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Abstract

In this work, first we consider the behavior of the derived DSS kernel w.r.t. smoothing
and differentiation. We describe how to calculate the coefficients of the DSS kernel, and
show that there exist two types of the DSS first-order differencing operator (i.e. the even-
and odd-number-sized one). Then, in order to characterize the performance of the DSS
kernel w.r.t. smoothing and differentiation, in comparison to the sampled Gaussian (SG)
kernel, we carry out a validation study given three performance criteria, namely accuracy
of approximation, fulfillment of the non-enhancement requirement, and accuracy of edge
extraction. The result of our validation study shows that the DSS kernel does not only
match the performance of the SG kernel but also clearly exhibits superior performance

w.r.t. smoothing and differentiation.

Zusammenfassung

In dieser Arbeit untersuchen wir im Detail die Glattungs- und Differentiationseigen-
schaften des von uns entwickelten diskreten Skalenraumskerns (DSS-Kern). Wir beschreiben
zunéchst die Berechnung der Koeffizienten des DSS-Kerns und geben zwei Varianten fiir
die Ableitungen erster Ordnung (gerader bzw. ungerader Kern) an. Wir vergleichen
anschlieffend die Glattungs- und Differentiationseigenschaften des DSS-Kerns mit denen
eines abgetasteten Gaufl-Kerns (SG-Kern) anhand von drei verschiedenen Performanzkri-
terien: Approximationsgenauigkeit, Erfiillung der “non-enhancement”-Bedingung sowie
Genauigkeit bei der Kantenextraktion. Unsere Untersuchung zeigt, dass der von uns
entwickelte DSS-Kern dem SG-Kern bzgl. seiner Glattungs- und Differentiationseigen-

schaften iiberlegen ist.
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1 Introduction

Supplementing the work by Lindeberg [13], we proposed an improved discrete scale-space
formulation by way of a theoretically thorough derivation in [9] [11]. We call the derived
discrete scale-space kernel “the DSS kernel”.

In the first part of this report, we consider the behavior of the DSS kernel with respect
to both smoothing and differentiation. The coefficients of the DSS kernel at a certain scale
for smoothing are easily calculated using the z-transform. These are compared with those
of the sampled Gaussian which we call “the SG kernel”. Furthermore, in order to apply
the DSS kernel to image structures for the purpose of feature extraction, it is necessary
to derive the associated differencing operator. We show that there exist two types of the
DSS first-order differencing operator, viz. the even- and odd-number-sized DSS first-order
differencing kernels. We describe how to calculate their coeflicients and investigate the
related properties. The DSS first-order differencing kernels are then compared with the
SG first-order differencing kernel.

As a next step, we propose a validation study of the DSS kernel in order to characterize
its performance with respect to both smoothing and differentiation. Our validation study
is based upon three performance criteria, namely accuracy of approximation, fulfillment of
the non-enhancement requirement, and accuracy of edge extraction. The first two criteria
are related to the performance of smoothing, while the last criterion is to the performance
of differentiation. This (i.e. the criterion of accuracy of edge extraction) is divided into two
subcriteria i.e. rotation invariance and steadiness from adjacency. The result of our valida-
tion study shows that the DSS kernel does not only match the performance of the SG kernel
but also clearly exhibits superior performance with w.r.t. smoothing and differentiation.

This report is organized as follow: In Section 2, we describe the behavior of the DSS
kernel with respect to smoothing as well as differentiation. In Section 3, we present the
overview of our validation study and the experimental settings. Subsequently, we pro-
vide the results of the validation study, and assess them in Section 4. Finally, we give a

conclusion in Section 5.



2 Behavior of the DSS Kernel

The DSS kernel is given by

(2.1) T (:p; g) = " (% g %) :

where ** is denoted as k-times self-convolution and g corresponds to the variance.
In the following sections, we describe how to calculate the coefficients of the DSS kernel
for both smoothing and differentiation, and show the properties of the DSS kernel compared

with the SG kernel.

2.1 Smoothing Kernel
2.1.1 In One Dimension

The coefficients of the DSS kernel generated by self-convolution given in Eq. 2.1 can be
easily calculated using the z-transform of the given DSS kernel based on the property that
convolution of sequences corresponds to multiplication of the z-transform (see for the detail

e.g. [1], [5], [14], or [15]) such that

k 1 2 1\*
T<x; §> o—e <6z1+§+6z> ,

where £ is the number of self-convolution.

The DSS kernels of increasing variance are given in Tab. 2.1, whereas the SG kernels (of
equal variance and with the same number of coefficients) are given in Tab. 2.2, where the
number of the coefficients equals 2k + 1. Through a comparison of the values in Tab. 2.1
with those in Tab. 2.2, one can see that the DSS kernels are normalized to one for any k,
whereas the SG kernels are not normalized when the variance is small. Furthermore, the
coefficients of the DSS kernel are getting similar to those of the SG kernel as the variance
increases.

Tab. 2.3 gives a comparison between the DSS kernel and the SG kernel for smoothing.
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The DSS kernel The SG kernel

Getting coeflicients Through a self-convolution | Sampling the Gaussian

Number of coefficients | 2k + 1 (k € Z; : the number of self-convolution)

Variance g
Semi-group property Satisfied
Symmetry Yes
Normalization Always for any k Not always

(a) Properties

-10 10

(b) Graphical illustration (k = 1,2,---,10)

Table 2.3: Comparison of the DSS kernel with the SG kernel for smoothing.



2.1.2 In Higher Dimensions

Based on the separability of the higher dimensional DSS kernel, for & = {x1, 22, -+ ,2n}
(2.2) T(Z;-) =T(xy;+) * T(xe;-) %+ - xT(xp;-)

holds, where ‘“*’ denotes convolution. For example, the smallest 2-D DSS kernel is given

by

the coefficients of which can be easily calculated using its z-transform

1 1 1 2 1 1 2 1
T (a:; §> * T (y; g) o—e <6z_1 + 3 + 62> . <6w_1 + 3 + 6w> —0

The higher dimensional DSS kernel with larger variance, analogously to 1-D, can be derived

g|»—t ©l— g|»—n
©l= O ©|—
g|»—t ©l— g|»—n

through self-convolution which corresponds to multiplication in the z-transform such that

k 1 1 2 1\* /1 2 1\
T(x,y;§>:*kT<x,y;§> o—e <gzl+§+az> -<6w1+§+6w>,

where k denotes the number of self-convolution. Tab. 2.4 gives a graphical illustration of
the 2-D DSS kernels of increasing variance (k = 1,2,- - -,10) that can be compared with
the 2-D SG kernels given by Tab. 2.5.

