these reasons,
the Laplacian usually plays only a secondary role in edge detection. A more general use

of the Laplacian is in finding the location of edges using zero-crossings of the Laplacian of

Gaussian (LoG) (see e.g. [19], [31] for details).

Directional derivatives The first-order directional derivative is the scalar product of
the gradient of a function and its unit vector. It provides the derivative of the function
with respect to the direction of the unit vector. Given a 2-D intensity function f(z,y), its

unit vector n is given as

T
7 A fy
| Vf I+ PR
and the first- and the second-order directional derivatives are derived as
of T
- (V) -n
i+ 12

= == = IVf],

NiZES
O (V) )

o fan 2 fyfoy + 1
f+ 1 '

Zero-crossings of the second-order directional derivative along the gradient of the inten-

sity function may be considered as edges in the image. However, the second directional

derivative can not be defined when |V f| = 0.

14



If f(z,y) can be represented as a function of only one variable, i.e., f(x,yo) where yq

is a constant, the two operators V? and —22 are equivalent. Also if f,, = fz, = 0 when

0
on
2f

5oz = 0, the zeros of % coincide with those of V2f ([39]). However, for a circularly

symmetric intensity function, the zeros of V2 are farther apart from edges than those of

82

5 (see [32]). This lack of accurate localization of V? for circularly symmetric patterns

. 2 . .
can also be observed in the case of corners where zeros of V2 (not those of %) swing wide

of corners ([8], [36]).

2.1.4 Edge Models

If we intend to approach the detection of edge analytically, it is necessary to establish
an edge model. That is, in order to assure accurate and reliable results from an edge
detection scheme, an either implicitly assumed or explicitly formulated edge model are
required ([39]). An edge model is usually designed to locate a step edge which can be
mathematically modeled by the Heaviside function, and other simple edge models can be
established based on the step edge model (see e.g., [2], [4], [8], [13], [18], [32], [33], [36],
[37]).

Here, we roughly classify edge models as a step edge, a double edge, a corner edge, and

a blob edge model.

Step Edge The Heaviside function (so-called ideal step function), denoted by H.(z) which

jumps from 0 to 1 at x = 0, is defined as

0, =<0
H(z) =4 (3, ==0)
1, >0

The Heaviside function represents ideal step changes, but real edges show rather smooth
intensity changes, which hence look sigmoid. A sigmoid step edge can be modeled by the

normalized error integral curve given by

O(z;0) = G(z;0) * H(z),

15
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(a) H(z) (b) ®(x;0)

Figure 2: Step edge models

where G(z;0) denotes the 1-D Gaussian (the normal distribution with zero mean) and
o is its standard deviation (i.e., the degree of blurring). Fig. 2 illustrates the Heaviside
function and the ®-function (see, e.g., [2], [4], [6], [8], [12], [31], [42]).

The so-called ®-function is known for the primitive function of the Gaussian and is
some kind of “basic function” in connection with blurring of the images [4]. Note that
lim, o G(z;0) = 6(z), and thus

lim ®(z;0) = 0(z) * H(z) = H(z)

o—0

holds. Explicit descriptions of blurring are relevant for explaining how locally non-curved

gray level edge profiles change in scale-space (see Section 3).

Other Edge Models Bars, corners, or blobs should be distinguished from step edges,
since they consist of more than one edge and are affected by one another as the scale
parameter increases. A step edge model alone cannot significantly represent accurate
information about positions or contrasts of bars, corners, or blobs.

As a matter of fact, each edge model can be formed in various ways. Here we consider

only a few simple cases that are built upon the ®-function.

e Bar Edge (Double Edge)

16



Two parallel step edges lying only a small distance apart in the image are called bars
or double edges ([31]). The unit 1-D bar edge undergoing Gaussian blurring can be
defined by

faowe = G(z;0)*((H(z —a) — H(z — b))
= ®(x—a;0)— P(x —b;0),

where the value of |a — b is the width between one edge and the other one (see e.g.

[4], [31)).

Corner (Junction) Edge
A corner is formed by the meeting of at least two edges in the image. Among various
types of corners (e.g., L-, T-, Y-, Arrow-corners), the simplest one of corner edges is

a L corner. The unit L corner edge can be represented as
fcorner = (G($a U) * H(x - a)) ) (G(y’ 0) * H(y - b))
= &(z —a;0)- 2(y —b;0),
where (a,b) represents the corner point (see e.g. [4], [8], [36]).

Blob
Closed contours formed by merging of two (or more) pairs of edges are called as blobs

([31]). An unit blob made of two pairs of parallel edges can be modeled as

foor = (G(z;0)* (H(z —a) — H(z = b)) (Gy;0) * (H(y — a) — H(y — B)))
= (®(z —a;0) = (z —b;0)) - (B(y — a;0) — B(y — B;0)),

where (a,a), (a, ), (b,@) and (b, 3) are the corner points of the blob.

Each exemplified edge model shown above is the simplest case respectively. In each case,

however, the amount of blurring with respect to the ®-function should be considered, and

in higher dimensional cases the orientation of each edge model must be taken into account.

17



2.2 Related Work
2.2.1 Shanmugam, Dickey and Green

Shanmugam et al. [37] derived an optimal frequency domain filter for detecting intensity

changes using the following criteria : The filter

1. yields maximum output in the vicinity of an edge for a given band width and reso-

lution requirement in the image,

2. is a strictly band-limited filter (i.e., a filter whose Fourier transform has its support

on an interval surrounding the origin),
3. yields a small output when the input is constant or slowly varying, and
4. is an even function in space.

Let f(z) be an input function and h(z) the impulse response of the filter whose transfer

function we seek to derive. The filter output g(z) and its Fourier transform are denoted as

g(z) = f(z) * h(z) o—e F(w) - H(w).

For given I (spatial domain) and © (frequency domain), the authors derived the parameter

v as

I
2

J21 19(&)Pdg
V=
J o |9(€)1PdE
The maximum value of the measure of « represents the portion of the output signal energy
within the resolution interval I in the vicinity of the edge.

In this context, they derived the optimal filter transfer function H(w) which maximizes

H(a})— qu/)l( a%)a |("}|§(2
0, lw| > Q

where K is a real-valued constant, H (w) is band-limited to 2, and v, (c, x) is a linear prolate

spheroidal wave function of band-limited functions which possesses the property of being
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orthogonal over both a given finite interval and (—oo, c0). Through the approximation of

Y1 (c, x), the transfer function of the optimum filter is expressed as

(Kw) exp[—(c[2w2)/4§22]

. , lwl < Q
Hopt((U) — JF(w) | |
0, elsewhere
Assuming f(x) to be a step edge represented by #H(x),
(&) oo Fl) = 50() —
zr)o—e F(w) = -0(w) — j—
2 T orw

holds. Then the transfer function of the optimal filter for a step edge is reduced to

(K1w?) exp [—(cI?w?)/49?%], |w] < Q
Hiep(w) =
0, elsewhere

According to the theorem of differentiation in the frequency domain given by

) ¢ 500

we can derive the Fourier transform which corresponds to the second-order derivative of

the Gaussian :

9*G(z) .
o2 Ot v - F{G(z)}

VZG(z) o-e —w'G(w)~ Hipep(w)

This means that, in the case of detecting step intensity changes, the optimal frequency do-
main filter corresponds to a spatial operator that approximates the second-order derivative

of the Gaussian (for a given bandwidth) [24].

