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Abstract

The continuous linear scale-space theory provides a unique framework for visual front-
end processes. In practice, a discrete scale-space formulation is necessary since (higher
dimensional) discrete signals must be dealt with. The discrete scale-space theory was
considered first by Lindeberg. In his work, the derivation of the 1-D discrete scale-space
formulation is theoretically obvious. In applying that formulation to higher dimensional
discrete signals, however, there exist several open problems and thus the higher dimensional
discrete scale-space theory was not fully derived. We review Lindeberg’s work in detail in
order to understand fundamentals of its formulation and to reveal some unclear aspects.
We propose here an improved discrete scale-space formulation for 2-D and 3-D signals
based on a few assumptions. Moreover we investigate how to determine the value of a
free parameter which plays the role of preserving the rotational symmetry in the higher

dimensional discrete scale-space kernel.

Zusammenfassung

Die kontinuierliche lineare Skalenraum-Theorie stellt den Rahmen fir visuelle Front-
ende-Prozesse dar. In der Praxis miissen jedoch multidimensionale diskrete Signale behan-
delt werden, wofiir eine diskrete Skalenraum-Formulierung fiir multidimensionale Signale
benotigt wird. Der Ansatz zur diskreten Skalenraum-Formulierung nach Lindeberg wird
bewertet. Es wird herausgearbeitet, dafl die Erweiterung der eindimensionalen diskreten
Skalenraum-Formulierung auf den multidimensionalen Fall nicht eindeutig ist. Basierend
auf der detaillierten Analyse der diskreten Skalenraum-Theorie nach Lindeberg, wird ein
verbesserter Ansatz zur diskreten Skalenraum-Formulierung fiir zwei- und dreidimension-
ale Signale entwickelt. Ein wesentlicher Beitrag ist dabei die Bestimmung eines kritischen
freien Parameters zur Erhaltung der Rotationsymmetrie im multidimensionalen Fall, die

in den Arbeiten von Lindeberg nicht geklart worden ist.
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1 Introduction

Since Witkin [15] proposed a new way of signal representation by describing zero-crossings
of a signal across scales, the scale-space theory has been theoretically developed further
by Koenderink [9], Lindeberg [11], [12], and others. The scale-space theory focuses on the
basic fact that signal structures exist as meaningful entities only over a certain range of
scales. From a given signal one can generate a family of derived signals by successively
removing fine-detailed structures when deriving from finer scales to coarser ones. The
behavior of structure as scale changes can be analytically described based on a precise
mathematical definition. The essence of the results from the scale-space theory is, if one
assumes that the first stages of signal processing should be as uncommitted as possible and
should not have any a priori knowledge about the world from which the signal stems, that
the convolution of the initial signal with the Gaussian kernel and its n-th order derivatives
of different scale is singled out as a canonical class of computational low-level processes
(see e.g., [9]).

When we have to use the Gaussian kernel with respect to the scale-space theory, which
is formulated for continuous signals whereas in practice we have to deal with discrete
signals, a sampled Gaussian is commonly used without mathematical accuracy. In Lim
[10], we closely investigated the sampling process of the Gaussian kernels (in 1-D as well as
in 2-D and in 3-D) in detail, and derived the measure of difference between the continuous
Gaussian and the sampled Gaussian expressed as a formula of the scale parameter. From
this investigation, it becomes clear that a sampled Gaussian with a small scale value is not
appropriate for approximating the continuous Gaussian. Accordingly, it is indispensable
to consider the matter of how to approach the problems caused by discretization of the
continuous scale-space theory.

With respect to undesirable effects of a sampled Gaussian applied to the continuous
scale-space theory, Lindeberg ([11], [12]) first considered the discrete scale-space theory,
and proposed a formulation of the scale-space for discrete signals. In his work, the 1-D

discrete scale-space formulation is based on a clear theoretical foundation. However, the



theory as related to the extension to higher dimensions' is not as simple as in the 1-D
case; there exist several open problems in applying that formulation to higher dimensional
discrete signals, an thus it was not fully derived.

We closely review Lindeberg’s work with respect to the discrete scale-space formulation
in Section 2, from which we understand fundamentals of its formulation and reveal some
unclear aspects. Motivated by these unclear aspects, in Sections 3 we propose an improved
discrete scale-space formulation for 2-D and 3-D signals based on a few assumptions. Fi-

nally, we give a conclusion and discuss our future work in Section 4.

'Let us use this term for the dimensions higher than 1-D.



2 Survey of Lindeberg’s Discrete Scale-Space Formu-
lation

Let us begin with the basic assumptions which must hold for a scale-space for discrete

signals (Lindeberg [12, p. 63]):

e Every scale-space representation should be generated by a linear and shift-invariant
transformation of the original signal. This means that the generation of the scale-

space representation can be expressed by the convolution transformation.

e An increasing value of the scale parameter ¢ should correspond to coarser levels of
scale and thus to signals with less detailed structure. In particular, ¢ = 0 should

represent the original signal.

e All signals should be real-valued function defined on the same infinite grid, or in

other words, no pyramid representation? will be used.

2.1 1-D Discrete Scale-Space Formulation

A scale-space kernel for 1-D signals is defined:

Definition 1 (DISCRETE SCALE-SPACE KERNEL : 1-D)
“A 1-D discrete kernel K : 7Z — R is said to be a scale-space kernel if for all signals
fin + Z — R the number of local extrema in the convolved signal fo,; = K % f;, does not

exceed the number of local extrema in the original signal.”

Definition 1 implies that the number of local extrema (or, equivalently, zero-crossings) of
the convolved signal cannot be greater than the number of local extrema of the original

signal.

2 A pyramid representation of a signal is a set of successively smoothed and sub-sampled representations
of the original signal organized in such a way that the number of pixels decreases with a constant factor

(usually 2V for a N-D signal) from one layer to the next ([12, p.33]).
3A phrase quoted from Lindeberg is cited by the double quotation mark in this section.



2.1.1 Kernel Properties

To satisfy the requirement in Definition 1, some kernel properties have to be imposed on

the scale-space kernel.

Proposition 2 (PosITiviTy)
“All coefficients of a scale-space kernel must have the same sign: It can be restricted that
all coefficients be positive where all K(n) > 0.”

Proposition 3 (UNIMODALITY)

“The sequence of coefficients of the scale-space kernel {K(n)}>> _ must be unimodal*.”

To prove the necessity of Positivity and Unimodality for a scale-space kernel, let us take a

simple example such that the input function is the discrete delta function given by

1, ifr=0

0, otherwise

In this case, the result of convolving d(z) with the discrete scale-space kernel K(z) is
equivalent to K (z), since the input signal §(z) has only one local maximum and no zero-
crossings. This implies that K (z) must not have more than one extremum and no zero-
crossing according to Definition 1. Only one local extremum of K (x) satisfies the property
of Unimodality in Proposition 3, and having no zero-crossings implies that K(z) fulfills
the property of Positivity. Accordingly, it can be said that the discrete scale-space kernel
must be positive and unimodal.

Let us consider a two-kernel® as the simplest discrete scale-space kernel which satisfies

the above two properties:

D, ifn=20
(2.1) K*(n) = q q, ifn=—1,
0, otherwise

A real sequence is said to be unimodal if it is first ascending (descending) and then descending (as-

cending).
5Let us denominate the kernel which has N non-zero kernel coefficients a N-kernel.



where p > 0, ¢ > 0 and p 4+ ¢ = 1. In this case, it is guaranteed that the number of zero-
crossings (local extrema) in fo,; = K2 * f;, can not exceed the number of zero crossings
in fi, (see Figure 3.4. in [12, p. 67]). Therefore, it can be said that any kernel of the
form (2.1) is a discrete scale-space kernel. Using the fact that, if two kernels K, and K,
are scale-space kernels, then K, x K} is also a scale-space kernel, we can obtain another
property of the discrete scale-space kernel:

Proposition 4 (REPEATED AVERAGING AND SCALE-SPACE KERNELS)

“All kernels K of the form x| K? are discrete scale-space kernels.”®

It is noticeable that coefficients of the filter generated by Proposition 4 can be regarded as
generalized binomial coefficients” which can be generated by a generating function.

Some special mathematical functions may be defined by generating function®. Since
generating functions play a very important role in order to sustain the theoretical bases of
the discrete scale-space formulation, it is worth looking into its fundamentals (see e.g., [1],
[4], [5], or [14]): An infinite sequence < ag, a1, as, ... > that we deal with can conveniently
be represented as a power series in an auxiliary variable z,

A(z) =ap+ a1z + a2 + ... = Zakzk.
k>0

It is appropriate to use the letter z for the auxiliary variable, because z is often thought as a

complex number. A generating function is useful since it is a single quantity that represents

an entire infinite sequence. If A(z) is any power series >, ., ax2", it is convenient to write
n —_ .
[2"]A(2) = an;

in other words, [2"]A(z) denotes the coefficient of 2™ in A(z). Let A(z) be the generating
function for < ay, a1, as, ... > and B(z) the one for another sequence < by, by, ba, ... >. Then
the product A(z)B(z) is the power series given as

(ag + a1z + agz® + ..)(bg + byz + bz + ...)