2.2 Differencing Kernel

In order to apply the DSS kernel to image structures for the purpose of feature extraction,
it is necessary to derive its derivative operator. Differently from the continuous case in
which any nth-order derivatives of the Gaussian can be defined at any scale, it is not as
simple to define the derivative operator in the discrete case. By introducing the terminology
“differencing operator” denoted as A\, we here discriminate the discrete derivative from the

continuous derivative.
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In the following subsections, we describe how to derive the DSS first-order differencing
operator (note that we consider the first-order differencing operator only), and look into

its properties.

2.2.1 Calculation of the DSS Differencing Kernel

A function has to be differentiated numerically when the analytical solution cannot be
determined at all ([2], [7]). Based on the principles of numerical differentiation, one can
approximate the derivatives by the difference quotient, for which there exist two formulae

according to the number of points involved in the differencing:

1. Two-point difference formula denoted as Agyen

ﬂmm@y:ﬂ@—iﬁ—h)

=fl@)=flz-1) (h=1)

2. Three-point difference formula denoted as A ,4q

o) = 1O S 1)
:f(x+1);f(x_1) (th).

Based on these two formulae, we derive two types of the DSS first-order differencing oper-

ator using the z-transform:
1. The z-transform of A, is given by
fAeven('T’.) = f(x) - f(x - 1) o—e F(Z) ' (1 - z)’

where F'(z) corresponds to the z-transform of f(z). The DSS first-order differencing
kernel through application of Ay, is given by

k
TApyen («T; g) o—e (%Zl + § + %Z> (1—-2)e—o *F {

8

D=
[SCR ]

%}*{1—1}



from which, for example, the smallest DSS first-order even-number-sized differencing

kernel (i.e. k = 1) is derived as follows

. 1 1,111, 11 -1 -1
=] o—e | = - — —z— = 0 - — — — &,
Beven \ T3 3 6° T2 2°7%° 62 2 6

2. Analogously to Agyen, the z-transform of A 44 is given by

f<x+1>;f<x—1>o_,F(z).<; L ;)

ondd (JT) =

and the DSS first-order differencing kernel through application of A 44 is given by

k 1, 2 1\/1 , 1 121 1 -1
TAodd <x7§> o—e <62 1+§+63> <§Z 1—§Z> o—O *k {656}*{507}

from which, for example, the smallest DSS first-order odd-number-sized differencing

kernel (i.e. k = 1) is derived as follows

TA, . (a:; 1) o—e <iz_2 + lz_1 — 1z — iz2> o {i 1 0 -1 _—1} .
3 12 3 3 12 123 3 12
Since the DSS kernel is odd-number-sized (i.e. 2k + 1 coeflicients), the DSS first-order
differencing kernel through application of A.,., is even-number-sized, whereas that through
application of A,4q is odd-number-sized. In Tab. 2.6, the coefficients of the DSS first-order
even- and odd-number-sized differencing kernels compared with those of the SG first-order
differencing kernel with increasing variance are given. Also, they are graphically illustrated

as k increases in Fig. 2.1.

2.2.2 Properties of the DSS Differencing Kernel

Normalization

Let us assume that i) f(z) is a scale-space kernel, ii) f(z) should be sufficiently smooth so
that n-th order derivatives can be taken, and iii) f(z) is normalized such that [ f(z) dz =
1. Additionally, f(z) is assumed to be essentially compact, meaning that it and all of

its derivatives vanish sufficiently fast when |z| goes to infinity, where “sufficiently fast”

9
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Figure 2.1: Graphical illustration of the discrete first-order differencing kernels in 1-D
(k=1,2,---10).

implies that faster than any polynomial factor could counteract (see for details [6]). Based

on these assumptions, then, f(z) simply follows by partial integration':

1:/f(x) dx:xf(x)—/xf'(a:) dx

=zxf(z) — %wzf'(x) + % /xzf"(a:) dx
—of(a) ~ 3 @) + 5 3@~ 5o 21O do
—of(@) - 3t @) 4y ga @) - 55 | 0@ - [ et () do

1The partial integral rule reads [2])

/uv' dx:uv—/u'v dz.

11



where n is the order of the derivative. According to this rule, in the case of the first-order

derivative (i.e. n = 1),

(2.3) /—xf'(x) dr =1

must hold.
Now let us examine whether the DSS first-order even- and odd-number-sized differ-
encing kernels as well as the SG first-order differencing kernel satisfy the normalization

requirement for the first-order derivative given by Eq. 2.3. In case of Tx,,., (; g),

1 11 . -1 -1
—z-T ) = —(=1)-Z40-=—-1-———92.~-—-1
Ex: z Aeven<x73> ( ) 6+ 2 2 6
2 1 7 5 5 -7 -1
P Rt I ) \ PR G ST DI LA, DU S |
zx: TS Beven <x3> (=2)- 55 - (D540 73 18 36 7 36

—x-Th a:;ﬁ = 1,
> o T (135

T
from which it is clear that normalization requirement is always fulfilled for any k. In case

of TAodd(x; g)a

1 1 1 1 1
Y e T Z) o (L) (1) m 1.2
- T Bota (3’3) (=2)- 5 - (13 3 12

2 1 1 17 _17 1 1
Y e T 2) o (L8) e (—2) s (1) 1.t 9 Ty T o
- T Bota (3’3) (=3) 5 - (=25 - (1) 72 9 % T3

k
Z — - Tp g <x; g) =1,

x

which shows normalization requirement is also satisfied for any k. In the same way, we

12



examine the normalization of the SG first-order differencing kernel such that

1
Y —z-5Ga <x; §> = 2(2-0.010277 + 1 - 0.462541) = 0.96619

T

2
» —x-SGa <x; 5) = 2(3-0.002574 4+ 2-0.072978 + 0.346199) = 0.999754

T

k
zx:—x-TAodd <:13; §> ~ 1,

where one can see that SGa(z; %

3) is not perfectly normalized to one when the variance is

small, although it converges to one as the variance increases.

Variance

The variance of f(z) given by the second central moment (assuming it exists) can be
written as the integral ([4])
Var(f(@) = [ *f(@) da,

if the mean of f(z) is zero. However, in case that f(z) is asymmetric, i.e,

/Zf(x) de =0,
[T =2 [ sae=2 [T,

the variance should be defined as
o0
(24) Var(f(e) = [ a*If(a)| da
in order to measure a dispersion of f(z) (otherwise, it always corresponds to zero). Eq. 2.4
is a more generalized definition of variance.
For the case of the (continuous) Gaussian, according to the definition of Eq. 2.4, the

variance of the Gaussian and that of the first-order derivative of the Gaussian are calculated

13



as

2 zz
e 2 dr =t,

Var(G(z: ) = /oo |Gz 1) do =

o0

dG(z;t) * © g3 2 4
— ) = (x;t)| doe =2 ——e 2t dor = —/t.
Var( I > /oo °|Gy(z; t)| do /0 . 27rte tdzr 27r\/_

The variance of (of even- and odd-number-sized) Ta(z;t) can be calculated based on the

definition of Eq. 2.4 as
Var (Ta(z;t) = Y 2 |Ta(w;t)],

where ¢ corresponds to the variance of T'(z;t) (see for the detail of calculating the variance
of the DSS kernel [11, Sec. 2]) and ¢ equals £ (k is the number of self-convolution). The
variance of the SG(x;t) is derived in the same way.