2.2.2 Marr and Hildreth

Marr and Hildreth [31] proposed an edge detection scheme based on filtering using a 2-
D symmetric Gaussian followed by the localization of zero-crossings of VZg(z,y), where
g(x,y) is the Gaussian filtered image. They addressed two physical considerations that
should be combined to determine the appropriate filter: First, the spectrum of the filter
should be roughly band-limited in the frequency domain. Second, the filter should be also
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smooth and localized in the spatial domain, and in particular its spatial variance should
be small. Considering the localization of such a filter both in the spatial and frequency
domain, they inferred the requirements that the filter should be both band- and support-
limited. Furthermore, they remarked that the conflicting requirements of support- and
band-limitedness are optimally reconciled by minimizing the support-bandwidth product.
Since the Gaussian achieves the minimum with respect to the uncertainty principle (see
Section 2.1.1), they chose a Gaussian.

Marr and Hildreth were interested in finding points at the maximum of the direc-
tional derivative as edge locations, and chose to locate these maxima as zero-crossings of
the second-order derivative. Considering the cost of computation, they used an isotropic
derivative operator, V2 (as the second-order derivative), and computed V?(G * f), where

G is the Gaussian and f is the input image. Since
V3G f) = (V*G)*f,

they convolved f with V2@, which they approximated by a difference of Gaussians (DoG).

Although their approach has inspired a good deal of research on edge detection, their
ideas are relatively intuitive and not based on a well-founded theoretical scheme. Marr and
Hildreth assumed that coincident zero-crossings from a set of independent V2G channels
over a contiguous range (by varying the scale parameter o of the Gaussian) imply the
existence of an edge and conversely. The problem is that this so-called spatial coincidence
assumption is not well-supported by any formal argument. The only situation for which this
assumption really makes sense is that of e.g. a straight-line-like, very sharp edge between
fairly large regions with constant intensity. In a given image, however, only structures over
a certain range of scales can be observed, while fine details disappear as scale parameter

increases.

2.2.3 Canny

Canny [12], [13] investigated the desirable properties of an optimal edge detector based on
the efficiency of detection and reliability in localization. Canny used a step edge model
(see Section 2.1.4) corrupted by additive white Gaussian noise and precisely formulated

the criteria for effective edge detection. It was assumed that detection is performed by
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convolving the noisy edge with a spatial function h(z) which is the impulse response of the
filter to be sought. The edges can be marked at the maxima from the output of convolution.

The input signal f(x) can be represented as
f(z) = AMt(z) + n(z),

where A is the amplitude of the step edge, #(z) is the Heaviside function, and n(z) is

noise. The filter output g(x) is given by the convolution integral as

ow) = [ O f (o — &)de

~ 4 / " heme - o)de + / h(E)n(x — £)de

— o0

— 4 /_ h(EdE + /_ " h(eyae.

o0

Let gedqe and g, denote respectively the responses of the filter to an edge and to noise.

Then the signal-to-noise ratio (SNR) at the edge (i.e., at = 0) can be derived as

gedge(x)
gn(x)
A" h(E)de

noy/ [ h2(€)de

SNR =

where ng? is the variance of the input noise. Assuming there is a local maximum in the

total response at the point x = zy, then we have

gédge(xo) + g;(xo) =0.

The Taylor expansion of g, (o) at z = 0 gives

gcladge(xo) = gédge(o) + ggdge(o)ajo + 0(3702)'

Since the response of the filter in the absence of noise has a local maximum at x = 0, i.e.,
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9eage(0) = 0, the above equations give

ggdge(o)xo ~ _g;(xﬁ)
2 A 9;;2(370)
’ ggdgez(o)’
[h(z) * H(z)]" = N'(z)*H(z)
- Vo2 [1 h(€)de
o =

AL ()3 - £)dg

noy/ [0 WA (€)dE
Aln'(0)]

Ty is an approximation to the standard deviation of xy. The localization is derived from
the reciprocal of T as

1

To

Localization =
AlR'(0)]
noy/ [0 P (€)de

Let h, denote the spatially scaled filter derived from h, where h,(z) = h(%). Substi-

tuting h, into the formulae for SNR and for Localization, one can obtain the performance

of the scaled filter with respect to SNR.

She= VY

and to Localization

1
1 [
N = NG AR
These equations imply that the signal-to-noise ratio of an ideal step edge is favored by

a broad filter, whereas a narrow filter gives better localization than a broad one. The

product of SNR and Localization is invariant under the changes in scale parameter, i.e.,

(320) - (A) = (20) - (A¥)-

Through the scaling of h one can balance the detection performance against localization,

but both cannot be improved simultaneously.
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The natural choice for the composite criterion from above is to maximize this product.

Canny [12], [13] used three criteria to derive an optimal operator:

1. good detection ability, i.e., there should be a low probability of failing to detect real
edges and of falsely detecting edges that do not exist,

2. good localization ability, i.e., the position of the detected edge should be as close as

possible to the true position of the edge, and
3. uniqueness of detection, i.e., a given edge should be detected only once.

The first two criteria are related by an wuncertainty principle; as the detection ability
increases by using filters with broad local support, the localization ability decreases, and
vice versa. The impulse response of the optimal step edge filter was shown to approximate

the first derivative of a Gaussian ([12], [13]).
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3 Survey of Scale-Space Method

Computer vision deals with the problem of deriving meaningful and useful information
from the visual data ([3], [28]). Koenderink [25] pointed out that in every image analysis
task the problem of spatial scale must be faced, since a given image has a limited window
(the “outer scale”) as well as a limited resolution (the “inner scale”). In particular, the first
stages of visual processing that perform directly on raw image data are collectively termed
the visual front-end by him. If a vision task is approached without strict presumption (or
a priori) with respect to the visual front-end and its tasks, then a fundamental question
arises: What information should be extracted, and for that, which operators to use, where
to apply, and how they should be related to scale. The task of extracting information
from image data is severely influenced by the inherent measurement problem meaning that
real-world structures appear in different ways depending on the scale of observation ([25],
[28], [30]). As a consequence, if one attempts to describe fully the structure of objects in
the world projected onto 2-D images, a multi-scale representation is of importance. The
main idea of creating a multi-scale representation is to generate a one-parameter family of
signals derived from the original signal such that details are successively suppressed with
increasing scale parameter.

Witkin [40] proposed a new way of describing zero-crossings across scales. Since the
scale may be considered as a continuous parameter, a 1-D signal is first smoothed by
convolution with a Gaussian filter of varying scale parameter o, and then zeros of the
second derivative are localized and followed through scales as the size of the filter increases
(decreases). Koenderink [25] soon furthered the approach, which has been developed into
the scale-space theory providing a well-founded mathematical framework for dealing with
image structure in general (see e.g. [16]). The scale-space theory focuses on the basic fact
that image structures, like objects in the world, exist as meaningful entities over certain
ranges of spatial scale, and that one neither can expect to know in advance what scales are
appropriate for detecting them nor where in the image which scale appears. For example,
a differential operator is often used to detect edges (see Section 2.1.3). The obtained edges
depend not only on the image data but also on the scale of the operator, i.e., the size of

the kernel of local operator used.
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From a given signal one can generate a family of derived signals by successively removing
fine-detail structures when moving from finer to coarser scales, according to the scale-space
theory. The behavior of structure as scale changes can be analytically described based on
a precise mathematical definition. The essence of the results from scale-space theory is
that if one assumes that the first stages of visual processing have to be as uncommitted
as possible and have no a priori knowledge about the world from which the image stems,
then convolution with Gaussian kernels and their n-th order derivatives of different scale

is singled out as a canonical class of low-level operators (see e.g. [25]).

3.1 The Principles of Scale-Space

A principled approach proposed by Witkin [40] and Koenderink [25] for obtaining such a
multi-scale representation of a measured signal is to embed the signal into a one-parameter
family of derived signals, the linear scale-space, where the scale parameter, t € IR *,
describes the current scale. The attractive aspect of the scale-space theory lies in its
solid mathematical framework. For this reason quite some emphasis has been put on the
development of the theoretical foundations. Applications of the scale-space theory can be
found by now in any field of analysis of sampled data in the spatial, temporal, or whatever
domain ([29]).