== a()b() + (agbl + albg)Z + (a()b2 + a1b1 + a2b0)22 + ...

bxn K2 = KZ2x...x K2
= —_—

n
"The ordinary binomial coefficients are obtained as a special case if all p; and g; are equal.
8Tt is also referred to as z-transform.



The coefficient of 2™ in this product is
agbn + albn,1 + ...+ anbg = Z akbn,k.
k=0

If we express this sum as the general form

n
Cn = E akbn—ka
k=0

we have
cn = [2"]A(2)B(2).

The sequence < ¢, > is the result of the convolution of the sequences < a,, > and < b,, >.
This implies that convolution of sequences corresponds to multiplication of generating
functions.

Proposition 5 (GENERATING FUNCTIONS OF GENERALIZED BINOMIAL KERNELS)

“All kernels with the generating function

px(2)= Y K(n)z"

of the form

K (z) = cz* H(pz +¢iz),

i=1

where p; > 0, ¢; > 0 and k € Z, are discrete scale-space kernels.”

Proposition 5 can be proved by showing the generating functions of kernels: The generating

function of a kernel of the form (2.1) is given as

¢ @(2) = pi + ¢z,

9

and the convolution of kernels in the spatial domain” corresponds to the multiplication of

their generating functions. Therefore, Proposition 4 can be rewritten without changing

%In this report, we skip to explain the properties of kernels in frequency domain. See [11, Sec. III] and

[12, p. 70-74] for details.



the scale-space properties as

en(2) = e (2)Pro (2)@ o (2)-pre(2),
pr(z) = CZkSOh(Z),

where a constant scaling factor ¢ or a translation z* does not affect the number of local
extrema.
Now, let us get acquainted with a few termini which are necessary to comprehend the

kernel classifying process with respect to discrete scale-space kernels:

e A Toeplitz matrix :
If the convolution transformation f,,; = K * f;, is represented in the matrix form
fout = C fin, a matrix with constant values along the diagonals C; ; = K (i—j) results.
Such a matrix is called a Toeplitz matrix. Let K : Z — R be a discrete kernel with
finite support and filter coefficients ¢, = K(n). For some dimension N, the N x N

convolution matrix is expressed as

Co C_1 ... Co_N Ci_N
C1 Co C_1 Co_N
oW —
CN—-2 C1 Co C_1
CN—-1 CN—2 C1 Co

e Minors of matrix ([12, p. 76]) :
Given a kernel K : X x Y — R, one can form minors of arbitrary order r by
selections of 1 < 29 < ... <z, from X CZ and y; < y» < ... <y, from Y C Z. The
determinant of the resulting matrix with components { K (z;, y;)}ij=1,.r is called “a

minor of order r” and denoted by

K(!Ebyl) K($1,y2) . K(xlvyr)

K(ﬂfzayl) K(ﬂfzayz) . K($27yr)
Ty, T2, ..., Tp

Y, Y2, -5 Yr

K(xr;yl) K(xr7y2) .. K(xr;yr)



e Pdlya frequency sequence :

o0
n=—oo

A sequence {c,} is said to be a Pdlya frequency sequence if all minors of the

infinite Toeplitz matrix are non-negative. Especially provided that its generating

function ¢(2) = S°7 __¢,2" # 0 converges in an annulus r < |2] < R (0 < r <

n=—oo

1 < R), it is called a normalized Pdlya frequency sequence. An infinite sequence
{en}2 _, is a Pélya frequency sequence if and only if its generating function ¢(z) =

S cpz™ is of the form

n=-—0oo

oy (L4 0g2) (1 + 6270
2.2 2) = c2felt-127 +a1z?) ( ,
(2.2) oK (2) 11 e R =Y

1=

where ¢ > 0,k € Z,q_1, 1,4, Bi, 6;,7 > 0, and Y .2, (o + B; + §; + ;) < oo. The

sequence {c,}%° _ is normalized if and only if in addition it holds that 5; < 1 and

o0

v < 1.

Lindeberg showed that a discrete kernel K : Z — R is a scale-space kernel if and only if the
corresponding sequence of kernel coefficients { K(n)}° _ is a normalized Pélya frequency
sequence (see [12, p. 76-81] for its proof).

In particular for kernels with finite support, (2.2) is reduced for some finite N to

oK (2) = c2* H(l +a;2)(1+ 627 1),

i=1
where ¢ is a rescaling factor and z* is a translation factor. (1 + ;z) and (1 + &;z71)
can be easily recognized as the rewritten versions of the generating functions of a two-
kernel. According to Proposition 4, the kernels of the form ¥ K? are the only discrete
scale-space kernels with finite support, which implies that the convolution with a finite
scale-space kernel can be decomposed into a convolution with kernels having two strictly

positive consecutive filter coefficients.

2.1.2 Discrete Scale-Space Construction

Given any 1-D signal f : Z — R, let us assume that the scale-space representation L :

Z x Ry — R should be generated by convolution of f with a one-parameter family of



kernels T': Z x Ry — R such that L(z;0) = f(z) and

o0

(2.3) L(z;t)= Y T(nit)f(z—n), t>0

n=-—oo

hold, where each kernel T'(n;t) is a scale-space kernel, i.e., T'(n;t) satisfies

e the semi-group property given by
T(5s)«T(5t) =T(;5+1),

which ensures that the scale-space property described in Definition 1 holds between

two levels of scale, and

e the normalization criterion

o0

Z T(n;t) = 1.

n=—oo

As mentioned in the previous section, a discrete kernel is a scale-space kernel if and only if
the corresponding sequence of kernel coefficients is a normalized Pélya frequency sequence.
With respect to the semi-group property, the theorem of Karlin ([12, p. 85]) states that
the only semi-group of normalized Pélya frequency sequences has a generating function of

the form
(24) plz) = s,

where ¢ > 0 and a,b > 0.

Then, it can be shown that the generating function of a discrete scale-space kernel of the
form (2.4) can be derived from (2.2): If a family h(-;¢) possesses the semi-group property
h(-;s) * h(;t) = h(-;s +t), its generating function must obey @p(.s) * Qn(yt) = Pa(ss+1)
for all non-negative s and ¢. This respect excludes the factors 2%, (1 + a;2), (1 + §;271),
(1 — f3;2), and (1 — y;27') from (2.2); what remains are the constant and the exponential
factors. The argument of the exponential factor must be linear in ¢ in order to fulfill the

semi-group property of the kernels under convolution. Furthermore, due to the symmetry

10



the generating function must satisfy @n(271) = @p(2), which leads to a = b (for simplicity,

a=b= %) in (2.4). Consequently the generating function of the form
(2.5) puz) = eH T

is obtained, which corresponds to the generating function for the modified Bessel functions
of integer order. Bessel functions and closely related functions form a rich area of math-
ematical analysis with many representations and useful properties ([1]). Although Bessel
functions are primary solutions of differential equations, it is instructive and convenient

to derive them from the generating function. Let us consider a function of two variables

given as
go(x,z) — e%(z—zﬂ)’
then we can obtain
o0
z 1
ef(zfz ) — Z Jn(x)zn’
n=-—o00o

where the coefficient of 2", J,(z), is defined to be a Bessel function of the first kind of

2(z-271)

integer order n. In other words, e is the generating function for the Bessel function

of the first kind of integer order. We can prove the equation above using MacLaurin series:

The MacLaurin series of e® is given as

Then we can expand the exponentials as a product of MacLaurin series in % and —7,

respectively,

o9} o9}

ez _ a2 T\" 2" s (T\5 2 °

et =3 (5) axev(3)
r=0 s=0

By introducing n (n = r — s) for a given s,

= _zoo: Jn(z)2".

11



In an analogous way, we can get the generating function for a modified Bessel function of

integer order n, I,(z),

6(

[V
N
+
™
=
|
3'\'
—~
8
SN—
N
S

n=—oo

In terms of infinite series the modified Bessel function is equivalent to removing the (—1)*

sign term of the Bessel function and writing

o0

Tn(@) = sz; sl(s :— n)! (g)zﬁn’

For integer n this yields

Returning back to the discrete scale-space kernel, (2.5) is then expressed using the
generating function of the modified Bessel functions of integer order as

o0

pi(2) = Z I,(at)2".
Since
Z I.(at) = e

holds, a normalized kernel is obtained if 7' : Z x R, — R is defined by

T(n;t) = e *I,(at),

where e~ ¢!

is the very constant which remains to be found in (2.4). The semi-group
property is trivially preserved after normalization.