Tab. 2.7(a) gives the variance of G,(z;t) (in the left column), of SGA(z;t) (in the
middle column), and of Tx (z;¢) (in the right column), as ¢ increases. Tab. 2.7(b) illustrates
Var(G(z;t)) versus Var(G,(z;t)) (in the left) and Var(T'(z;t)) versus Var(Ta(z;t)) (in the
right). From Tab. 2.7, one can conclude several interesting points: (i) the variance of
the Gaussian is not equivalent to that of its first-order derivative, (ii) Var(Ta,,,,(z;t))
equals Var(Tx,,,(z;t)) for any ¢, (iii) the variance of SG(z;t) is not identical with that
of G,(z;t), though the former converges to the latter as ¢ increases, and (iv) the graphical
illustration of Var(7(x;t)) versus Var(Ta(x;t)) looks quite similar to that of Var(G(z;t))
versus Var(G,(z;t)).

Integration

Now, we are to consider the “integration kernel” corresponding to the DSS first-order

differencing kernels (i.e. Th,,,, and Tx_,,) derived in Section 2.2.1.

odd)
For a given z-transformed DSS kernel T'(z) (i.e. T'(2) e T'(x)), Ta(2) is derived from
multiplying T'(z) with A,, which means that T'(z) is obtained by multiplying Tx(z) with

A such that

Ta(z) AP =T(2)- A, - AT =T(2).

z

14



t =15 || Var(Go(x;t)) | Var(SGa(z;t)) | Var(Ta,,.,(#;t)) | Var(Ta,,,(2;t))
L 0.92132 1.007296 1.333333
2 1.30294 1.322564 1.611111
1 1.59577 1.604247 1.851852
4 1.84264 1.847769 2.066358
5 2.06013 2.063693 2.261317
2 2.25676 2.259416 2.441101
I 2.43758 2.439653 2.608711
s 2.60588 2.607557 2.766293
3 2.76395 2.765244 2.915439
10 2.91346 2.914640 3.057364
u 3.05567 3.056679 3.193020

3.19154 3.192422 3.323165

(a) Variance values

Var(G(x; t))

Var(Gx(x; t))

t

1 2

3

4

Var(G(z;t)) vs. Var(G,(z;t))

Table 2.7: Variance of the first-order differencing kernels

4

3

1 2

Var(T(x; t))

Var(Tx(x; t))

t

Var(T'(z;t)) vs. Var(Tha(xz;t))

(b) Graphical illustration
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Introducing a symbol A that stands for A~!, we denote A as the “discrete integration
operator”. Multiplication of A, corresponds to convolution of A in the spatial domain.
Since there exist two types of A, (i.e. Acyen,, and Apga.), there are correspondingly two
types of A, (i.e. Acyen,. and Aoga.z).

Acyen . is given by

Aeven,z = (Aeven,z)il = (1 - z)—l,

and the inverse transform? of Acyen . 1S
b

1
Aeven,zzl_z._or}{(x):{"'o 0 Oxlol 1}

Integration of the DSS kernel given in Eq. 2.1 using Acye, is given by

k k
TAeven ('IB, g) o—e T <Z, g) . Aeven,z7
where, e.g. in the case k =1,
1 1 2 1 1 1 1 6
T, S o—e [zt 42 =—|-1+-=
heven (3’3) i <6Z +3+6Z> 1— 2 6( +z+1—z>

oo — <B(@) + Ola + 1)+ Hz),

which corresponds to

z e, =3,-2|-1|0|1]23,--
{Tacren (% 3)} 0

=

ot
—_
—_

2Here we do not go into details of the inverse transform of a z-transformed function about which one
can find a nice introduction e.g. in [14, Sec. 4]. However, it is useful to remember several pairs of inverse

transform that are used often:

2™ e—o §(z — n),

e—o H(z), and

where §(z) is the impulse function and #(z) is the Heaviside function.

16



ie. Ty (z1) = {0151 ...1.

Analogously, A,qq. is given by

1
Aodd,z - (Aodd,z)i1 = (—Z_l - —Z) )

and the inverse transform of A,g4q , is

L= (1 1
oddz = 12— \1_ 1+ 2

e—oH(z) — (~1)"H(z) ={---0 00 0 2 0 2---}.

Integration of the DSS kernel using A,4q is given by

k k
Ta i <$§ g) o—eT <Z; g)  Aodd, s

where, e.g. in the case k =1,

. 1 1,21 2 _1( . 8 -1
= | o—e [ = -+ =z ==\~
Soaa: \ 13 6° T376°) 12" 3 1—2 " 1+2

1 —-1)*
o — 55(33) + H(x) — ( 3) H(z)
which corresponds to
x o2 -1]0]1]2]3,4,--
{Taua(; 3)} 0 135 {53
ie Ty, (z;3)={---0%{32} .-} The coefficients obtained from integration of the

DSS kernel with large variance can be derived in the same way.

From the derivation of 7, .., and T, ,, as explicated above, one can recognize that
the coefficients of T}, are different from those of T} ,,. In the case that differentiation
and integration are simultaneously applied to a discrete signal, the even(odd)-number-sized
differencing operator must be paired with the even(odd)-number-sized integration operator

such that
TAeuen,z (z; ) ' Aeven,z = T(Z, ) ' Aeven,z ' Aeven,z = T(Z, ) 0 T($a ) and

Tapia.(2:0) * Dodaz =T(2;) - Aodd,z * Doda. = T(2;) @0 T(x;+).

17



Otherwise, one can not expect a correct result since

TAeuen (z; ) . Aodd,z 7£ TAodd(z; ) : Aeven,z 7£ T(z; )

In other words, when one executes discrete integration and discrete differentiation at the

same time, it must be considered that A.ye, (Aogq) is necessarily paired with Acyen (Dodd)-

In Higher Dimensions

For a given higher dimensional DSS kernel T(%;-) (£ = {1, 2, -+ ,zn}) of the form in

Eq. 2.2, the differencing kernel through application of A, is derived such that
Tp,, (@) =T (w1;7) x T(x25-) % - % Ta(Ta; ) - - % T(ans ).