The linear scale-space concept and the associated theory provides a conceptually ro-
bust model for early visual computations. On the other hand, there are certain limitations
in basing a vision system on the Gaussian kernel only ([30]); e.g., smoothing across ob-
ject boundaries may effect both the shape and the localization of edges in edge detection.
Similarly, surface orientation estimates computed by shape from texture algorithms are
affected since the anisotropy of surface pattern may decrease when smoothed using a rota-
tionally symmetric Gaussian. These are some basic motivations for considering non-linear
extensions from the linear scale-space theory. In this report, however, we consider only the

linear scale-space theory.

“IR, denotes the set of real non-negative numbers, and IR\ {0} the corresponding set excluding zero.
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3.1.1 Gaussian Smoothing and Linear Diffusion

Given a continuous 1-D signal f : R — IR, the scale-space representation L : R xR, — R

is defined such that the representation at “zero scale (¢ = 0)” is equal to the original signal
L(z;0) = f(=),

and the representation at coarser scales are given by convolution of the signal with the

Gaussian kernel of successively increasing scale parameter
L(z;t) = G(z;t) * f(z),

where G : IR X IR, \ {0} — IR is the 1-D Gaussian kernel. Then the scale-space represen-
tation at the scale t° is given by
2

U S S
u%n_/; e - )i

In terms of differential equations, the evolution of 1-D image structure over scales of

the scale-space family L can be described by the 1-D linear diffusion equation given by

oL 1_,
him—— v £3
ot 2V

_16°L
2 0x2
This notation allows for an analogy and gives a direct physical interpretation of the Gaus-
sian smoothing filtering: The scale-space representation L of a signal f can be understood
as the result of letting an initial heat distribution f evolve over time ¢ in a homogeneous
spatially infinite medium. Hence, it can be expected that fine-scale details will disappear
and images become more diffuse as the scale parameter increases ([17], [29], [30]).
Koenderink [25] introduced causality (see Section 3.1.2) in the 2-D scale-space theory,
meaning that new level surfaces must not be created when the scale parameter increases. By
combining causality with the notions of homogeneity and isotropy, which essentially means
that all spatial points and all scale levels must be treated in a same manner, he showed that
the scale-space representation for a 2-D signal by necessity satisfies the diffusion equation,

oL 1_,. 1[&L oL
0L _lgpp L (0L 92
a2y 2<mf+@0

5The scale parameter ¢ is equal to o2 used in the previous sections.
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Since convolution with the Gaussian kernel describes the solution of the diffusion equa-
tion for an infinite domain, the Gaussian kernel is the unique one for generating a scale-
space, which has been theoretically proved (see e.g. [1], [41]). It can be regarded as well-
established that the scale-space formulation in terms of the diffusion equation, within the
class of linear transformations, describes the canonical way for constructing a multi-scale

representation.

3.1.2 Linear Scale-Space Properties

The family of the scale-space representation with increasing scale parameter ¢ possesses

some attractive properties ([29], [38]) :

e Non-creation of local extrema/zero-crossings
As the scale parameter is increased, additional local extrema or additional zero-
crossings cannot appear; note that an extremum in L is equivalent to a zero-crossing
in the first derivative of L. The non-creation of the local extrema means that zero-
crossings in any derivative of L form a closed curve across scales. This property
shows that Gaussian convolution satisfies certain sufficiency requirements for being

a smoothing operation.

e Causality
The necessity of a Gaussian smoothing for the scale-space representation is proved
by introducing the concept of causality; new level surfaces must not be created in
the scale-space representation when the scale parameter is increased. That is to say,
the property of causality implies that L(+;t3) depends exclusively on L(-;¢) if t5 > t;
(t1, 2 > 0).

e Shift-Invariance

The Gaussian blurring as a linear filtering is shift-invariant.

e Semi-group Property
Convolving a Gaussian kernel with a Gaussian kernel results in another Gaussian

kernel of which scale value corresponds to the sum of the scale values of each Gaussian
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kernel, i.e.,
G(-;t1) * G(+;t2) = G+t + ta).

In terms of the scale-space representation, this means that a representation at a
coarse scale L(+;t2) can be computed from the representation at a finer scale L(-; ;)

by convolution with a Gaussian kernel with parameter value ¢y — t; > 0,
L(;ta) = G(+5t2) x f
= (G(5ta —t1) x G(5t1)) * f
=Gty —t1) x (G(-;t1) * f)
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3.2 Multi-Scale Approaches to Edge Detection

The idea of scale is critical for a symbolic description of the significant intensity changes
in images or other classes of signals. Such changes must be detected at different levels
of scale, since in general different physical causes may be associated with a characteristic
behavior across different scales. In an image, intensity changes take place at many spatial
scales depending on their physical origin, e.g., abrupt changes at occluding boundaries
versus smooth changes at shadows. A multi-scale analysis, i.e., tracking the behavior of
some feature of the original signal across scales, can reveal precious information about the
nature of the underlying physical process which gives rise to the feature in the image.

However, there is a trade-off problem, which is common for all edge detection schemes
concerning the amount of smoothing, i.e., a good detection versus a poor localization, and
vice versa (see Section 2.2.3), In other words, a large amount of smoothing generally on
one hand has the desirable effect of increasingly suppressing noise and other interfering
fine-scale structures. This, on the other hand, may lead to shape distortions at edges by
smoothing across object boundaries. By contrast, a small amount of smoothing with a
smaller scale operator can improve the localization at the cost of a lower signal-to-noise
ratio. To cope with this kind of problem, several approaches have been advocated. In the
field of computer vision, Rosenfeld (1971) was one of the first who explicitly proposed an
edge detection scheme based on a multiple resolutions. Marr (1976) strongly advocated
the use of the second-order derivatives of Gaussian-shaped filters of different sizes with
the goal of detecting intensity changes at different scales. Moreover, Young (1985) showed
that there are receptive fields in the mammalian retina and visual cortex, the measured
response profiles of which can be modeled by Gaussian derivatives. It is interesting to note
that receptive fields similar to the Laplacian of the Gaussian (center-surround receptive
fields) have been reported to be dominant in the retina (see e.g. [23]).

In the following sections, we will review some of the key approaches with respect to the

scale-space method used in edge-detection schemes.

3.2.1 Korn’s Method

Korn [26] suggested a multi-scale edge detection scheme based upon the gradient of a
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normalized Gaussian. He showed that special gradient operators with different scales can
be defined by normalization, which are suitable for the comparison of differently filtered
images. He assumed that edge detection should be based on the measurement of intensity
changes across regions in an image, which is determined by the convolution of f(z,y) with
operators XGG and YGG (the normalized gradient of the Gaussian in the direction of the
z— and of the y—axis, respectively) which are defined by

XGG = k(a)%G(w,y; o) =—k(o)- ;G(w,y; o) = Gy,

Yae = k<a>§ya<x,y;o> = k(o) LG, y;0) = C

where G(z,y; o) is the 2-D Gaussian with standard deviation o.
The normalization requirement states that positive and negative parts of the first-order

derivatives of the 2-D Gaussian should be separately normalized to +1 and -1, respectively

([26]);
k(o) /_:O /Om .

+o00 +o00 T
drdy = k(a)/ / ‘——ZG(x,y; o)|dzdy
—00 0 g

+00 +00
— k(g) / / zG(z,y; 0)dzdy
—00 0

o

+00 400 .
— _O_Qk(z-) / / 8G(x’y’a)d$dy
o o Jo or
+o0

+o0 .
= —k(o) N G(y; U)cly/0 %dm
tooo g 1 o2
=—k(o)-1- - 202
(o) /0 g 27m€ T

. V2mo3 .
1
V2mo3
1

oro

That is to say, according to the normalization requirement,

too  ptoo too  pdoo
k(a)/ /0 ‘Gm d:rdy:k(a)/o / ‘Gy

k(o) = o+v/2m is obtained.
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XGG and YGG represent both components of the gradient of the Gaussian, leaving
aside the normalization factor k(o). Then, convolution of the image intensity function

f(z,y) with VG(z,y; o) can be written
—k(0)(VG(z,y;0) * f) = —k(0)V(G(z,y;0) * f) = (n1,n2)T = n.