The kernel T'(n; t) = e~*'I,,(at) possesses similar properties in the discrete case as those
which make the ordinary Gaussian kernel special in the continuous case. Therefore, it is

natural to refer to it as the discrete analogue of the Gaussian kernel:

12



Definition 6 (DISCRETE ANALOGUE OF THE GAUSSIAN KERNEL)
“The kernel T : Z x R — R given by T'(n;t) = e **L,(at)'® is called the discrete analogue

of the Gaussian kernel, or, the discrete Gaussian.”

When the transformation of the form (2.3) is implemented according to Definition 6, a

few numerical problems come about ([11, Sec. VI, p. 240]):
e The infinite convolution sum must be replaced by a finite one.

e Normally the modified Bessel functions are not available as standard library routines.
Therefore, it is required to design an algorithm to generate coeflicients of the filter

T(n;t) for a given value of ¢.

e To deal with a realistic finite signal it is unavoidable to make a finite approximation

of (2.3), which may cause any truncation error.

These problems could give rise to further net effects by approximation. Alternatively,
instead of using an infinite convolution, the scale-space representation can be constructed
by the discretized diffusion equation (see the below sections).

In the following sections, it will be shown on one hand that the scale-space repre-
sentation based on the discrete analogue Gaussian can be constructed by the discretized
diffusion equation. On the other hand, inversely, it will be seen how the discretized diffu-
sion equation satisfies the properties of the scale-space representation generated by discrete

scale-space kernels.

Discretized Diffusion Equation The discrete scale-space representation given by (2.3)
can be interpreted in terms of a discretized version of the diffusion equation. By the
recurrence relation for the modified Bessel functions

I 1 (t) + Inya(t)
2 )

O,1,(t) =

10From now on, let us assume o = 1.

13



it can be easily shown that T'(n;t) = e 'I,(t) satisfies

0T (n;t) = e 0,1, (t) — e "L, (t)
= )+ T 0]~ e ()
[T(n—1;t)+ T(n+ 1;t)] — T'(n;t)

NN ORI

[T(n—1;t) —2T(n;t) + T(n + 1;¢)],

and therefore

O L(z;t) = 0 Z T(n;t)f(z —n)
= > 0T(n;t)f(z—n)

- % [L(z — 1;t) — 2L(z;t) + L(z + 1;t)]

holds. This result can be further discretized with respect to scale ¢ using Euler’s method!!

such that
Lit = LF + At (8,LF),
which gives the iteration formula

1 1
Lo = oh 4 o (Gob, - T+ 2
(2.6) 1 2 21
= 5AthH + (1 — At)LF + §AtL§.tl,

where the subscripts denote the spatial coordinates and the superscripts represent the

iteration indices.

1Tt is the approximation of the derivative by the difference quotient for explicit differential equations

of the first order. According to Fuler’s method,

y = fle,y) — L@ o (g, y(z;)) + O(h)

= y(zi +h) =y(z:) + f(zi,y(zs)) - b,

where h is the step size (h = |z;11 — x;|) and O(h) is the error of approximation ([6, p. 676-677]).

14



Equivalently, iteration with the formula (2.6) can be described as discrete convolution

with the three-kernel given by
(2.7) L At 1— At L At
. 5 5 .

Lindeberg proved that a three-kernel with positive elements ¢ 1, ¢y and ¢; is a scale-space
kernel if and only if ¢3 > 4c_jc; (see [11, p. 238] for the proof). That is to say, this kernel

is a scale-space kernel if and only if
1 2
(1—At)? >4 <§At> ,

which leads to

1
At < —.
2
Proposition 7 (DIFFUSION EQUATION AND DISCRETE SCALE-SPACE KERNELS)
“All symmetric discrete scale-space kernels with finite support arise from repeated appli-

cation of the discretization of the diffusion equation (2.6), using if necessary different

Ate [0,1].”

As mentioned, there exist a few problems to implement (2.3) as it is. However, Proposi-
tion 7 makes it practically possible by repeatedly applying the discretized diffusion equation
with the discrete scale parameter satisfying At € [0, %]

Sufficiency of the Discretized Diffusion Equation By deriving the generating func-
tion of the three-kernel of the form (2.7), it can be shown that discretization of (2.6) with
respect to the scale with n steps (i.e., the step size At = t/n satisfying At < %) is theo-
retically sufficient to construct the scale-space representation. The generating function for

the three-kernel of the form (2.7) is
1 -1 1
putepl(2) = AL+ (1= At) + SOz,

where the subscript step means one iteration. The final solution of the discretized diffusion

equation can be obtained by convolution with the composed kernel K omposed = *j—1 Kstep

15



on the basis of the semi-group property, and furthermore the convolution of kernels corre-
sponds to the multiplication of generating functions. Thus, the generating function of the

composed kernel can be obtained as

n
roomposed,n(z) - H @Step(z)
i=1

1 1 "
= <§Atz_1 +(1— At) + §Atz>

Let us here use the fact lim,, oo (1 + o, /n)"* = e® if lim,, o, a,, = @; since

Zil z Zil z
limt|——-14+=-)=t|——-1+=
e (2 +2> (2 +2>’

it follows that

P z
(28) D pegmponean(2) = €T 73)

_ -1
—e tet(z +z)/2‘

It is clear that e/*™ +2)/2 in (2.8) corresponds to the generating function for modified Bessel
functions of integer order, and accordingly e~tet(z71+2)/2 ig the generating function (a = 1)
of the family of discrete scale-space kernels by Definition 6.

Consequently we regard this result as the proof of the property that the transformation
(2.3) obtained by convolution of a discrete signal with the discrete analogue of the Gaussian
is equivalent to the analytical solution of the system equations obtained by discretizing the
diffusion equation. In this context, Lindeberg concluded that the natural way to apply
the scale-space theory to discrete signals is by discretizing the diffusion equation, not the

convolution integral.

16



2.2 N-D Discrete Scale-Space Formulation

The scale-space representation for higher-dimensional discrete signals can be constructed
analogously to the 1-D case. While the 1-D scale-space theory for discrete signals is theo-
retically obvious, its extension to higher!? dimension is not so clear as the 1-D case since
there are no non-trivial kernels with the property that they never introduce new local
extrema. Whereas the number of local extrema in one dimension is a natural measure of
structure, in higher dimensions the problem that new local extrema (zero-crossings) can
be created by linear smoothing is inherent and inescapable (see [11, Fig. 4]).

Bearing in mind this difficulty, in this section we look into the scale-space formulation

for N-D discrete signals proposed by Lindeberg.

2.2.1 Non-Enhancement Requirement

In case of 2-D continuous signals, the scale-space representation can be derived on three
assumptions, namely causality, homogeneity, and isotropy (see [9]). Using differential
geometry, the diffusion equation (or equivalently the convolution with the Gaussian kernel)
fulfills the requirement of the scale-space representation ([9]). However, it is impossible
to relate these assumptions directly to discrete signals since no direct correspondences to
level curves or to differential geometry described for continuous signals exist in the discrete
domain.

With respect to discrete signals, alternatively, Lindeberg restricted the causality to
obey the non-enhancement requirement, i.e., if for some scale level ¢, a point xy has a
local maximum (minimum) in the scale-space representation at that level (regarded as a
function of the space coordinates only), then its value must not increase (decrease) when
the scale parameter increases (decreases). That is to say, local extrema should not be
enhanced when the scale parameter is continuously increased.

On the basis of the non-enhancement requirement, let us assume that for a given spa-

tially discrete signal f : Z" — R the scale-space representation is generated by convolution

12In this report, we only consider the 2-D and 3-D cases.

17



with a one-parameter family of kernels of the form

(2.9) L(z;t) = Y T(&t)f(z —€),

cezN

where T': Z¥ x R, — R in [;'® satisfies

e the semi-group property, i.e., T'(-;8) x T'(-;t) = T(-; s + t),

e the symmetry constraints, i.e.,
T(—w1, T, ..., zn;t) = T(x1, 2o, ..., xn; t) and T(PN (zy, o, ...,y )i t) = T2y, 70, ..y TN )
for all z = (z1, 22, ...,7n) € ZY, all t € R, and all possible permutations P} of N

elements, and
e the continuity requirement, i.e., ||T'(-;t) — §(-)||[1 — O when ¢ | 0.

Provided that the input signal f is sufficiently regular, these conditions for the family of
kernels 7' guarantee that the representation L is differentiable and satisfies a system of
linear differential equations, i.e., L obeys 9;L = AL for some linear operator A (see [12,
Lemma 4.5. (p. 107)] for its proof).

According to Lindeberg ([12, p. 104]), for a given point z € Z" its neighborhood N(z)

is defined as

(2.10) N(z)={€Z": (lz — €[l <) A (£ # 2)},
and extremum points are characterized as

e Discrete local maxima :
A point x € Z" is said to be a (weak) local maximum of a function g : Z¥ — R if

g(x) = g(§) for all § € N(z).
13By definition ([7]),

Ip(or, 1) = {{f(k)}kezl Yo IR < 00}-

k=—o0
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e Discrete local minima :

A point z € Z" is said to be a (weak) local minimum of a function g : Z¥ — R if

g(x) < g(§) for all £ € N(z).