Applying Acyenz to Tz, y; %) results in

1 1 1
TAeven,z <x7 y, g) = TAeven <:L‘, g) * T <y, g)

-1 -1
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Tab. 2.8 gives a graphical illustration of the 2-D DSS first-order differencing kernels

5

(even-number-sized as well as odd-number-sized) of variance 3, which can be compared

with the 2-D SG first-order differencing kernels of the same variance.
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SGa, (z,4; %) SGa, (2,9 5)

Table 2.8: Graphical illustration of the 2-D discrete first-order differencing kernels
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3 Validation Criteria and Experimental Settings

We have derived an improved discrete scale-space formulation for 2-D and 3-D signals by
supplementing the work of Lindeberg [13] (see [10] and [11]). In the previous section,
the properties of the derived DSS kernel are thoroughly investigated compared with the
sampled Gaussian which is commonly used in practice for approximating the continuous
scale-space kernel.

The aim of this section is to validate the DSS kernel in comparison to the SG ker-
nel under fairly practical conditions in order to characterize its performance with respect
to smoothing and to differentiation. As important performance criteria, we consider the
accuracy of approximation, the fulfillment of the non-enhancement requirement, and the
accuracy of edge extraction. The first two criteria are related to the performance of smooth-
ing, and the last criterion is related to the performance of differentiation. The last one is

divided into two subcriteria, namely rotation invariance and steadiness from adjacency.

3.1 Accuracy of Approximation

We want to measure how accurately discrete convolution using the DSS kernel approximates
the continuous convolution. To this end, we consider a continuous constant function f(z) =
¢ (z,c € R). Theoretically, convolution of a constant function with the normalized Gaussian
kernel results in the very constant function again
(3.1) L(z;t) = f(z) x G(z;t) = c* G(z;t) = c.
This is explained by

]_ 2 w2t

\/ﬁe’z_t o—ecld(w)-e 7 =ci(w)- e T = cd(w) e—o c.

Convolution given in Eq. 3.1 is implemented practically by

C %

(3.2) Ly(z;t) = fa(z) * Ga(z;t) ={--- ¢ ¢ ¢ -} * Ga(z; 1),

where fi(z) is the constant discrete signal, G4(x;t) is the discrete scale-space kernel, and

L4(z;t) is the scale-space representation resulting from discrete convolution.
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As a simple example, by setting ¢ e.g. to 100 for f4(x) of Eq. 3.2 with the large number
of coefficients, we obtain the discrete scale-space representation of T'(z;t) and of SG(z;t)
2

e.g. with ¢ = 2

2
2
Lsa <9U; g) =

Along t, in the same way, one can obtain Ly (z;t) and Lgg(x;t).

1 2121
-100 100 100 100 100 - - - — -z =
00 100 100 100 100 }*{3692936}

- 100 100 100 100 100 ---},

- 100 100 100 100 100 ---} { 0.02433 0.23080 0.48360 0.23080 0.02433 }

e e T e T

- 99.8854 99.8854 99.8854 99.8854 99.8854 - - - }.

The approximation error of discrete convolution is calculated by measuring the distance

between L;(z;t) and L(x;t) at x = x
(3:3) &(t) = [La(wi; t) — L(zi; 1)),

where Lg(z;;t) is from Eq. 3.2 and L(z;;t) is from Eq. 3.1. We consider here two indices,
i.e. £ and &,, which correspond to the mean and the standard deviation of £(t) defined in

Eq. 3.3 respectively, given by

l:nl

- 1
£(t) = G+ 1) zz:n, &i(t),

(3.4)

I=ny

£,(t) = @n—lﬂ) S (&) — €02,

I=—ny
where 2n; 4+ 1 corresponds to the number of the coefficients of L4(z; ).

The result of the approximation accuracy given by < &(t),&,(t) > is determined such
that the smaller for a given ¢t and the more consistent along ¢ the approximation error is,

the more accurate the approximation is.

3.2 Fulfillment of the Non-Enhancement Requirement

According to the prerequisites for the discrete scale-space formulation proposed by Linde-

berg [13], a higher dimensional discrete scale-space kernel must obey the non-enhancement
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requirement: If for some scale level ¢y a point xy has a local maximum (minimum) in the
scale-space representation at that level (regarded as a function of the space coordinates
only), then its value must not increase (decrease) when the scale parameter increases.
For a given synthetic (noiseless as well as weakly and strongly noisy®) image which
has two local maxima and two local minima e.g. given by Fig. 3.1, we generate its scale-
space representation resulting from convolving it with each discrete scale-space kernel (i.e.
the DSS kernel and the SG kernel). Then, we observe if the intensity value of the local
maxima (minima) of each scale-space representation does not increase (decrease) as the

scale parameter gradually increases.

3.3 Accuracy of Edge Extraction

We intend to use the derived higher dimensional DSS first-order differencing kernels (i.e.

Th.,., and Tp_,,) described in Section 2.2 for higher dimensional edge extraction. For this,
we examine the accuracy of the DSS differencing kernels compared with the SG differencing
kernel for edge extraction.

For evaluating the result of edge extraction, we use a synthetic image in order to
identify its edge image (we call it the edge atlas). The accuracy of Th,,.., Ta,,,, and SGa
for edge extraction is then assessed by measuring the error of extracted edges based on
the edge atlas. Fig. 3.2 shows a synopsis of the procedure for evaluating the result of edge
extraction. Given a synthetic image (its edge positions are known), on one hand, one can
identify its edge atlas, from which the corresponding edge distance map that reflects the
Euclidean distance from each edge position to any other pixel position of the edge atlas can
be calculated. On the other hand, for the given synthetic image, one can vary the degree
of edge width through Gaussian blurring and superposition of e.g. additive Gaussian noise

in order to model a realistic blurred (i.e. sigmoid) edge with and without noise. Then

the edge extractors using Ta

even )

Th, .. and SG are applied to the blurred noisy image,

which result in the extracted edge image. Note that we assume to know a priori the optimal

3Using additive Gaussian noise, we control the level of noise for a given synthetic image.
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(e) (f)

Figure 3.1: A synthetic image having two local maxima and two local minima; the one
local maximum (minimum) has a high intensity value, whereas the other has a low intensity
value. Noiseless image ((a)) and noisy images with the additive Gaussian noise (o = 5.0
for (b) and o = 10.0 for (c)) are shown in the left column, and the corresponding intensity

profiles are given in the right column.
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A synthetic image

N

Edge atlas Blurred noisy image
Edge distance map Extracted edge image

| |
'

Error of extracted edgeq

(a) Measuring error of extracted edges (b) An example with a synthetic image
Figure 3.2: Synopsis of evaluating the result of edge extraction

scale value of the edge extractor since the edge width (i.e. the optimal scale of edge) is
controlled in our experiment. This assumption is important since one can only expect a
correct result of edge extraction by applying the optimal scale value to edge extraction.
The accuracy of each discrete differencing kernel for edge extraction is then determined by
the residual difference in global terms through masking the extracted edge image with the
edge distance map.