Edge detection is now reduced to the problem of finding appropriate features in the vector
field n. The responses of the convolution can be analyzed by the magnitude A(z,y; o) and

the direction « of the vector n, which are defined by

In| = \/n3 +n% = A(z,y; 0), a(z,y) = arctan <@> :
n

In this way, the attributes A and o can be assigned to every point in the image. Edges are
defined by the maxima of the magnitude of A(z,y;0) in the direction of maximal intensity
changes, i.e., in the direction a. In the context of multi-scale analysis, on the other hand,

the scale parameter o; of the magnitude of A(z,y; o) is varied

|A($7y; 0-1)| P |A($ay; Un)| .

Then, the maximal magnitudes of A(z,y;o) with different scales are compared, searching
for a maximum as a function of o. Such a scale ¢ = 0, giving a maximum corresponds to

the suitable (or, optimal) scale value with respect to the edge to be detected.

3.2.2 Edge Focusing and Signature Approach

Edge detection in a gray-value image at a fine resolution is typically subject to noise and
unnecessary detail, whereas edge detection at a coarse resolution distorts edge contours
through a large degree of blurring causing poor localization, particularly for high-curvature
boundaries. To approach this problem, Bergholm [4] suggested the edge focusing method,
i.e., a coarse-to-fine tracking in a continuous manner.

The main idea of edge focusing is to detect edges at a coarse scale, where the detection
problem can be expected to be easier, and then track the edges to a finer scale, to improve
the localization, which can be very poor at coarse scales. It was shown that if the focusing

procedure is performed in such a way that the scale step Ao is less than %, then for the
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most common edge configurations the edges are guaranteed to move not more than one
pixel from one scale level to the next.

The edge focusing scheme, however, does neither address the problem of determining
the correct scale in the detection step, nor at which scales the edges should be localized.
Therefore, it serves mainly as a selection procedure, which among all the edges at the finer
(localization) scale selects those that can be traced to corresponding edges at the coarser
(detection) scale.

Marr advocated the use of varying the scale parameter for classifying edges and sug-
gested the signature approach for 1-D images. Signature approaches aim at combining the
information from an image in different ways in order to obtain a better representation of
scene content ([42]). Bergholm and Zhang [6], [42] showed that signature can be obtained
by using edge focusing and approximate linking of edge elements between the scale levels
in the stack of edge images generated by edge focusing (see, e.g., [4], [5], [6], [21], [42] for
further reading).

3.2.3 BNS Approach

Back et al. [2]® proposed a 1-D multi-scale edge detection and description scheme following
the approaches of Marr and Korn.
The normalized error integral curve

B(z;7) = Gla: 7) + H(z) = — / exp <—2§—;> de

2T J—o

serves as an explicit model of a smoothed step edge (see Section 2.1.4), which is generalized

with arbitrary contrast ¢ to
Q,(z;7) =ap + c(G(z;7) *x H(x)),

where ¢ = |a; —ag| and ag and a; correspond to the intensity values of local plateaus neigh-
boring the contrast edge. The standard deviation 7 of the normal distribution corresponds
to the width of the scaled step edge.

According to Marr’s signature, the operator response in 1-D can be represented as

My(z;7,0) = ®4(z;7) * ij(x;a),

6The acronym BINS stems from Back, Neumann, and Stiehl.
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where G(z;0) is Korn’s operator given by

A

Go(z;0) = k(0)Go(2;0),
whereas the response of the operator applied to ®, is expressed as
My(z,7,0) = ®,(x;7)* Go(z;0)
= (ap+c(G(z;7) * H(z))) * Go(x; 0)
= ag* Go(z;0) + (c(G(z;7) * H(z))) * Go(z; 0).

Convolution of the constant ay with G,(x; o) is derived as

N

0G (z;0)
oz

ao*éx(w;a) = qg*

while the second term as

(€(Glai )+ W) » Culiio) = (37 (Glwim) » Glaio) + 1))
=c <(G(a¢; ) * Gz 0)) * 07;3(6:13))

=c (G(a:; ) % Gz 0')) ,

which is derived using the convolution theorem

~

Glz;7)+ Glr;0) = F H{F{G(x;m)} F{Glw;0)}}

_ f‘l{/ZG(x;T) exp (— jwz) dx-/oo Gz 0) exp (—jws) dx}

o0

2.2 2 2
= F! {exp (_w; ) -V 2mo exp <_w20 )}

- Vi (S

1 [ 2,2, 2
= 2—/ V2mo exp <—w> exp (jwz) dw
™ —Oo0

o z?
= ——exp|———+ .
V12 + o2 2(12 + 02)
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Through the derivation above, the response of the operator is expressed as

M,(z;7,0) = ——— e o

T, T,0) = xp | — .

gy \/7'2—|—o'2 P 2(T2—|—0'2)

Consequently, the unknown 1-D discontinuity at .., = 0 (i.e., the position of the edge)

has parameters
c= ﬁMg(wmax =0,7,0; =)

and the scale o0 = 0; = 7.

Since local discontinuity profiles at arbitrary loci in 2-D images can be characterized as
possessing prior unknown scales along the gradient direction, the convolution of the inten-
sity function with kernels of fixed spatial operator support results in only locally suboptimal
responses and thus it is not reliable. Consequently, Back et al. [2] proposed a scale-space
integration scheme for the 2-D case to track the convolution results, i.e., the operator re-
sponses, through successive scales until termination of the scheme in an optimum scale,
where the operator support optimally fits the transition width of the underlying unknown

discontinuity (see [18], [21], [32], [33] for the further investigation of BNS approach).
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4 Analysis of The Sampled Gaussian Kernel

From the careful review in the previous sections, it becomes clear that the Gaussian kernel
plays an key role in edge detection and is the unique kernel for generating a linear scale-
space. However, it is necessary to remark here that the Gaussian kernel mentioned in the
previous sections is defined continuously in the infinite domain. In general, a continuous
function refers to a function defined on the entirety of IR™ in the spatial domain (][20]).
Given a continuous signal f : IR — IR, for example, the scale-space representation L :
R x R,y — IR is defined by L(z;0) = f(z) and convolution of f with the continuous
Gaussian kernel G : IR x R, \ {0} — IR is given by

o0
g Lwio) = [ Gl& o) - e

—o0
On the other hand, a discrete function is defined on a set of discrete points where the
number of points is either finite or infinite. The spatial functions or signals with which
computer vision practically deals are always discrete since their spatial domain in practice
is discrete, not continuous ([20]). That is to say, the signal convolved with the Gaussian
is not actually continuous but discrete, e.g. intensity values of a digital image. Therefore,
it cannot be avoided to discretize” the continuous Gaussian kernel. A commonly adapted
simple technique for discrete signals is to sample the continuous Gaussian kernel using the
rectangle rule of integration. For example, with respect to the linear scale-space theory,

(1) is approximated using a sampled Gaussian given by

(2) L(kio)= Y G(n;o)f(k—n),
where k,n€ Z, f : Z — R, and G : Z x R, \ {0} — IR is a sampled Gaussian kernel.

In the context of the scale-space theory, Lindeberg ([28], [29]) showed that a sampled
Gaussian can lead to undesirable effects (see [28, Proposition 12]), which exemplifies the

fact that properties derived for the continuous case might be violated after discretization.