Using these basic definitions it can be said that a differentiable one-parameter family of
discrete signals L : Z" x R, — R does not enhance local extrema for every value of the
scale parameter t; € R, , such that if zy € Z" is a local extremum point for the mapping

x +— L(z;tp) then the derivative of L with respect to ¢ in this point satisfies
e 0;L(xg;tg) < 0 if 2 is a local maximum point,
e 0;L(xg;tg) > 0 if 2 is a local minimum point.

Consequently the scale-space representation can be defined as follow:

Definition 8 (SCALE-SPACE REPRESENTATION)
“A scale-space representation L : ZN x R, — R of a signal f : ZV — R generated by a
family of kernels T : ZN x R, — R, which satisfy the non-enhancement requirement, is

said to be a scale-space representation of f.”

2.2.2 The Semi-Discretized Diffusion Equation

As seen in Section 2.1.2, since convolution of a 1-D discrete signal with the 1-D discrete
analogue of the Gaussian is equivalent to the analytical solution of the discretized diffusion
equation, the natural way to apply the scale-space theory to 1-D discrete signals is by
discretizing the diffusion equation. For higher dimensional signals, the scale-space repre-
sentation can be constructed by a semi-discretized diffusion equation in a similar manner
analogously to the 1-D case. The evolution of the scale-space representation of N-D dis-
crete signals over scales can be described by a semi-discretized diffusion equation which is
formulated by the infinitesimal scale-space generator.

In the following sections, we describe the concept of the infinitesimal scale-space gen-
erator with respect to the semi-discretized diffusion equation. Then we analyze the effect

of the parameter v in the infinitesimal scale-space generator.
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The Infinitesimal Scale-Space Generator The family of L of the form (2.9) satisfies

a semi-discretized'* version of the diffusion equation
(2.11) 0L = AgespL

for some infinitesimal scale-space generator Ag.s,. Note that it is possible to derive deriva-
tives of the scale-space representation with respect to the scale parameter using the prop-
erty of kernels 7' (see Section 2.2.1).

We can easily envisage that (2.10) corresponds to two-connectivity in the 1-D case,
eight-connectivity in the 2-D case and twenty six-connectivity in the 3-D case. This con-
nectivity of the neighborhood enables us to derive the point operator'®, e.g., corresponding
to the Laplacian. Then, for a given signal f : Z¥ — R the Laplacian for 1-D, 2-D and 3-D

are respectively given by
e 1-D case (N =1): V3
(V3f)o=f1—2fo + fu,
e 2-D case (N =2): VZ and V2,'°
(V2f)oo = f-10 + fr0+ fo-1 + fo1 — 4o,

1
(Vizf)o,o = §(ff1,f1 + foa+ fio1+ fia—4fo0) and

14The term “semi” seems to be used by Lindeberg due to the indefinite parameter .
15Tn case of a 1-D signal, for example, let f_1, fo, and fi, respectively, denote f(z—1), f(z) and f(z+1)

for a given point = € Z.
16We cannot find the reason (or account) why Lindeberg inserted the coefficient % in defining V2.
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e 3-D case (N = 3): V3, V%, and V2,7

s
(ng)o,o,o =f-1,00 + fr00 + fo,—1,0 + fo,1.0 + fo,0,—1 + fo,0,0 — 6f0,0,0
(Vi?)f)o,o,o :i(fl,l,ﬂ + foap0+ fio10+ fiio+ foi0-1+ foa01 +
fro—1+ fipa+ fo—1,-1+ fo—11+ fo1,-1+ for1 — 12f000),
(V2x3f)0,0,0 :i(f—1,—1,—1 +f it o+ o, o+
fi—i1+ fig—1+ fii1 — 8f000)-

Then (2.11) reduces in 1-D, 2-D, and 3-D, respectively, to

(2.12) OL = a,V3iL,
(2.13) ®L = a1ViL+a)Vi.L  and
(2.14) OL = ayViL+ ayViL + a3V2siL,

for some constants oy > 0, ap > 0, and a3 > 0 (see [12, p. 109-112] for the proof). This
implies that a one-parameter family of discrete signals satisfying the differential equation
(2.11) obeys the non-enhancement requirement by Definition 8.

o1 in (2.12) is set to 3 (see Section 2.1.2). In the 1-D case, only one factor of the
Laplacian (V3L) exists. For the case of higher-dimensions, however, the number of the
factors of the Laplacian is proportional to the dimension of the underlying signal, e.g., two
factors (for V3 and V2,) in the 2-D case and three factors (for V7, V2, and V?;) in the
3-D case. Considering the normalization property, (2.13) and (2.14) can be reparametrized
by introducing 7; € [0,1]. Then (2.13) is rewritten in the form!®

1 1
(2.15) oL =3 (1= 7)VEL+nV3%.L) = 5vzlL,

17We cannot find any reason (or account) why Lindeberg inserted the coefficients % in defining Vig and

V2,
18 According to the point operators of the Laplacian, it can be expressed as

1 1 1

1 1 2 2
3tL:§(1—’71) 1 -4 1 L+§’71 -2 L

1 1 L

2 2
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and in a same manner (2.14) is rewritten by means of v; and 7, as

1
WL =35 (A =n =) ViL+nVisL +7%VieL) = V5, . L

Yiyy2 T

DO | —

It is required from the reparametrization to determine the parameter 7; which are not

definite.

Sufficiency of The Infinitesimal Scale-Space Generator By deriving the generating
function of the infinitesimal scale-space generator Ag.s,, its sufficiency for describing the
scale-space representation can be shown. Note that for simplicity we deal with the 2-D
case only. However, further extension to 3-D or other higher dimensions can be done in a
similar manner as for the 2-D case.

Let L : Z%> x R, — R be the scale-space representation of a discrete signal f : Z2> — R
with the initial condition L(:;0) = f(:). Then (2.15) can be further discretized using
Euler’s explicit method (compare with (2.6) in Section 2.1.2) with the scale step At;

k+1 _ 1k k
Lij' =Li; + At (9Li;)
1
=Lj;+ At- o (L= 1) VL +m VL)
1
:Lf,j + At§(1 - 71)(Lf—1,

k k k k
it Liv + Lijq + Lij g — 4L5 )
1 1

1
Lf—l,j—l + ~L} 1t _Lf-i—l,j—l + _L§+1,j+1 - 2L§,j>

1 1
(2-16) + At§71 <_ 9 =15+ 92 9

2
=(1— At(2 —m))L§;

+ At%(l = WLy + Ly + Lijoa + Lijia)

+ Ati’yl(Lf—l,]’—l + Lf—l,j+1 + Lf+1,j—1 + L§+J+1)'

In the iteration formula above, the subscripts ¢ and j denote the spatial coordinates z
and y respectively, and the superscript k represents the iteration index. The generating

function describing one iteration is given by

1
Potep(2,w) =(1 = A2 = m)) + Dtg (1 =)z + 2 +w7 +w)

1
+ Atzyl(z’lafl + 2w+ 2w+ 2w).
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We now assume that the scale-space representation at scale ¢ is computed by n iterations

with a scale step At = £. Then using the fact

n
roomposed,n(zv W) = (Qostep(za w))n )

the generating function describing the composed transformation is obtained as

Pcomposed,n (Z, W) -

1+t 21 1+z " w ! 1+w " 21 1+z w ! 1+w "
n\\ 72 2 2 2) T\ 2 2 2 '

According to the fact that lim, o (1 + a,/n)"* = e® if lim,, o @, =

-1 -1 -1 -1
nlglgo (‘OCOmposed,n(Z, UJ) :et((zz 71+%>+(%71+%>+71 (zTilJr%)'(wT*lJr%))

.1

(2.17) :et( ——1+%) .et(‘”—;l—1+%) .evlt(§—1+%).(%_1+%)

.1

nt(5-145) (4 -1+%)

—t_t(z7142)/2

_ ~1
—e te e tet(w +w)/2

e

follows. etz +2)/2 and et~ "+%)/2 are apparently recognized as the generating functions for
the modified Bessel functions of integer order. Therefore, e~tet* '+2)/2 and e~tetlw '+@)/2,
respectively, define T'(n;t) = e 'I,(t) and T(m;t) = e I, (t), which are the 1-D discrete
analogue of the Gaussian kernel according to Definition 6 (see Section 2.1.2).

As a simplest case (y; = 0), the expression (2.17) can be expressed in the form of the
multiplication of generating functions of the family of the discrete Gaussian kernels

pr(zw) = Y T(m,n;t)z ",
(m,n)e2?

where
T(m,n;t) = e ‘I, (t) - e 'L, (t).