In concrete terms, we denote P edge-atias a0d P extracted-edge (! = 1, , 1) as the edge
positions of the edge atlas and those of the extracted edge image, respectively, where n;

corresponds to the total number of edge positions. We consider three indices for measuring
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the error of edge extraction in global terms given by

_ 1
1/):_ 1/)7

ny

(3.5) Yo = | =S W— ), and

n
b=t

= ImaX
wmax 1<1<n; d)l;

where wl — ||13l,edge—atlas — ]Dl,extracted—edge“-
For the purpose of assessing the accuracy of each discrete differencing kernel used for
edge extraction, we evaluate the result of edge extraction both qualitatively and quantita-

tively:

e From the viewpoint of a qualitative evaluation, we consider rotation invariance and

steadiness from adjacency of each discrete differencing kernel for edge extraction.

e For a quantitative comparison of the accuracy result, we carry out the experiment
with three different degrees of edge width (tg=3, 7, and 13) and with three differ-
ent levels of noise (ng: noiseless, ns: additive Gaussian noise of ¢ = 5.0, and nyy:
additive Gaussian noise of o = 10.0). As a consequence, the accuracy result of the
form < 1), 1y, Ymax > for each discrete differencing kernel is compared under different

degrees of edge width and different levels of noise.

Rotation Invariance

We have theoretically proven in [10] [11] that the derived 2-D and 3-D DSS kernels are
rotationally least asymmetric. Now, we are interested in the matter whether Tr_, . and
Th,,, as well as SG A used for edge extraction are rotationally invariant.

We examine how consistent the edge extraction result of each discrete differencing kernel
is under gradual rotation of an edge line. For this, we provide a series of ten synthetic

images shown in Fig. 3.3 in which a straight edge line gradually rotates.
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Figure 3.3: A series of ten synthetic images: A straight edge line gradually rotates.

For the given ten synthetic images in Fig. 3.3, a medium degree of edge width (tg = 7)
is given and three levels of noise (ng, ns, and nyg) are superimposed on each image. Then,
we follow the procedure for evaluation of the edge extraction result described in Fig. 3.2,
from which we obtain the error measurement of edge extraction (i.e. < ¥, %y, ¥max >)
of each discrete differencing kernel. Consequently, the error measurement of each discrete
differencing kernel is compared from I; to I1q with respect to rotation invariance; the more
consistent the results of the error measurement from I; to I;y are, the better the result

with respect to rotational invariance is.

Steadiness from Adjacency

Though linear smoothing using a rotationally symmetric scale-space kernel greatly reduces
the effect of random noise, it can also smooth across edges, which may cause an inaccurate
result of edge extraction. In case of isolated edge structures, this problem can be coped
with using optimal scale selection based on linear multiscale analysis (see for the details

[12, Sec. 5]). However, when we intend to extract edges based on the linear scale-space
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(a) SE1 (b) SE4 (c) CE1 (d) CE4
Figure 3.4: Four synthetic images having closely adjacent edge structures

approach (even using optimal scale selection) from a higher dimensional image (n > 2) that
contains closely adjacent highly curved edge structures, we can hardly expect an accurate
result of edge extraction. A typical example of such edge structure is a corner. For a given
corner, smoothing its curve may result in a displacement or a disappearance of prominent
structures after smoothing, since adjacent edges are blended with one another through
smoothing (see e.g. for the problem of corners [16]). This is one of the intrinsic problems
of higher dimensional edge extraction.

We do not attempt here to solve this general problem, but we are to examine the
steadiness of each discrete differencing kernel for edge extraction applied to an image that
contains closely adjacent edge structures. For that, as shown in Fig. 3.4, we provide
four synthetic images. In Fig. 3.4, SE1 and SE4 contain two intersecting straight edge
lines forming two L-corners (where one has high contrast and the other low contrast in
intensity) such as to place their apexes at each other. The between-angle of L-corners
in SE1 is wide, whereas that of L-corners in SE4 is narrow. CEl and CE4 contain two
intersecting circular edge contours, where the radius in CE1 is larger than that in CE4.
Except for the edge type, CE1l and CE4 are analogous to SE1 and SEA4.

For the four synthetic images given in Fig. 3.4, three different degrees of edge width
(tg = 3,7, and 13) are given (see Fig 3.5), on which three levels of noise (ng, ns, and nyg)
are superimposed. Then, similarly to the experiment for rotation invariance, we follow the

procedure for evaluation of the edge extraction result described in Fig. 3.2, from which we
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obtain the error measurement of edge extraction (i.e. < 1, %y, ¥max >) of each discrete
differencing kernel.

As a consequence, with respect to steadiness from adjacency, the results of edge ex-
traction by each discrete differencing kernel are compared under different degrees of edge
width and different levels of noise. The obtained results are compared not only for each

image but also among four different image types.
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(a) SE1l;p—3 (b) SE4t,—3 (c) CElip—s (d) CE4;5—s3
(e) SEltp—7 (f) SE4;,—7 (8) CElip—r (h) CE4;,—
(i) SEltp=13 () SE4¢tz=13 (k) CEliz=13 (1) CE4;;—13

Figure 3.5: Blurring of four synthetic images in Fig. 3.4 in three levels: In the first, the
middle, and the last row, the images are blurred for a small (tg = 3), a middle (tg = 7),

and a large (tp = 13) edge width, respectively.
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4 Result of the Validation and Assessment

In this section, we present the results of our validation study from the previous section. A

brief summary is given at the last subsection.

4.1 Accuracy of Approximation

The result of approximation accuracy is given both for the DSS kernel and for the SG kernel
in Tab. 4.1, where the values of < £(t),&,(t) > are derived from the equations defined in
Eq. 3.4.

From Tab. 4.1, one can see that £;(t) gives zero consistently as ¢ gradually increases,
which implies that discrete convolution with T'(z;t) accurately approximates continuous
convolution for any t. However, ¢ (t) inconsistently varies with ¢, even attains a maximum
at a small ¢. This shows that SG(z;t) is not superior to T'(z;t) with respect to the
approximation of discrete convolution when ¢ gets smaller. The undesirable result of the
SG kernel is connected with the analysis result of the SG kernel in [9, Sec.4], where it was
shown that the SG kernel is not normalized to one and that this fact gets worse as the

scale parameter decreases (note that the derived DSS kernel is normalized to one at any

t).