"Discretization of a continuous function can be considered both spatially and in amplitude; discretiza-
tion of the spatial coordinates is called a sampling, and amplitude discretization is called a quantization
([19]). In case of the continuous Gaussian kernel, the spatial discretization (i.e., a sampling) is considered

only.

35



In the following sections, we analyze in detail a sampled Gaussian kernel with respect
to the sampling period as well as the scale parameter. Based on the sampling theorem
we show that the continuous Gaussian kernel cannot be fully reconstructed by sampling,
i.e. from a finite number of samples, and it does not properly approximate the continuous

Gaussian kernel as the scale parameter decreases.

4.1 The Sampling Theorem

When a continuous function f is sampled to f, the sampling process should be ideally
invertible, i.e., it should be possible to reconstruct f from f with no error. This cannot be
achieved in general since f may be assumed to have arbitrary values between the sampled
points. Using the sampling theorem, however, it is desirable to state sufficient conditions
in order to make the sampling procedure one-to-one (refer to e.g., [10], [15], [19] and [20]
for further details).

If the Fourier transform F(w) of a continuous function f(z) is zero for all frequencies

|w| higher than %, that is

Flw)=0 for |w|> ?
then f(z) can be uniquely determined from its uniformly sampled values {f(k)} (k € Z).
In other words, if a function is band-limited then its sampling period 1" can be selected to

satisfy

This condition implies that the selection of the sampling period T is dependent on the
highest frequency content of the signal to be sampled (the sampling process of the Gaussian
is in detail exemplified in Section 4.2).

The sampling theorem states that it is in fact possible to recover the full range of
original values with full accuracy given the condition that the function is “band-limited”
([10]). However, if we directly apply the sampling theorem to a real signal which is not
bounded in the frequency domain, 7' = 0 must hold, which is clearly unrealistic. That is

because a strictly band-limited real signal does not exist in general.
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4.2 Sampling The 1-D Gaussian Kernel

Let us consider the sampling process of the 1-D Gaussian kernel. The Gaussian fg(z) and
its Fourier transform Fg(w) are given by
1 =2
fo(z) = G(z;0) = \/ﬂae 207,
202

Fg(w) = / G(z;0)e™%dy = e 2 .

For sampling, we introduce the shah symbol, IT1I(x), which represents an infinite sequence

of unit impulses spaced at unit interval defined ([10, p. 214]) by

M(z) = Y _ &z —n).

n=—oo

ITI(z) is periodic with unit period, and it holds

o0

11 (%) =T Y §(z—nT),

where T' is the sampling period (T € Z,).
By multiplying LIII(%) with fg(z), we obtain a sampled Gaussian f&(z) with the

sampling period 7' in the spatial domain
1 x
# — . =
fé(@) = fola) - Z1I(Z)
= E fa(n)-d(z —nT).

n=—o00
The values of fg(x) between integers where x # nT are not conserved in the product by
multiplication, whereas the value of fg(z) is conserved where z = nT. In other words,
information about fg(z) is retained only at the sampling points where z is an integral
multiple of the sampling period 7', while the intermediate values are lost.

Using the property of III(z) in the Fourier transform ([15, p. 189])

Lo (f) o—e T1T <i> <T — 2-”) ,
T T Wo Wo

and the convolution property in the frequency domain ([15, p. 71])

Fi@) - (@) o= o (Fu(w) * ),
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Figure 3: Fif (w)

the corresponding Fourier transform FJ (w) is derived as

Fw) = o <FG(CU) . m(i)>

Wo

— %Fg(w) * (wo Z §(w — nw0)>

n=-—0oo

Wo

=5 Z Fg(w — nwy)

1 (o¢]
=7 Z Fa(w — nwy).

n=-—oo

It is noticeable that a replicating property appears in the frequency domain when III(x)
enters into convolution ([10]), as seen in F (w) derived above. That is, the multiplication
of fa(x) by III(F) has the effect of replicating the spectrum F(w) scaled by the factor 1
at intervals wy in the frequency domain. Fig. 3 shows Fg(w) ® when using T = 1,1, and
2. Since the sampling period T is inversely proportional to wy, as T' increases the scaling
factor decreases and the periodicity becomes smaller, and vice versa. According to the
sampling theorem, we can reconstruct fg(z) from the sampled Gaussian f (z) when we
can recover F}i (w) satisfying the band-limitedness; provided that we are able to cut off one
spectrum Fg(w) from Fif (w) for |w| < 7 which brings about no overlap in the replicated

peaks, the recovery is possible.

8For simplicity, the scale parameter o is set to one.
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(c) Aliasing effect (d) Fe(w)

Figure 4: Aliasing; (a) The Fourier Transform of the continuous Gaussian; (b) The repli-
cating effect occurs in the frequency domain by the sampling in the spatial domain; (c)
High-frequency components impersonate low frequencies; (d) The cutoff spectrum contains

the high-frequency tail caused by the aliasing.

Then, let us cut off one aperiodic spectrum; Fig. 4 illustrates this. The Fourier trans-
form of the continuous Gaussian kernel (Fig. 4-(a)) becomes replicated by the sampling in
the spatial domain, so that F}f (w) (Fig. 4-(b)) has the repetitive spectrum. The Gaussian
kernel looks band-limited, however, strictly speaking it is not band-limited. Therefore,
when the spectrum is repeated high-frequency components are overlapped; this effect is
referred to as an “aliasing”. The contribution of high-frequency components is reflected
to low-frequency components; the solid line depicts the reflection of aliasing effect on the
dashed line (Fig. 4-(c)). Using the rectangle function function we cut off one spectrum; we

define here the filled area of both sides (Fig. 4-(d)) as the high-frequency tail.
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Now we can numerically derive Fg(w)?. By multiplying Fg (w) with the rectangle
function II(Z) defined by

w 1
H<3>: Lo lklse
o 0, I&l>3
where wy is replaced by 27 (T = i—g = 1), we obtain Fg(w);
~ w
Fo(w) =1 (5=) - F{ ()
—1I (i) i Fo(w — 2mn)
2m St
w ad _02(w721rn)2
—1I (%) n;me ;

The integral of Fg(w) is derived as

/OO ﬁ‘a(w)dw = /OO II (%) zoo: G,de

o0

4 ad 02(w727rn)2
:/ Z e T dw (let £ = w — 27n)
T n=—o00
e T—27n 522
=Y / e~ de
n=—oco —T—27TNn
2, oo T—27mn 9.9
(3) :/ e d§+22/ e~ de
—m n=1Y —T—2mn

~——
T 522 - -3 T—00 5242
:/ e——zf“d§+2{/ + +---+/ e‘—zf“dg]
— —3m -5 —T—00

9We choose here the sampling period T to be fixed, T = 1 (wg = 27), for the reason that first the input
signal with which the Gaussian kernel is convolved is in general the intensity function of digital images
whose pixel distance is one, and second Fgf (w) is not influenced by the scaling factor when T' = 1 (see

Fig. 3).
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Figure 5: The high-frequency tail of a sampled Gaussian (wy = 2m)

It is clear from (3) that the amount of the high-frequency tail is equivalent to that of the
aliasing. This implies that we can numerically measure the aliasing by calculating the
high-frequency tail. When the amount of the high-frequency tail is null (i.e., no aliasing
exists), we can fully reconstruct the continuous Gaussian from the sampled Gaussian. In
other words, the smaller amount of aliasing (i.e., the high frequency tail) gives the better
sampling result.

As a next step, let us measure the high-frequency tail in case that T =1 (i.e., wp = 27).
Since the high-frequency tail of Fz(w) belongs to the area |w| > m, the difference between
the integral value of F(w) for (—o0, 00) and that of Fg(w) for (—m, ) corresponds to the
high-frequency tail Fg,, o

Founs = [ |Falw)ds — I(32) Folw) P

o0

.y VOOO F2(w)dw — /0 Fé(w)dw]
VT T

=S - —Werf(ﬁa),
o o

where the error integral erf(x) is defined as

erf(z) = % /096 et de.