PRLIEETEA W AR ]
However, (2.17) has the term em(T 1+2) ( 2 1+2) whose value depends on 7;, which
means that we can not derive a separate discrete kernel when v; # 0, and even worse, v;

is not definite.
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On the other hand, the discretization of (2.16) with scale step /At corresponds to the

iteration with a kernel given as

v YA $(1—my)At At
T(L—m)At 1—(2-—m)At (1 —m)At

This iteration kernel is separable if and only if 3 = At (see [12, p. 116-117] for the proof).
In that case, the corresponding 1-D kernel is a discrete scale-space kernel if and only if

0<H < % according to Proposition 7. That is, 7; should not exceed %

Parameter Determination What remains to be done is to determine the parameters
v: € [0,1]. Although the effect of their value on the scale-space representation could be
somehow analyzed, the question about definite parameter determination has been left open
in Lindeberg’s work.

Let us consider the 2-D case (i.e., the determination of v, € [0, 1]);

o ’}/1 = 0 .
The convolution kernel associated with the scale-space representation of the form
(2.15) is separable, i.e., L can be given by

o0

L(z,y;t)= Y T(mit) Y T(mt)f(x —m,y—n)  (t>0),

m=—o0 n=—oo

where T'(n;t) = e 'I,(t). In the separable case the high-dimensional discrete scale-
space corresponds to repeated application of the one-dimensional scale-space along
each coordinate direction. When we choose this value, however, the point operator

V2 of the iteration kernel only links the cross points along the z- and y-axis.

o vy = % :
It gives the least rotational asymmetry in the solution to the differential equation

(2.15) (see [12, p.117-118] for the proof). The left below kernel is the discrete iteration
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kernel and the right one is the Laplacian operator when At = ~; = %;

1 1 1 1 4 1
36 9 36 6 6 6
1 4 1 4 20 4
9 9 9 6 6 6
1 1 1 1 4 1
36 9 36 6 6 6
The discrete iteration kernel The Laplacian operator

® v = % :
This is the boundary value which should not be exceeded for the discrete iteration
mentioned in the previous section. The left below kernel corresponds to separated
convolution with the one-dimensional binomial kernel ( 3 7). The right one is the

Laplacian operator;

1 1 1 1 2 1
16 8 16 8 8 8
11 1 2 12 2
8 4 8 8 8 8
1 1 1 1 2 1
16 8 16 8 8 8
The discrete iteration kernel The Laplacian operator

o v =1:
When we intend to use the iteration kernel, this value is inappropriate. In the case of
(2.15), an undesirable situation occurs through differentiation since the cross operator

V2, only links diagonal points.
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3 An Improved Discrete Scale-Space Formulation for

N-D Signals

We reviewed the discrete scale-space theory proposed by Lindeberg in the previous sections.
From that review, it becomes clear that convolution of 1-D discrete signals with the 1-D
discrete analogue of the Gaussian is equivalent to the analytical solution of the discretized
diffusion equation. However, for higher dimensional signals, Lindeberg could not fully
derive a definite discrete scale-space formulation, where he posed the open question how
to determine the parameter v € [0, 1] for solving the semi-discretized diffusion equation.
Motivated by this open question, in this section we consider the matter of how to derive
a definite scale-space formulation. By solving the problem of determination of parameter
v, we propose an improved discrete scale-space formulation for higher dimensional signals

(concretely, 2-D and 3-D signals) based on a few assumptions.

3.1 Preliminaries
3.1.1 The Neighborhood Connectivity

It is of importance in dealing with higher dimensional discrete signals how to define the
neighborhood connectivity for a given point. Various definitions of the neighborhood con-
nectivity can exist, however, there is not a strict rule to define it. In this work, we assume

the neighborhood connectivity as follows:

Assumption 9 (THE NEIGHBORHOOD CONNECTIVITY)

"For a given point p € Z*, we define its neighborhood *N (p)

'Np)={£cZF: (lp—Eleo <D A(E#D)},
fork>1.”

According to Assumption 9, the neighborhood connectivity for each dimension is described

as follows:
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e k=1 (1-D) : Given a point p = (z), its neighborhood N (p) is

'N(p) ={(z = 1), (z + 1)}
with 2 connectivities.
e &t =2 (2-D) : Given a point p = (z,y), its neighborhood 2N (p) is

Np)={(z-1y—-1),(r-Ly), (- 1y+1),(z,y— 1),

(z,y+1),(z+1,y—1),(z+1,y),(z+1L,y+ 1)}

with 8 connectivities.

e k=3 (3-D) : Given a point p = (z,y, 2), its neighborhood 3N (p) is

‘Np)={(z—-1,y—1,2—1),(z—1,y—1,2),(z — 1L,y — 1,z + 1),
(x—1,y,z2—=1),(x —1,y,2),(z — 1,y,2+ 1),
(x—1Ly+1l,z—1),(z—1,y+1,2),(x —Ly+1,2z+1),
(z,y—1,z—=1),(z,y — 1,2),(z,y — 1,2+ 1), (z,y, 2 — 1),
(z,y,2+1),(z,y+1,2—1),(z,y+ 1,2), (z,y + 1,2 + 1),
(x4 1,y — -1, (z+1Ly—1,2),(z+1,y— 1,2+ 1),
(x+1y,z—1),(z+1,y,2),(x+ 1,y,z+ 1),
(x+1y+1,z—1),(z+1y+1,2),(e+1,y+1,2+1)}

with 26 connectivities.

e k= N (N-D) : Given a point p = (z1, Ts, ..., 75 ), its neighborhood VN (p) has 3V — 1

connectivities.

Then, the neighborhood connectivity of each dimension can be classified with respect to

the distance between a given point and its neighbors:
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e 2-D case :

e 3-D case :

given as

°N1(p)

°N 3(p)

to the number of the complexions

N-D case
..., and "N _x(p).

Given a point p = (z,y), >N (p) consists of >Ny (p) and N ;(p) given as

Nip)={€ecZ:(lp—&l=1) A€ N(p)}
={(z,y—1),(x,y+1),(r—-1,9),(z+1,9)} and

Nya(p) ={(€ € Z*) : (Ilp— &l = vV2) A (£ € °N(p))}
={(z-1Ly-1),z-Ly+1),(z+Ly-1),(z-1Ly—- 1}

Given a point p = (z,y, z), >N (p) consists of *Ny(p), ®N, 5(p), and °N_z(p)

= {€eZ’):(lp—¢l=1) A€ N(p)}

= {(z,y,2-1),(z,y,2+1),(z,y — 1, 2), (z,y + 1, 2), (z — Ly, 2), (z + Ly, 2) },

= {€eZ:(lp—£l=v2) A€ €Np)}

= {(z—-1Ly—-1,2),(z-Ly+1,2),(z+1y—12),(z+1,y+1,z),
(x—1,y,z—1),(z—1y,2+1),(z+ 1,y,z— 1), (z+ 1,y, 2+ 1),
(z, —1),(z,y—1,2+1),(x,y+1,2—1),(z,y+ 1,2+ 1)}, and

= {(€e Z3) (lp =€l =V3) A (€ € Np)}

= {(z-Ly—-Lz-1),(z+1Ly—1,2—1),(z—1L,y+1,2—1),
(z—ly—1,z+1),(c—1,y+1,z+1),(z+1,y— 1,2+ 1),

: Given a point p = (z1, s, ...,

19

~), N (p) consists of VN (p), VN s(p),
In this case, the number of elements of VN 1 (p) is equivalent

consisting of £ elements of which each has

2 complexions that can be formed from N different elements without taking into

account their arrangement of order k; that is, complexions of (]Z) 28 k=1,2, ..

N.

19Tn combinatorics, complexions investigate the arrangement or composition of a finite number of ele-

ments identified by symbols (|

6, p. 773)]).
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3.1.2 The Laplacian of The N-D Discrete Scale-Space Kernel

The Laplacian of the Gaussian is a rotationally symmetric operator ([13]). However, it is
not obvious how to define a rotationally symmetric Laplacian of the N-D discrete scale-
space kernel. In this section, based on numerical differentiation we define the Laplacian
of the N-D discrete scale-space kernel which will be used for describing the discretized
diffusion equation in Section 3.2 and in Section 3.3.

On the basis of numerical differentiation (see [2], [6]), functions can be differentiated
numerically which is practical when the analytic solution cannot be determined at all.
Derivatives are approximated by the difference quotient (difference formula of the first

order) such that

_ o fleth) (@) flet+h) - fz)
Oz _}ngtl) h N h +O(h),

where O(h) is the error term of the approximation; the error is linear in h. Also, the second
derivative is given as

PI@) _ flo+h) = 2f() + Fla—h)
ox? h?

+0(h?),

where the error changes quadratically with A ([6, Sec. 12.5.2]). In our work, we assume
the step size h to be one and ignore the error term O(h?), which leads to

0*f ()
0x?

~ flz+1)—2f(z)+ flz—1).

Accordingly, the 2-D Laplacian is expressed as

0*f(z,y) N & f(x,y)
0x? 0y?