4.2 Fulfillment of the Non-Enhancement Requirement

Tab. 4.2 and Tab. 4.3 show the intensity values of the two local maxima and two local
minima of the scale-space representation (by T'(z,y;t) and SG(z,y;t), respectively) of
Fig. 3.1(a), as t gradually increases. Tab. 4.4 and Tab. 4.5 present those of Fig. 3.1(c), and
Tab. 4.6 and Tab. 4.7 give those of Fig. 3.1(e). Furthermore, Fig. 4.1 and Fig. 4.2 depict
the development of two local maxima, while Fig. 4.3 and Fig. 4.4 illustrate the development
of two local minima, where each row differs in the level of noise and each column differs in
the applied discrete scale-space kernel.

From the values obtained in Tab. 4.2 - Tab. 4.5 as well as in Fig. 4.1 - Fig. 4.4, one
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T (z;t) SG(x;1)
t £(t) £5(t) £(t) &(t)
L 0.0 0.0 0.0651041 0.0
2 0.0 0.0 0.114635 0.0
3 0.0 0.0 0.0270641 0.0
4 0.0 0.0 0.0059563 0.0
5 0.0 0.0 0.00128657 0.0
§ 0.0 0.0 0.000276412 0.0
I 0.0 0.0 0.0000593371 0.0
8 0.0 0.0 0.0000127495 0.0
2 0.0 0.0 2.74371 x 1076 0.0
10 0.0 0.0 5.91491 x 107 0.0
u 0.0 0.0 1.2774 x 1077 0.0
L 0.0 0.0 2.76339 x 1078 0.0

(a') < Z(t)vfo(t) >7 vs. < Z(t)aga(t) >sa

0.08 0.08

0.06 0.06

1 2 3 4 1 2 3 4

&r(t) €sa(t)

(b) Graphical illustration of £(t) along ¢

Table 4.1: The accuracy of approximation of the DSS kernel compared with the SG kernel.
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can see clearly that the intensity values of the local maxima (minima) in the scale-space
representation generated by both T'(z,y;t) and SG(z,y;t) do not increase (decrease) as
the scale parameter increases. The level of noise and the intensity contrast can influence
the shape of covergency of local extrema, however, they do not affect the principal non-
enhancement behavior of the local extrema.

Based on this result, as a consequence, it can be said that the DSS kernel as well as

the SG kernel fulfill the non-enhancement requirement.

4.3 Accuracy of Edge Extraction

For higher dimensional edge extraction, we employ the non-maximum suppression method
([3]), in which a maximum of the gradient magnitude in the gradient direction is defined
as an edge point. It is noticeable that the local maxima approach using the gradient
operator (e.g. the non-maximum suppression) has advantages compared with the zero-
crossing approach based on the second-order derivative (e.g. the Laplacian operator) in
several respects (see for details [12, Sec. 4.1]). The accuracy of edge extraction is given by

the form defined in Eq. 3.5.

Rotation Invariance

With respect to rotation invariance of the discrete first-order differencing kernel for edge
extraction, the results of edge extraction using Ta,,.,., Ta,,,, and SG A are given in Tab. 4.8
- Tab. 4.10, where each table differs in the level of noise added to the images of Fig. 3.3.
Rotation invariance of each discrete first-order differencing kernel is determined by com-
parison of the accuracy result of edge extraction from I; to Iy,.

In Tab. 4.8 - Tab. 4.10, one can notice a few interesting aspects. First, the error of edge

extraction using T, is higher than that using 7'»_,, and SG A for a given image. Second,

even

the edge extraction error using T .. is almost identical with that using SGA. Moreover,

odd
the accuracy result of edge extraction using T'a,,., from I; to Iy is rather inconsistent

compared with that using T, and SGa, which definitely appears in the case of the
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t Local Maxima Local Minima

0 | fno(37,37) =250 | f,,,(62,62) =190 || fn,(62,37) =10 | f,,(37,62) =70
% 244.444443 187.222214 15.555555 72.777786
% 241.419739 185.709869 18.580248 74.290123
% 239.212967 184.606476 20.787035 75.393509
% 237.393402 183.696716 22.606596 76.303291
% 235.807480 182.903763 24.192522 77.096260
g 234.382553 182.191284 25.617418 77.808708
% 233.077576 181.538773 26.922403 78.461197
% 231.866501 180.933228 28.133535 79.066757
% 230.731400 180.365707 29.268585 79.634300
13—0 229.659683 179.829834 30.340332 80.170158
13—1 228.641693 179.320831 31.358320 80.679146
13—2 227.670044 178.835022 32.329922 81.164948
13—3 226.739044 178.369476 33.260941 81.630486
% 225.843872 177.921951 34.156101 82.078033
13—5 224.980774 177.490417 35.019234 82.509628
13—6 224.146393 177.073242 35.853554 82.926773
1?7 223.338226 176.669159 36.661774 83.330887
13—8 222.553802 176.276871 37.446201 83.723106
13—9 221.791183 175.895615 38.208820 84.104424
23—0 221.048660 175.524353 38.951336 84.475677

Table 4.2: Lz, (2,y;t) = fu,(2,y) * T(z,y;t); fno(x,y) corresponds to the noiseless image
given in Fig. 3.1(a).
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t Local Maxima Local Minima,

0 | f(37,37) =250 | f(62,62) =190 || f(62,37) =10 | f(37,62) =70
% 244.462250 187.146515 15.199319 72.515053
% 240.889160 185.295624 18.515106 74.108620
% 239.085480 184.507538 20.773817 75.351730
% 237.361969 183.673248 22.607061 76.295784
% 235.797638 182.897171 24.195652 77.096146
g 234.378067 182.188660 25.620512 77.809875
% 233.074707 181.537277 26.924995 78.462410
% 231.864288 180.932144 28.135654 79.067810
% 230.729645 180.364838 29.270342 79.635162
% 229.658188 179.829071 30.341805 80.170883
% 228.640411 179.320236 31.359581 80.679787
% 227.668945 178.834503 32.331009 81.165512
% 226.738113 178.368988 33.261909 81.630943
% 225.843063 177.921555 34.156948 82.078484
% 224.980026 177.490005 35.020000 82.509979
% 224.145782 177.072861 35.854252 82.927116
1?7 223.337601 176.668762 36.662399 83.331207
% 222.553223 176.276627 37.446774 83.723351
% 221.790619 175.895309 38.209339 84.104660
? 221.048218 175.524109 38.951813 84.475899

Table 4.3: Lgg,,(z,y;t) = fno(x,y) x SG(2,y;t); fn,(z,y) corresponds to the noiseless

image given in Fig. 3.1(a).
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t Local Maxima Local Minima