Fgypr 1s expressed as the equation with respect to the scale parameter o (see Fig. 5). It is
clear from Fig. 5 that as the scale parameter decreases (in case T' = 1) the high-frequency

tail increases, which consequently implies that a small scale parameter!® gives a deficient

10Since Fg, ., is expressed by erf(z) of which value depends on z, a roughly estimated value can be
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sampling result.
On the other hand, turning back to the spatial domain, using the Parseval theorem
([15, p. 73]), which states that
f@)fde = 5= [ 1F(@)Pde,
we can derive the high-frequency tail corresponding to the inverse Fourier transform of
Feppr- Since

Fa(w) — II(=

2W)Fg(w) oo fg(x) — sinc(z) * fg(z)

holds, it follows

feurr = /_oo |fa(x) —sinc(z) * fo(x)|*ds
=5 <£ - £erf(7ra)> :

fcypr 18 also inversely proportional to o such as Fi,, ... This result consequently means
that the sampled Gaussian kernel is not appropriate for approximating the continuous

Gaussian kernel when the scale parameter is small.

4.3 Sampling The Higher Dimensional Gaussian Kernel

The sampling process of the 1-D Gaussian was closely investigated in the previous section,
where we examined based on the sampling theorem how properly the sampled Gaussian
kernel approximates the continuous Gaussian kernel. Given a sampling period fixed to
one, we could derive the measure of difference between the continuous Gaussian and the
sampled Gaussian as a formula of the scale parameter.

The sampling of the higher dimensional Gaussian kernel is analogous to that of the 1-D
Gaussian based on its nice property “separability”. In this section, we show in detail the
sampling process both of the 2-D and of the 3-D Gaussian kernel, and as done in the 1-D
case, derive the measure of difference between the continuous Gaussian and the sampled

one in 2-D and in 3-D with a fixed sampling period (e.g., fixed to one).

given only.
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Sampling The 2-D Gaussian Kernel The 2-D Gaussian!! is given by

]_ _z2+y2
e 202

*fa(z,y;0) =

Y

2mwo?

which due to its separability may be written as

2o, 45 0) =~ T e i
T,Y;0) = e 20 e
G\ Y V2o

. 202
2o

= fao(z;0) - fa(y; o).

Its Fourier transform is due to the iterated integration law expressed as
Fa(u,v;0) = / / *fo(z, y;0)e /T ddy
E / fo(z;o)e " d - / faly;o)e™™dy

70'2u2 -~ 2, 2

—= é 2 - e 2

_02(u2+v2)
i 2

Analogously to the 1-D case, we use here the 2-D shah symbol'?, denoted as AIl(z,y),
defined by ([10, Chap. 5])

ALz, y) = Z Z%x—my—n)

m=—o0 N=—0o0

where %(z, y) is the 2-D impulse symbol as a natural generalization of §(x) ([10, Chap. 5])
defined as

0, 2+ y? #£0
B(x,y) = .
00, ?2+y2=0
Based on the separability of %(z,y) given by

B(w,y) =d(z) - 0(y),

11'We discriminate 2-D and 3-D functions from 1-D ones by adding the superscripts 2 and 3, respectively,

before the notations of functions.
12We follow the suggestion by Bracewell for this terminology. See [10, footnote on p. 74].
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AII(x,y) is also separable
MWay)= 3 sa—m) Y sy—n)

= III(z) - ITI(y).
Besides, AII(x,y) is doubly periodic given as
A(z + m,y + n) = A(z, y) m,n € Z,

and

|XY|2III (¥7)

represents a doubly periodic array of 2-D unit impulses with period X in the z direction
and Y in the y direction ([10, p. 90]). Also, as with ITI(-) in one dimension, ’II(,-) has
the distinguished property of being its own 2-D Fourier transform, which is easily derived

from

—2111 / / —211 Y\ eiwwtvy) 4o q
f{|XY| } XY X Y)e ray

o 1 )
- III( ) e=9U 4 / —HI( )e_’”ydy
/ | X| Y|
2 2
— 111 <ﬂ> Siil <3> <X — Ty - _7T>
Ug Vo Ug Vo
— 11 (ﬂﬂ).
Uy Vo

By multiplying 771II(Z, %) with */g(z,y;0), then, we obtain a 2-D sampled Gaussian,
denoted as 2fG (z,y; o), with the sampling period T in the 2-D spatial domain;

1 ei0) = Yolewio) 750 (7. 7)

- Z i *fo(@,y;0)% (f,%> (m,n € Z)

m=—00 N=—00

(4) - Z fa(z;0)8(z —mT) Z faly;0)(y — nT)

= Y falm;io) Y fa(n;o)

= Z Z ’fa(m,n; o).

m=—o0 N=—0o0
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Now let us derive the Fourier transform of 2 (x, y; ¢) of the form (4). The convolution

integral of given 2-D functions f(z,y) and g(z,y) is defined ([10, p. 331]) by

frg= / / F(6,v)g(x — &y — v)dédy,

and this convolution integral is valid in the frequency domain ([15, p. 71]). Therefore,

F(u,v) = Fi(u,v) x Fy(u,v) = /00 /00 Fi(&,v)Fy(u— & v —v)dédy

holds. On the other hand, since the inverse Fourier Transform is extended to 2-D such

flz,y F(u,v)el“ =) dydy,
47r2

the inverse Fourier transform of F'(u,v) is derived as

that

F(uv oo f(z,y)

=1 /OO/ . [/OO /oo Fi(&,v)Fy(u — & v — v)dédv eI WE+vY) o dy
— / / Fi(&v) ﬁ/ / Fy(u — &,v — v)ed ") dudy dedv
{=—o0 Jv=—00 ™ u=—00 J v=—00 B

-~

f2 (a:,y) e (Ea+vy)

_ / / Fi(€,0)e/ € dgdy - fy(z, y)
{=—o0 Jv=—00

-~

= 47r2f1(:13,y) ' f2(x7y)

Consequently,

Fi@9) - ol y) o-e 5 (Fi(u,v) = iy, 0)

holds. Using this 2-D convolution theorem shown above, returning back to (4), the Fourier
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transformed sampled Gaussian, denoted as 21*"22‘5(11, v;0), is derived;

2 (0, v; 0) = 471r (Fg(u v; o) % Al <— i)) (T = 21

Wo Wo

f v —
47r2/ / Fa(€,v; O')QIII< o o > dédv
/ / Fng'FgVO'IH< )III( )dfdz/
Wo Wo
1 v—v
(5) % ooFg(g, )III( o ) 2—/ (vio III( o >du

:?iﬂ (FG(u; o) * 11T (w%)) 2i <Fa(v o) *III <w0>>4

-~ -~

% E;’;:foo FG(u—mwo;U) % E;.zozfoo FG(U—TI(U();O’)

o0 0
= Z Z Fo(u — mwy, v — nwo; o).

m=—00 N=—00

It is clear from (5) that the Fourier transform of the 2-D sampled Gaussian is separable; that
is, 2Ff(u, v;0) can be derived from multiplying Ff(u, o) by Fg(v; o). This separability
makes the rest of the derivation much easier, since the 1-D result can be directly used for
the 2-D (and thus also for the 3-D) calculation.