%f(xvy_1)+f($7y+1)+f($_17y)+f($+17y)_4f($7y)

Vf(z,y) =

For a given discrete higher dimensional signal f : Z" — R the scale-space representation

is generated by the convolution with a one-parameter family of kernels of the form

L(z;t) = T(a;t) * f(2) = Y T(&0)f(z - §),

¢ezN
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where a family of kernels T : Z¥ x R, — R satisfies the non-enhancement requirement
based on Definition 8; in the case of continuous signals, the Gaussian kernel corresponds
to the family of kernels for constructing the scale-space representation. Let us refer to
the kernel T : ZV x R, — R as the N-D discrete scale-space kernel. The scale-space

representation L satisfies
BtL(x; t) = AscspL(!L“; t),

where Ag.s, is an infinitesimal scale-space generator (see for its proof [12, p.109-112]), and

this corresponds in 2-D to

O L(z,y;t) = alvgNlL(x, y;t) + azvgNﬂL(x, y;t)

(3.18) = ay (VE,T(z,y;t) * f(z,9)) + a (V%NﬁT(fE,y;t) * f(x,y)) )
and in 3-D to

O L(z,y, 2;t)
(3.19) :a1V§N1L(x, y, z;t) + an%NﬁL(ﬂfa Y, z;t) + a3V§N¢§L($’ v, %1)

=a; (Viy,T(z,y, 2;t) * f(x,y,2)) + a2 (VgNﬁT(w, Y,z t) x f (2, Z)) +
as (Vv (@5, 250) % [(2,9,2))
for some constants a; > 0, az > 0, and ag > 0. The constants (a;, a2, and a3) play the
role in preserving the rotational symmetry of the Laplacian of the 2-D and 3-D discrete
scale-space kernel, and their proper values will be determined in the following sections.
As a consequence, the Laplacian of the N-D discrete scale-space kernel for 2-D and 3-D
signals are described as follows:
Assumption 10 (THE LAPLACIAN OF THE N-D DISCRETE SCALE-SPACE KERNEL)
"For a family of kernels T : ZN x R, — R,
e N=2:2-D case
VT (z,y;t) = alvgNlT(x,y;t) + a2V§NﬁT(x,y;t), whereay,as > 0 and
VivI(z,y;t) = T(z,y—1Lt)+T(z,y+ Lt) +T(z - 1,y;t) + Tz + 1,y;t) — 4T (2, y;11),
v2

v, L (@yt) = Te—Ly—LH)+T(e-Ly+15t)+T(z+1,y-11)+

T(z -1,y - Lit) — 4T (z,y; t).
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e N=23: 3D case

VT (z,y,2;t) = a1Viy,T(z,y,2t) + azvgNﬂT(x, y,z;t) + agvgNﬂT(w, Y, 2;t),
where ai,as,a3 > 0 and

Vin T (@9, 2t) = T(z,y,2 - 1;t) + T(e,y, 2+ 1;t) + Tz, y — 1, 2;t) +
T(z,y+1,2t) +T(x — Ly, 2t) + T(x + 1,9y, 2;t) — 6T (2,9, 2; 1),

(

(
V?,NﬁT(a:,y,z;t) = T(x—1,y—1,2;t

(

(

)+ T(x—1Ly+1,zt)+T(x+ 1,y —1,2¢t) +
Tex+1ly+1,2;t)+T(x— Ly, z— ;) + T(x — 1,y, 2+ 1;t) +
Tex+1l,y,z2—1t)+T(x—1,y,z2—1;t) + T(x,y— 1,2 — 1;t) +
T(e,y—1,2+1t)+T(z,y+ 1,z — 1;t) + T(z,y+ 1,2 + 1;t) —
12T (z,y, 2; t),

VgNﬁT(x,y,z;t) = T(x—-1,y— —Lt)+T(z+1,y—1,2—1;t) +
Tx—-1ly+1l,z—-Lt)+T(x—1y—1,z+1;t) +
Tx—-Ly+lz+Lt)+T(x+1,y—1,2+1t)+
Tz+lLy+1lz—1t)+T(x+1,y+ 1,2+ 1;t) — 8T (x,y,2;t)."

The Laplacian of the 2-D and 3-D discrete scale-space kernels defined in Assumption 10
are similar to those defined by Lindeberg [12, p.105] in that the two directions (i.e., 2Ny
and ?N s5) in 2-D and three directions (i.e., ®Ny, °N 5, and °N_j3) in 3-D are considered for
the Laplacian of the discrete scale-space kernel. However, with respect to the coefficients
of the Laplacian of 2N s as well as of °N 5 and of ®°N 5 we did not fix any ambiguous
coefficients, which is obviously different from the definition of Lindeberg; Lindeberg set
the coefficient of the Laplacian of 2N 5 to 1, and that of ®N 5 as well as of ®N 5 to 1 (see
the footnotes on page 20 and 21).
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3.2 The 2-D Discrete Scale-Space Formulation

The equation (3.18) can be expressed as a normalized form

1 1
O L(z,y;t) = §V2L(x, yit) =3 ((1 —7)Viy, L(z, ;1) + 7Viy Lz, y; t))

for v € [0,1] : If v = 0, then only the points linked by the neighborhood connectivity 2N;
are considered, and to the contrary if ¥ = 1 then only the points linked by the neighborhood
connectivity 2Nﬁ are considered. This equation can be further discretized using Euler’s

explicit method with the scale step At;
k+1 _ 7k k
Lt =Lk + At (0,L},)
1
=Lk, + Ot ((1 — ) V3, L+ 7V§NﬁL)

1
k k k k k k
(3.20) 1
+ Atsy (L%

z—1,y—1 + Lk 1 + Lk 1 + Lk 4LI;,y)

z—1,y+ z+1,y— z+ly+1
1
=(1 =280 Ly + AL =) (Lgyy + Layay + Loyoy + Liyi)
1
+ §At7 (Lfcfl,yfl + L];:fl,erl + LI;H,y—l + LI;:JrLyH) !

where the subscript  and y denote the spatial coordinates, and the superscript &k represents
the iteration index.
The discretization of (3.20) with the scale step At corresponds to the iteration with a

kernel given as
LM = Tpyx LY,
where L° = f(z,y) and the 2-D iteration kernel is
EYVAN L1 —y)At LyAt
27 3 g 37
(3.21) Tre=|I(1—yAt 1-2At La-—4)At
YAt (1—v)At YAt
3.2.1 Parameter Determination in 2-D

The iteration kernel of the form (3.21) describing one iteration with step scale At is derived

from discretization of the diffusion equation of (3.20), where parameter 7 plays the role
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in preserving the rotational symmetry of the 2-D discrete scale-space kernel. For a given
2-D signal f : Z? — R, the scale-space representation is generated by the convolution with
the 2-D discrete scale-space kernel 7' constructed by n iterations given a certain scale ¢

(t =n - At) such as

L(z,y;t) = T(x,y;t) * f(z,y)
=T k% (TAE*f(x,y)).

D'
n

Here, on one hand, it is important to recapitulate that rotational symmetry related to
spatial isotropy is one of the basic principles of linear scale-space, which requires the
discrete scale-space kernel 7" to be rotationally symmetric. On the other hand, however, it
is noticeable that rotational symmetry (or rotational invariance) is not a primary factor to
be aimed at in the discrete case since one is locked to a fixed square grid, and furthermore
it is also far from obvious as to what is meant by spatial isotropy on a discrete grid ([12,
p.117]). Instead of finding spatial isotropy or rotational symmetry, therefore, it would be
more reasonable to point out the lack of spatial anisotropy or rotational asymmetry. In
order to measure the least possible rotational asymmetry, let us use the Fourier transform
of the generating function of the iteration kernel.

Using a well-known relationship between the Fourier transform and the generating

function (see [14, Chap. 3]), the generating function describing one iteration of (3.20) is

1
Patep(2,X) =(1 =208 + SAH1L =) (2" +24+x " +x) +
1
SOty (27T T T+ 2x)

and we obtain the generating function describing the composed transformation (At = %),

2gocomposed,n(zv X) - (280step(za X))n =

t 27 24 x4+ 2 2 v+ oy 42 "
<1+5<—2+(1—7)< 2X X>+7< X ’2< X TEX .

Based on the fact that lim, , (1 + a,/n)" = e® if lim,_,, o, = a, the generating function

of the kernel describing the transformation from the original signal to the representation
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at a certain scale t is given by

Yor(z,x) = Y T(m,n;t)2"x"
(m,n)€Z2?