0 | fn,(37,37) = 254.16 | f,,(61,62) = 191.18 || f,,.(62,37) = 7.99 | f,,(37,62) = 73.90
L 245.086807 186.923248 13.758581 75.197769
2 240.912704 184.650742 17.198782 76.427933
3 238.333588 183.183289 19.738026 77.411713
1 236.421066 182.108902 21.803780 78.219063
5 234.845352 181.252411 23.569942 78.905586
§ 233.468185 180.528839 25.127234 79.507935
I 232.223480 179.893219 26.530285 80.050873
8 231.075562 179.319794 27.814705 80.551163
2 230.002945 178.792755 29.004961 81.020157
L 228.991409 178.301773 30.118534 81.465508
i 228.030807 177.839722 31.168339 81.892456
L 227.113525 177.401459 32.164173 82.304420
L 226.233658 176.983078 33.113667 82.703873
u 225.386597 176.581635 34.022861 83.092453
L 224.568481 176.194824 34.896633 83.471420
15 223.776154 175.820831 35.738983 83.841576
o 223.007141 175.458237 36.553204 84.203613
15 222.259155 175.105774 37.342091 84.558060
L 221.530411 174.762482 38.107986 84.905312
2 220.819275 174.427505 38.852882 85.245743

Table 4.4: Lr, (z,y;t) = fo,(z,y)*T(z,y;t); fas(z,y) corresponds to the image with weak

noise given in Fig. 3.1(c).
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t Local Maxima Local Minima

0 | fn,(37,37) = 254.16 | f,,(61,62) = 191.18 || f,,.(62,37) = 7.99 | f,,(37,62) = 73.90
L 245.317810 186.957428 13.357513 74.995941
2 240.305496 184.193634 17.176044 76.232742
3 238.160995 183.044586 19.758074 77.364235
4 236.370392 182.053009 21.820951 78.209236
5 234.828018 181.223816 23.581570 78.905151
§ 233.460892 180.512177 25.135174 79.509666
I 232.219650 179.882889 26.536026 80.052704
8 231.073151 179.313034 27.819101 80.552612
2 230.001175 178.788177 29.008478 81.021172
L 228.989990 178.298538 30.121424 81.466179
i 228.029526 177.837341 31.170757 81.892822
L 227.112473 177.399658 32.166225 82.304596
L 226.232742 176.981659 33.115417 82.703926
u 225.385742 176.580490 34.024372 83.092422
L 224.567749 176.193954 34.897949 83.471329
15 223.775497 175.820114 35.740128 83.841454
o 223.006500 175.457626 36.554214 84.203499
15 222.258636 175.105286 37.342968 84.557938
L 221.529922 174.762039 38.108761 84.905205
2 220.818878 174.427185 38.853569 85.245651

Table 4.5: Lsg, (z,y;t) = fos(z,y) * SG(2,y;t); fas(z,y) corresponds to the image with

weak noise given in Fig. 3.1(c).

36



t Local Maxima Local Minima

0 | fo(37,37) = 258.32 | fn1o(58,62) = 197.66 || fn,,(63,37) = 0.89 | fn,,(33,63) = 54.60
L 245.729187 179.939392 13.026099 72.709305
2 240.405655 173.912262 17.899435 79.438072
3 237.454224 171.601822 20.822224 82.753471
1 235.448776 170.598709 23.035704 84.721535
5 233.883240 170.096176 24.886374 86.030258
§ 232.553787 169.797501 26.498781 86.970711
I 231.369339 169.584061 27.934372 87.688972
8 230.284653 169.405304 29.232155 88.266327
2 229.274490 169.238571 30.420275 88.750999
L 228.323166 169.073761 31.519979 89.172691
i 227.419891 168.906601 32.547585 89.550400
L 226.556946 168.735428 33.515682 89.896446
L 225.728271 168.559921 34.434052 90.219147
u 224.929291 168.380371 35.310349 90.524117
L 224.156174 168.197311 36.150562 90.815308
15 223.405899 168.011307 36.959476 91.095497
o 222.676025 167.822922 37.740940 91.366638
15 221.964493 167.632782 38.498055 91.630196
L 221.269608 167.441177 39.233372 91.887260
2 220.589905 167.248611 39.949017 92.138618

Table 4.6: Ly, (z,y;t) = fno(2,y) * T(2,9;t); fayo(x,y) corresponds to the image with

strong noise given in Fig. 3.1(e).
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t Local Maxima Local Minima

0 | fo(37,37) = 258.32 | fn1o(58,62) = 197.66 || fn,,(63,37) = 0.89 | fn,,(33,63) = 54.60
L 246.173416 180.804596 12.266218 71.532051
2 239.721863 173.093338 18.041285 79.535530
3 237.236496 171.243027 20.928852 82.894577
1 235.378784 170.442688 23.086308 84.811775
5 233.858337 170.022888 24.912437 86.085533
§ 232.543732 169.759705 26.515219 87.005806
I 231.364609 169.562973 27.946579 87.712143
8 230.281998 169.392670 29.241974 88.282166
2 229.272705 169.230576 30.428352 88.762093
L 228.321762 169.068512 31.526642 89.180618
i 227.418686 168.903000 32.553051 89.556145
L 226.555908 168.732880 33.520149 89.900673
L 225.727356 168.558090 34.437698 90.222275
u 224.928467 168.378998 35.313320 90.526489
L 224.155472 168.196259 36.152985 90.817108
15 223.405273 168.010529 36.961468 91.096848
o 222.675461 167.822327 37.742565 91.367683
15 221.964066 167.632263 38.499393 91.631020
L 221.269196 167.440781 39.234497 91.887909
2 220.589630 167.248352 39.949944 92.139160

Table 4.7: Lsg, (%, y;t) = fnyo (%, y) * SG (2, y;t); fnyo(w,y) corresponds to the image with

strong noise given in Fig. 3.1(e).
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Figure 4.1: Development of the local maxima with a high intensity contrast along .
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Figure 4.2: Development of the local maximum with a low intensity contrast along ¢.
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Figure 4.3: Development of the local minimum with a high intensity contrast along ¢.
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noiseless images in Tab. 4.8. This shows that Tx,,,, is inferior to both T _,, and SGa
with respect to rotation invariance for edge extraction. However, as seen in Tab. 4.10, in
the case of a strongly noisy image, one can hardly find a remarkable difference of the edge

extraction results using Ta,,.., Ta,,, and SGa.

odd”’
Steadiness from Adjacency

Regarding steadiness from adjacency of the discrete first-order differencing kernel for

edge extraction, the results of edge extraction using T Tp,,;, and SGa are given

in Tab. 4.11 - Tab. 4.14, where each table differs in the type of the applied images (i.e.
Tab. 4.11 is for Fig. 3.4(a), Tab. 4.12 for Fig. 3.4(b), Tab. 4.13 for Fig. 3.4(c), and Tab. 4.14
for Fig. 3.4(d)). Complementarity, Fig 4.5 presents the graphical illustrations of the edge
extraction result based on the classification of i by three different types of the discrete
first-order differencing kernel and by three levels of noise. Fig 4.5 gives a nice graphical
comparison of the results from four different image types for a given discrete first-order
differencing kernel under certain level of noise.