Meanwhile, convolution with ZII(-,-) in (5) which corresponds to the multiplication in
the spatial domain (see Eq. (4)) describes replication in the frequency domain. According
to the sampling theorem, as shown for the 1-D case in the previous section, this replication
property does not satisfy the condition of the band-limitedness for the reconstruction of the
original signal. Therefore, in order to isolate one aperiodic spectrum from the replicated
spectra of 2Fg (u,v;0), we introduce a 2-D rectangular function 2I1(Z, %) (X,Y € Z,)
defined by ([10, p.331])

Z

1
21_[(3; y) 1, X and %<§
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Given a fixed sampling period T = Z—’; = 1, multiplying 2Fgf(u,v;a) of the form (5) by

AI(:, ) leads to the band-limited Fourier Transform denoted as 26 (u, v;0),

Fou,i0) =11 (2,2 ) i wvio)

Wo Wo

—1I (%) I (%) i i Fe(u — 2nm)Fe(v — 2mn)

u ad 70'2(u721rm)2 v > 70'2(1)727”7,)2
=) D e+ CH) Y e

m=-—00 n=-—0oo

= Fg(u;0) - Fg(v; 0).

As a consequence, 2ﬁg(u, v; o) is not replicated and band-limited, though it contains the
contribution of the high-frequency components caused by the aliasing effect. In turn,
2F(u, v; o) is separable into F(u; o) and Fg(v; o), which means that the further derivation
is reducible to the 1-D calculations.

Here it is noticeable to recollect the fact that the integral of Fi(-,0) (i.e., the integral
of the (band-limited) Fourier transform of a sampled Gaussian) is equivalent to that of
Fg(+;0) (i-e., the integral of the Fourier transform of the continuous Gaussian). This
implies that the amount of the overlapped area from the replicated spectra (i.e., from
the aliasing effect) is equivalent to the amount of the high-frequency component. As
the sampling period 7" decreases, the overlapped area does also; a limit case is given for
T = 0, which results in a non-overlapped area and thus brings about a non-sampling
effect. Consequently, similarly to the 1-D result, it can be said that the amount of the
high-frequency component corresponds to the measure of the error from the sampling.
Given a fixed sampling period, this measure can be numerically derived as a formula of
the scale parameter.

The measure of difference between 2Fz(u, v; o) and 2ﬁg(u, v; o) given a sampling period
implies the amount of the high-frequency tail of the 2-D Gaussian kernel, which corresponds
to the measure of the error of its sampling. From this point of view, the amount of the

high-frequency tail of the 2-D Gaussian kernel given a sampling period 7' = 1, denoted as
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Gy pp, can be calculated analogously to the case of 1-D;

o0

> u v
Foypr = / |Fg(u;0)du — H(ﬁ)Fg(u; U)|2du/ |Fg(v; o)du — H(ﬁ)Fg(v; o)|?dv

o0 —00

~ {/{)wFé(u;a)du—/OWFg;(u;a)du] 2 [/OooFé(v;a)dv—/OWFé(v;a)dv]
- <ﬁ—gerf(7ra)>2,

o

where the error integral erf(x) is defined as

erf(z) = % /Ow et de.

Sampling The 3-D Gaussian Kernel As a natural extension of the 2-D Gaussian, the
3-D Gaussian kernel can be sampled in the same way except for adding the independent
variable z. This is plausible since the Gaussian kernel is separable, and other functions to
be used for the sampling are also separable (see [10, p.89-92]).

The 3-D Gaussian kernel is given by

oo,y zi0) = e it L ot L
x,Y,2,0) = . e 202 -
Gty V2o 2o 2o

= fo(z;0) - faly;0) - fa(z;0),

and according to the 3-D Fourier transform ([10, p.340-343]), its Fourier transform is

g (u, v, w; ) = / / / o2, y, 7 0)e TV dadydz

02(u2+v2+w2)
—e
One can easily induce the derivation from 3Fg(u, v, w; o) to 3FG(u, v, w; o), analogously to
the 2-D case, using % (-, -, -), 3AII(-, -, -) and *I(-, -, -) (here we will not describe the sampling
process of the 3-D Gaussian in detail since it is analogous to the 2-D case). Consequently,

we derive the amount of the high-frequency tail of the 3-D Gaussian kernel which we denote
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Figure 6: The high-frequency tail of the Gaussian kernel; the horizontal axis is the scale
value and the vertical one is the amount of the high frequency tail. The gray curve

represents Fg,, ..., the dashed one ?Fi,, ..., and the dot-dashed one 3Fg,, ...

as *Fgypp. With the sampling period T = 1, 3Fg,, ., ™ is
3
T T
Faypr = <7 — %erf(wa)) :

Fig. 6 shows the measure of difference between the continuous Gaussian and the sampled
Gaussian with the sampling period of one in 1-D, 2-D, and 3-D; we can easily recognize
from Fig. 6 that as the scale parameter decreases the difference increases in each dimension.
As a consequent, it can be generally said that a sampled Gaussian with a small scale value

is not appropriate for approximating the continuous Gaussian.

4.4 Truncating The Gaussian Kernel

Regardless of whether a signal is continuous or discrete, there is no physical device that

can generate or store a signal of infinite extension ([20]). Hence, signals in the context of

13This derivation can be further generalized to the higher dimensional Gaussian kernel. That is,
N
NFGupr = (ﬁ - £erf(7m)> .
o

™
g
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(a) J75, G(z;0)dz (b) 7%, G(z;0)

Figure 7: Truncations of the Gaussian

computer vision are not only discrete but also truncated. Therefore, when we are to deal
with a signal in practice, we have to consider its truncation, which can be considered both
in the continuous case and in the discrete case.

When the Gaussian kernel is used as the convolution kernel (e.g. for generating the
scale-space representation), it should be normalized such that

/00 G(z;0)dx = 1.

o0
However, it is unrealistic to evaluate the infinite convolution integral. From the practical
point of view, as mentioned above, it is reasonable to truncate the infinite range of inte-
gration with some sufficiently large N € Z, i.e., by cutting the integral range from (—oo

o0) short to [—N, N]. For doing this, we should determine the value N. Hereby, we can
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observe an interesting relationship with respect to the Gaussian integral,
N o
N=oc — / G(z;0)dx :/ G(z;0)dr ~ 0.683
—-N —0
20

N=20c — G(z;0)dx ~ 0.954

—20

30
N=30c — / G(z;0)dr ~ 0.997.
—30

This relationship implies that the absolute error caused by the truncation (i.e. from (—oo
o0) to [N, NJ), can be kept consistent regardless of the scale parameter value, provided
N = ko, (k € Z). Fig. 7-(a) depicts that the integration of the Gaussian bounded within
[—30, 30] consistently approximates about 99.7% of the infinite integration regardless of
the size of the scale parameter.

In case of a sampled Gaussian kernel, the discrete truncation must be considered. In
other words, the infinite range of summation operation (instead of integral operation in
the continuous case) has to be truncated with some sufficiently large N € Z, i.e., by
cutting the integral range from (—oo oo) short to [-N,N]. In a similar manner, we
apply the relationship between the value N and the scale parameter o to the summation
operation. Fig. 7-(b), illustrates that the truncation of the summation operation does not
keep the absolute error consistent as the integration operation does. Even worse, as the

scale parameter decreases the variation increases.
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5 Conclusion

Edges in a digital image contain important information for higher level visual processing.
At the lowest level of visual processing (i.e., without any a priori knowledge of the image
to be processed) multi-scale techniques based on the linear scale-space theory should be
applied to edge detection as a pre-requisite for generating a rich representation of image
structure.

In the first two sections, we looked into the basic fundamentals related to edge detection
and reviewed some related approaches to edge detection. Then, we described the principles
of the scale-space theory and surveyed some multi-scale approaches to edge detection.
Using the property of the scale-space theory, one can obtain a multi-scale representation of
the measured signal through Gaussian smoothing, where the Gaussian smoothing can be
directly interpreted in terms of the linear heat diffusion equation. Both in edge detection
and in the linear scale-space method the Gaussian kernel plays an essential role.