B et(_z_i_(l_,y)(z71+z;x71+x>+,Y(271x71+27;x+zx71+zx>>
- )

and its Fourier transform is derived by replacing the complex variables z and x with the

v

' as

complex variables e * and e~

F (2§0T(z7 X)) = 27/"T(6_mv e—iv),

which is expressed using Euler’s formula?® as

(322) 2’[/}T(COS u — isinu, cosv — isinv) — 6t(72+(17'y)(cos u-+cos v)+v2 cosucosv)‘

Then we transform (3.22) into polar coordinates given a fixed value of the radius r and an

angular variable ¢ such that u = r cos ¢ and v = rsin ¢:
(1, 9) = eltH0),

where

k(r,¢) = =2+ (1 — 7)(cos(r cos ¢) + cos(r sin ¢))

+ v2 cos(r cos @) cos(r sin ¢).

Fig. 1-(a) and 1-(b) depict %)r(r,#) when v = 0 and v = 1. We can easily recognize

™

from Fig. 1-(a) that four obvious angular variations appear at |¢| = 0, 7, 7, which reflects

the four-point-link of the neighborhood connectivity 2N;. Also there are salient angular

variations at [¢| = Z,3X from Fig. 1-(b), which can be interpreted as a reflection of the

diagonal four-point-link of the neighborhood connectivity 2N VoL

k(r, ¢) consists of three variables, i.e., r, ¢, and 7, and we intend to determine the value

of v which gives the smallest angular variation of ¢ for a fixed value r. For examining the

20Exponential function with imaginary argument ([6, p. 278]) :

e =cosz +isinz.
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Figure 1: %r(r, ¢) (for convenience, we here fix scale parameter ¢ to one)
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¢-dependency of v from k(r, ¢), we expand the MacLaurin series of k(r, ¢) with respect to
r with the help of Mathematica ([16]);

1 1
k(rcos¢,rsing) = O(r?) = —%72 +0(r®) = 10 + O(r*)

2
1 _
- _ +7r2+3+9’7+(1 57)(:054@5704+
2 96
1 3+9 1-5 4
_ J2F’Yr2+ + ’Y+(96 ) cos ¢r4

O(r®)

+0(r%).

It is clear from the MacLaurin series above that if v = % then the ¢-dependency decreases
as % instead of as r*. Fig. 1-(c) illustrates %)r(r, ¢) when v = 1, which shows that angular
variation is distributed into the whole range of ¢ (i.e., —m < ¢ < m). Therefore, it can be

said that the value L of v gives the smallest angular variation, which implies that v = é

5
is the parameter value that brings the least possible rotational asymmetry into the 2-D
discrete scale-space kernel.

Consequently, the corresponding 2-D iteration kernel by replacing the determined v
value as é that gives the least rotational asymmetry to the 2-D discrete scale-space kernel
is

1 2 1

oAt At At
(3.23) Tre= | 24t 1-2At 2At |,

1 2 1

TTAVEE-YAVRRE - VAN

where At > 0.

3.2.2 Separable Iteration Kernel in 2-D

Considering economy of computation when iteration increases, it would be reasonable the
iteration kernel to be separable; the higher the dimension of computation is, the more
efficient separable filters are ([8], [13]).

The iteration kernel of the form (3.23) is symmetric and the sum of its coefficients is

one. Therefore, if and only if the kernel can be written as a kernel

(a 1—2a a)
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convolved with itself for a > 0, then it can be said that the 2-D kernel is separable (see
[12, p. 116-117]). In this case, the kernel (a,1 — 2a,a) is a discrete kernel if and only if
(1-2a)*>>4-a-a,

which leads to the condition 0 < a < 7 (see for its proof [11, p. 238]):

Assumption 11 (2-D SEPARABLE ITERATION KERNEL)
"Let us assume that the 2-D iteration kernel describing the discretized diffusion equation

18 constructed by convolution of the 1-D kernel with itself as

a P FAV AR VAV VAN
(a 1—2a a)* 1—2a| = %At 1—2At %At
a EAL 2AE AL
for0<a < i.”
From Assumption 11,
a? a(l — 2a) a? At 2AE AL
| 2 2
a(l—2a) (1—2a)* a(l—2a)|=| 24t 1-2A¢t ZAt
a? a(1l - 2a) a’ At 2Nt At
we obtain
1 5
= — d At = —
a= an s

which means the 2-D iteration kernel is separable into the 1-D discrete scale-space kernel
121 _ 5
Consequently, the 2-D separable iteration kernel and the Laplacian of the 2-D discrete

scale-space kernel are given by

(3.24)
1 1 1 1 4 1
36 9 36 5 5 5
1 4 1 4 20 4
9 9 9 5 5 5
111 141
36 9 36 5 5 5

The 2-D iteration kernel The Laplacian of the 2-D discrete scale-space kernel
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3.3 The 3-D Discrete Scale-Space Formulation

Since the discrete scale-space formulation for 3-D signals is analogous to that for 2-D
signals, we will not recapitulate the details shown in the previous sections.

For a given discrete signal f : Z3> — R, (3.19) can be expressed as a normalized form
1
0L = 5 ((1 -—N - 72)V§N1L + 71V52N\/§L + 72V§N\/§L>

for 71,72 € [0, 1], which can be further discretized using Euler’s explicit method with scale
step At;

(3.25)
k k k
szlz Lx Yoz + At (Bth Y Z)

_Lgyz + At§ ((1 — 7~ 72)V3N1L + 71V§NﬁL + 72V:%N\/§L)
1
_Lgyz—i_At( (1_71 72)(nyz 1+L yz+1+Lwy 1z+Lwy+1z+Lx 1yz+

1
k k k
Lx+1,yz 6La:yz) + 271(Lx l,y—1,z +La: 1,y+1,z +Lx+1y 1,z +Laz+1,y+1,z +
k k k k k k
fol,y,zfl + Lazfl,y,z+1 + Lx+1,y,z71 + fol,y,zfl + La:,yfl,zfl + Lx,yfl,z+1 +

1
ka-i—lz 1+ny+lz+1 12L§yz)+ 272(Lw 1,y—1,2— 1+Lx+1,y 1,2— 1+L$ Ly+1,2— 1+

k k k k k k
Lw—l,y—l,z-i—l + Lx—l,y—l—l,z—i—l + Lw—l—l,y—l,z-i—l + Lx—l—l,y—l—l,z—l + Lw—l—l,y-i—l,z-i—l 8L z,Y,2 ))
(1 - At(?) + 371 + 72))Lw U2 +
1
§At(1 -N - 72)(‘[/ z,y,z—1 + L z,y,2+1 + Lacy 1,z + La:y+1z + La: 1,y,2 + Lx+1,yz) +

1 k k k k
_At’Yl(Lx ly—1,2 T Lk, wite T Loviy 1 T Lopiyin, t Laqy1+ Loy

- 7y$z+1 +

k k k
Lw—i—l ,z—1 + Lx l,y,2—1 + Lw wW—1,z2—1 + L z,y—1,z2+4+1 + Lx Wy+1,2—1 + Lw,y-l—l,z-i—l) +
k k k k k
_At72(Lw—l,y—1,z—1 + Lx—l—l,y—l,z—l + Lw—l,y-i—l,z—l + Lx—l,y—l,z—i—l + Lw—l,y-i—l,z-i—l +

k
Loty 141+ Lk, y+lz-1 T Lac+1,y+1 a41)s

where the subscript x, y, and z denote the spatial coordinates, and the superscript &

represents the iteration index.
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The discretization of (3.25) with the scale step At corresponds to the iteration with a

kernel given as
LM = Tpy + LY,

where L® = f(z,y, z) and the iteration kernel Tx; is

2=l Aty SAHL =y —72) 507 |,
3Ot 3Oty STAAT
( SOty SO — v —72) SOty
(3.26) z %At(l —m—72) 1—AtB+37+7) %At(l 1 —7) |
\ 3Ot SOt =7 —72) Aty
21| Aty AL =m =) 300 |,

which is described with respect to z — 1, z, and z + 1, respectively, along the z-axis.

3.3.1 Parameter Determination in 3-D

In the same way as done for the 2-D case, we here impose the restriction of the least
possible rotational asymmetry on the 3-D discrete scale-space kernel 7. The parameter
determination of v; and 7 which give a least possible rotational asymmetry in the 3-D
discrete scale-space kernel can be derived in the same way as done in 2-D case.

The generating function describing one iteration of (3.25) is
1 _ _
Yutep(2,67) = (1= AtB+3n+7)) + A (L =1 =)= " +2+x " +x+
1
)+ §At71(z_1x_1 +z Y tex eyt 2T+

1
el darrx M e x r e e xT) + EAtyz(z’lx’lel +

ax Trh e e T e a2y,
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and we obtain the generating function describing the composed transformation (At = %),

3§0composed,n(za X T) = (Sgostep(za X 7_))” =
t R A SR
(1—1-5(—(34-3714—72)4—(1—71—72)< X 5 X +

<z_1x_1 R B ) A S A o e e N R e D A XT)
2

N <z1X17'1 +ox Mtz yr iy r byt ey r a4 zXT> > ) "
V2 .

71

2
Based on the fact that lim, , (1 + a,/n)" = e® if lim,,_,, o, = a, the generating function
of the kernel describing the transformation from the original signal to the representation
at a certain scale ¢ is given by

Yor(z,x,T) = Z T(m,n,l;t)z"x" "t =
(m,n,l)eZ3

exp<t<_(3+3% +)+ (L= =) Frtx x4 T)/24

1 1

'yl(z’lel + z*IX + zxfl +zx+ 2z 7t +z T+ 27t + 27 + X*IT*I +

XMt xn) 2+ ez i e ey e e e e T T
S i B s ZXT)/2> ) ,
and its Fourier transform is

(3.27)

F (3@T(27X;7—)) = 3¢T( .eiiu, ) \eiiv, ) \eiiw, ) =

cosu—isinu cosSv—isinv €osw—isinw

6t(— (34+3v1+7v2)+(1—71+72)(cos utcos v+cos w)+vy12(cos u cos v+cos u cos w+cos v €os w)+y24 cos u cos v cos w)

Then we transform (3.27) into a function of the polar angles ¢ and 6 given a fixed value

of the radius r such that u = rcos¢sinf, v = rsin¢sinf, and w = r cos6:

Wr(r, ¢,0) = e(t+(8.0))
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where

k(r,9,0) = —(@B+371+7)+
(1 — 1 — 72)(cos(r cos ¢ sin @) + cos(r sin ¢ sin #) + cos(r cosf)) +
21 (cos(r cos ¢ sin 0) cos(r sin ¢ sin 6) + cos(r cos ¢ sin 6) cos(r cos 6) +
cos(r sin ¢ sin 6) cos(r cos 0)) +
475 cos(r cos ¢ sin 6) cos(r sin ¢ sin #) cos(r cos f).
Now we want to find the values of y; and 7, which give the smallest angular variation of
¢ and @ for a fixed value of r. For this, we examine the ¢- and #-dependency of v; and v,

from k(r, ¢, 6) above. In the same way as done in 2-D, we expand the MacLaurin series of

k(r,¢,0) with respect to r with the help of Mathematica ([16]);

k(r,¢,0) =

—(14+371+3%) , 1 4 22
(3.28) 9 e+ o (14371 + 372) cos™ 0 + 12(7y; + 2;) cos” Osin” § —

(—3(1 + 5’)/1 + 7’}/2) + (—1;‘ 3'71 + 972) COS(4¢)) Sin4 9) 7‘4 + 0(7‘6).

If the term —1437v; +972 is null (y1, 72 > 0) in (3.28), i.e, 13 = % 0<mnm<30<y2<

%), the ¢-dependency of k(r, @, §) decreases as 7% instead of as r*. When —1+3v;+9v, = 0,

(3.28) is rewritten as

2—-6 1
k(r,¢,0) = —Twrz + ﬂ@ - 672)£cos4 0 + cos® fsin” @ + sin* 9)/7"4 + O(r®)

~”

1

1
= —(1—3y)r* + 5(1 — 3y)rt + O(r®).

It is clear from the derivation above that if —1+3vy; + 97, =0 (0 <13 < %, 0 <y < %),

then the #-dependency also decreases as r® instead of as r*.

3.3.2 Separable Iteration Kernel in 3-D

Since the 3-D iteration kernel of the form (3.26) is symmetric and the sum of its coefficients

is one, if and only if the kernel can be written as a kernel

(a 1—2a a)
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convolved with itself

(a 1— 2a a) *(a 1— 2a a) *(a 1—2a a) =
T Y z

a? a(l —2a) a?
a(l—2a) (1-20) a(l—2a)|*(a 1-2a a) =
a’ a(l — 2a) a’
a*(1—2a) a(l-2a)* a*(1 - 2a) a? a*(1 — 2a) a?
a(l—2a)?> (1-2a)® a(l1-2a)?], a’(1—2a) a(l—2a)?> a*(1— 2a)
a*(1 —2a) a(l—2a)* a*(1—2a) a? a*(1 — 2a) a?
Y o pe

for0 <a < i, then it can be said that the 3-D iteration kernel is separable:

Assumption 12 (3-D SEPARABLE ITERATION KERNEL)
"Let us assume that the 3-D iteration kernel of the form (3.26) describing the discretized

diffusion equation is constructed by convolution of the 1-D kernel with itself as

(a 1— 2a a) *(a 1— 2a a) *(a 1-—2a a)
T y z

1 »
for0<a< 3.

From Assumption 12,

a’ a*(1 - 2a) a’ LAty 1At LAty
zx1:|a*(1-2a) a(l-2a)® a*(1—-2a) | = | 300 $AtL—m—7) 34070 |,
a’ a®(1 — 2a) a’ T Aty Aty T Aty

a*(1—2a) a(l—2a)? a*(1—2a)
z:la(l=2a)? (1—2a)* a(l—2a)?|=
a®(1 —2a) a(l—2a)* a*(1—2a)

30t 3Ot =71 —72) 1Aty
N1 =y — ) 1-AtB+371+7) 2At1—7—7) |
A SOt =7 —72) YA AT
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we obtain the equations

 a-— 2a>
n= 1 —3a+ 3a?’
2
(3.29) ___a 1
"2 1 —3a+ 3a?’ an

At =2 (a —3a® + 3a3)
for0<a< i.
Now we can derive the values of v; and 2 by substituting —1 + 3v; + 97, = 0 derived
from (3.28) for the equations in (3.29)

3Nn+9r =1

a — 2a? a?
+9 =1
1— 3a + 3a? 1 — 3a + 3a?
3a+3a®> )
1—3a+3a2
1
a = -,
6
which leads to
4 1 7
= — =—, and At=—.
7 217 V2 217 n 36
Consequently the determined values 7; = % and v, = i induce the 3-D separable
iteration kernel with the scale step At = % and the Laplacian of the 3-D discrete scale-
space kernel, respectively, given by
11 1 102 1
216 54 216 54 27 54
1 o2 ]2 2
z+1: - I 25 = s |
11 1 1 1
216 54 216 54 27 54

The 3-D iteration kernel

(3.30)
1 4 1 4 16 4
21 21 21 21 21 21
z+1:1 4 16 4 - | 16 __ 116 16
’ 21 21 21 |’ ’ 21 21 21
1 4 1 4 16 4
21 21 21 21 21 21

The Laplacian of the 3-D discrete scale-space kernel
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4 Conclusion

In the first half part of this report we reviewed the discretization aspects of the scale-space
theory as worked out by Lindeberg. The presented discrete theory is closely linked to the
continuous scale-space theory through the discretization of the diffusion equation, where
discrete nature is already taken into account in the formulation of the scale-space represen-
tation. While the 1-D discrete scale-space formulation derived by Lindeberg is theoretically
obvious, his derivation for the higher dimensional discrete scale-space formulation has a
few open questions as well as unclear points, which makes the extension to the higher
dimensional discrete scale-space formulation relatively ambiguous.

Motivated by the open questions as well as unclear points in the higher dimensional
(N-D) discrete scale-space formulation which were not explained by Lindeberg, we devel-
oped an improved discrete scale-space formulation for 2-D and 3-D signals based on a few
assumptions, which was described in the last half part of this report. First, we defined the
neighborhood connectivity and the Laplacian of the N-D discrete scale-space kernel. Then,
on the basis of these definitions, we constructed the discretized diffusion equation, from
which we derived the iteration kernel. Additionally, we imposed the restriction of the least
possible rotational asymmetry on the discrete scale-space kernel, and we could determine
the value of parameter y (7 in 2-D and 7; and 7, in 3-D) which plays the role of preserving
the rotational symmetry in the discrete scale-space kernel. Finally, we restricted the iter-
ation kernel to be separable for the purpose of efficient computation. As a consequence,
we derived the iteration kernel as well as the Laplacian of the discrete scale-space kernel
of the form (3.24) in 2-D and those of the form (3.30) in 3-D.

By developing the improved discrete scale-space formulation for 2-D and 3-D signals, we
made a remarkable step forward in investigating the matter of how to correctly approach
the discrete scale-space theory. As a next step, based on the improved discrete scale-space

formulation, we can identify routes to be taken for our possible future work as follows:

e The improved discrete scale-space kernel can be closely compared with the sampled
Gaussian kernel which is commonly used for the discrete scale-space formulation (see

e.g. Lim [10] for analysis of its problem).
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The improved discrete scale-space formulation can be applied to methods of scale se-
lection, e.g., the BNS method, since the existing methods are based on the continuous

scale-space theory.

Lindeberg also suggested a scale selection method. Analytically or experimentally,
we can compare the results of the discretized BNS method with that of the scale

selection method by Lindeberg.

Our improved discrete scale-space formulation may be compared to the discrete

wavelet transform using derivatives of Gaussian wavelets.

For specific test signals, for which a mathematically correct discretization can be
given, a comparison of results for the continuous and discrete case, respectively, can

be carried out.
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