The Gaussian is the unique kernel for generating a linear scale-space of continuous
signals, which is theoretically proved ([1], [41]). In practice, however, it is not avoidable
to discretize inevitably the continuous Gaussian kernel. Given this problem, a commonly
adapted technique is to sample the Gaussian kernel. In the last section, we closely inves-
tigated the sampling process of Gaussian kernels (in 1-D as well as in 2-D and in 3-D)
in detail, and derived the measure of difference between the continuous Gaussian and the
sampled Gaussian expressed as a formula of the scale parameter: When the Gaussian
kernel is practically sampled for convolution with discrete signals (e.g. image data), the
sampling period is fixed to one. Our question was, in this case, how we can measure the
degree of approximation of the sampled Gaussian to the continuous Gaussian. Observing
carefully the sampling process of the Gaussian kernel, we could numerically measure the
difference between the sampled Gaussian with the sample period of one and the continuous
Gaussian, which can be regarded as the error measurement caused by the sampling. From
this investigation, as a consequence, it becomes clear that a sampled Gaussian with a small
scale value is not appropriate for approximating the continuous Gaussian.

Then, one important question follows: “How can we correctly deal with a Gaussian,

whose concept is only valid for the case of continuous signals, for the practical case of
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computation in the discrete and finite domain?” In the context of the scale-space theory,
one starts from a robust theory, but the gap between a discretization and the continuous
theory breaks its robustness. From this point of view, further studies are indispensable
for approaching the problems caused by discretization. It is noticeable that Lindeberg
[28] remarked that the commonly used techniques with a sampled Gaussian can lead to
undesirable effects since violations of the continuous scale-space properties might occur
in the corresponding representation. To approach this problem, he presented the discrete
scale-space formulation for discrete signals in which the discrete nature of discrete signals
is taken into consideration; Lindeberg’s discrete scale-space formulation for higher dimen-
sional signals was not fully derived, which is the motivation of our further research on an
improved discrete scale-space formulation for higher dimensional signals (especially for 2-D

and 3-D discrete signals).

53



References

1]

8]

9]

[10]

[11]

J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda. Uniqueness of the Gaus-
sian kernel for scale-space filtering. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 8(1):26-33, 1986.

S. Back, H. Neumann, and H. S. Stiehl. On scale-space edge detection in computed
tomograms. In Proc. 11. Mustererkennung DA GM-Symposium, 1989, Springer-Verlag,
Berlin, pages 216223, 1989.

D. H. Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Inc., 1982.

F. Bergholm. Edge focusing. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 9(6):726-741, 1987.

F. Bergholm and K. Rohr. A comparison between two approaches applied for estimat-
ing diffuseness and height of step edges. Technical Report CVAP—-83, Computational
Vision and Active Perception Laboratory, 1991.

F. Bergholm and W. Zhang. On the usage of signatures and recent developments of
edge focusing. In Proc. The 8th Scandinavian Conference on Image Analysis, pages

1061-1069, 1993.

M. Bertero, T. Poggio, and V. Torre. Ill-posed problems in early vision. Proceedings
of the IEEE, 76(8):869-889, 1988.

V. Berzins. Accuracy of Laplacian edge detectors. Computer Vision, Graphics, and

Image Processing, 27:195-210, 1984.

A. P. Blicher. Edge detection and geometric methods in computer vision. Technical

Report STAN-CS-85-1041, Stanford University, Dept. Computer Science, 1985.

R. N. Bracewell. The Fourier Transform and Its Applicationss;third edition. McGraw-
Hill, 2000.

I. N. Bronstein and K. A. Semendjajew. Teubner-Taschenbuch der Mathematik. B.
G. Teubner, Stuttgart, 1996.

54



[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

J. F. Canny. Finding edges and lines in images. Technical Report 720, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory, 1983.

J. F. Canny. A computational approach to edge detection. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 8(6):679-698, 1986.

A. Diller. BTEX Line by Line. John-Wiley & Sons, 1999.
N. Fliege. Systemtheorie. Informationstechnik. Teubner, Stuttgart, 1991.
L. M. J. Florack. Image Structure. Kluwer Academic Publishers, 1997.

L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever.
Scale and the differential structure of images. Image and Vision Computing, 10(6):

376-388, 1992.

G. Gabrielides, H. Neumann, and H. S. Stiehl. Estimating partial volume induced
local blurring of organ contours in computed tomograms. In Lemke et al. [27], pages

956-562.

R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley, Reading,
MA, 1993.

G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision. Kluwer

Academic Publishers, Dordrecht, Netherlands, 1995.

A. Hagemann. Theoretische und experimentelle Untersuchungen zur Attributschatzung
von Grauwertkanten. Diplomarbeit, Fachbereich Informatik, Universitat Hamburg,

Germany, 1996.

J. W. Harris and H. Stocker. Handbook of Mathematics and Computational Science.
Springer, 1998.

E. C. Hildreth. The detection of intensity changes by computer and biological vision
systems. Computer Vision, Graphics, and Image Processing, 22:1-27, 1983.

%)



[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

33]

[34]

E. C. Hildreth. Edge detection. Technical Report 858, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, 1985.

J. J. Koenderink. The structure of images. Biological Cybernetics, 50:363-370, 1984.

A. F. Korn. Toward a symbolic representation of intensity changes in images. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 1093(5):610-625, 1988.

H.U. Lemke, M.L. Rhodes, C.C. Jaffee, and R. Felix, editors. Proc. Computer Assisted
Radiology and Surgery 1991 (CAR’91). Springer-Verlag, Berlin, 1991.

T. Lindeberg. Scale-space for discrete signals. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 12(3):234-264, 1990.

T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic Publisher,
Boston, MA, 1994.

T. Lindeberg and B. M. ter Haar Romeny. Linear scale-space (to appear in Geometry-
Driven Diffusion in Computer Vision ). Series in Mathematical Imaging and Vision.

Kluwer Academic Publishers, Dordrecht, Netherlands, 1994.

D. Marr and E. Hildreth. Theory of edge detection. In Proc. Royal Society of London
B 207, pages 187-217, 1980.

H. Neumann, K. Ottenberg, and H. S. Stiehl. Accuracy of Regularized Differential
Operators for Discontinuity Localization in 1-D and 2-D Intensity Functions. In Proc.
1. Int. IEEE Workshop on Robust Computer Vision, pages 214-260. R. M. Haralic,
W. Forstner (Eds.) Academic Press, 1992.

H. Neumann, K. Ottenberg, and H. S. Stiehl. Finding and Describing Local Structure
in Discrete Two-Dimensional Computed Tomograms. In Proc. IAPR Int. Conf. on
Pattern Recognition (ICPR-92), pages (II1)408-412. IEEE Computer Society Press,
1992.

T. Poggio and C. Koch. Ill-posed problems in early vision: from computational theory

to analogue networks. In Proc. Royal Society of London B 226, pages 303—-323, 1985.

56



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory.

Nature, 317(26):314-319, 1985.

K. Rohr. Recognizing corners by fitting parametric models. Internat. Journal of

Computer Vision, 9(3):213-230, 1992.

K. S. Shanmugam, F. M. Dickey, and J. A. Green. An optimal frequency domain filter
for edge detection in digital pictures. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 1:37-49, 1979.

J. Sporring, M. Nielsen, L. M. J. Florack, and P. Johansen. Gaussian Scale-Space
Theory. Kluwer Academic Publishers, 1997.

V. Torre and T. Poggio. On edge detection. Technical Report 768, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory, 1984.

A. P. Witkin. Scale-space filtering. In Proc. of 8th Int. Joint Conf. Artificial Intelli-
gence, Karlsruhe, pages 1019-1022, 1983.

A. L. Yuille and T. A. Poggio. Scaling theorems for zero-crossings. IEFEE Trans. on
Pattern Analysis and Machine Intelligence, 8(1):15-25, 1986.

W. Zhang. Understanding Intensity and Illumination Transitions. Dissertation, De-

partment of computer science, University of Stockholm, Sweden, 1995.

57