One can find three conspicuous common aspects in Tab. 4.11 - Tab. 4.14. First, for a
given image, ETAEM is much larger than ETAM and ESGA. Second, in the case of the small

edge width under strong noise, T'x ., obviously performs better than SG .. Besides it, the

odd
values of ¥, n, A€ similar to those of g, on the whole. The third, except for the case of
strong noise (i.e. nyg in our experiment), the result of edge extraction is hardly influenced
by the degree of edge width. On the other hand, one can observe several considerable
phenomena from Fig. 4.5. First, regardless of the level of noise, of the edge width, and of
the used discrete differencing kernel, SE1 is the steadiest image type of the adjacent edge
structure in edge extraction (i.e. tgp, is the smallest) and CE4 is the second steadiest
one. Moreover, the between-gap of the edge extraction errors derived from four different

image types using T'a is much wider than that using v, N and gg .- In particular,

even

the edge extraction results using Ta,,., applied to SE4 and to CE1 are relatively poor (see
Fig. 4.5[(a), (d), (g)))-
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TAeven TAodd SGA

V| Yo | Ymax | ¥ | Yo | Vmax | ¥ | Yo | Ymax
I, | 1.00 | 0.00 | 1.00 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00

I,,, 1 1.00 | 0.00 | 1.00 | 0.51 | 0.50 | 1.00 | 0.51 | 0.50 | 1.00

I5,, 1 1.00 | 0.00 | 1.00 | 0.51 | 0.50 | 1.00 | 0.51 | 0.50 | 1.00

I,, 1 1.00 | 0.00 | 1.00 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00

I, 10.90 | 0.30 | 1.00 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00
Ig,, ] 0.94 | 0.33 | 1.41 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00
I7, 1075|043 | 1.00 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00
Iy, 1091|042 1.41 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00
Iy, ] 0.95|0.34 | 2.00 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00
I, | 1.00 | 0.00 | 1.00 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00

(a) Errors of extracted edges.

1 ’—'—'—‘\/\///’
0.75

0.5 a— & -8 . g g B 2 82— 20

(b) Graphical illustration of ¢ from hL,, to lLo,,.
(A Tk B sg)

Table 4.8: The rotation invariance of the discrete first-order differencing kernels for edge

extraction. ng denotes that the images are noiseless.
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Thcven T SGa
V| Yo | Vmaz | ¥ | Yo |Vmaa | ¥ | Yo | Vmae
L, | 100 0.00 | 1.00 | 0.55 | 0.50 | 1.00 | 0.55 | 0.50 | 1.00
I, | 1.00 | 0.00 | 1.00 | 0.49 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00
I, 1099014 | 1.41 | 0.53 | 0.50 | 1.00 | 0.53 | 0.50 | 1.00
Iy, 1097017 | 1.00 | 0.50 | 0.50 | 1.00 | 0.51 | 0.50 | 1.00

Is, 1094028 2.00 | 051050 1.00 | 0.51 | 0.50 | 1.00

odd

s, 10.90 | 0.34 | 1.41 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00

Ir, 1081|045 | 1.41 | 0.49 | 0.50 | 1.00 | 0.49 | 0.50 | 1.00

Iy, 1087|044 | 1.41 | 0.49 | 0.50 | 1.00 | 0.49 | 0.50 | 1.00

Iy, 10.93 037 | 2.00 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00

I, | 0.99 | 0.09 | 1.00 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00

(a) Errors of extracted edge.

1 W

" ,
0.5 L R Ll SRR S |

(b) Graphical illustration of 1% from L, to Io,,.
(A Tk gy W Fsg)

Table 4.9: The rotation invariance of the discrete first-order differencing kernels for edge
extraction. ns denotes that the images are weakly noisy (with the additive Gaussian noise

of 0 =5.0)
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Thcven T SGa
V| Yo | Ymac | ¥ | Yo | Ymae | ¥ | Yo | Yimae
L, | 100 0.00 | 1.00 | 0.53 | 0.50 | 1.00 | 0.52 | 0.50 | 1.00
0.99 | 0.18 | 2.00 | 0.47 | 0.50 | 1.00 | 0.48 | 0.50 | 1.00

0.99 | 0.26 | 2.00 | 0.55 | 0.50 | 1.00 | 0.56 | 0.50 | 1.00

odd

2nlO

3nlO

Iy, 1093030 2.00 | 0.51 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00

0.95|0.30| 2.00 | 0.54 | 0.50 | 1.00 | 0.55 | 0.50 | 1.00

Sn1g

6.,, | 0-86 | 0.40 | 1.41 1 0.51 | 0.50 | 1.00 | 0.51 | 0.50 | 1.00
Tuy | 0-820.45 | 1.41 | 0.46 | 0.50 | 1.00 | 0.46 | 0.50 | 1.00
8., | 0-86 | 0.45 | 1.41 1 0.48 1 0.50 | 1.00 | 0.48 | 0.50 | 1.00
9., | 0931039 2.00 | 0.50|0.50 | 1.00 | 0.50 | 0.50 | 1.00

h,,, | 0.94 | 0.35| 1.41 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00

(a) Errors of extracted edge.

(b) Graphical illustration of 1 from L, to Io,,.
(A Tk g W Tg)

Table 4.10: The rotation invariance of the discrete first-order differencing kernels for edge
extraction. njo denotes that the images are strongly noisy (with the additive Gaussian

noise of o = 10.0)
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Thcven N SGa

V| Vo | Vmar | ¥ | Yo |VYmae | ¥ | Yo | Pmae

tp = % 0.34 {048 | 1.41 | 0.25| 0.43 | 1.00 | 0.25 | 0.43 | 1.00

ny || tg = % 0351049 | 141 | 0.26 | 0.44 | 1.41 | 0.25|0.44 | 1.41
tp = % 0.37 1051 | 2.24 | 0.26 | 0.45 | 2.24 | 0.26 | 0.45 | 2.24

tp = % 0.37 1050 | 1.41 | 0.25| 0.43 | 1.00 | 0.25 | 0.43 | 1.00

ns || tg = % 0371051 | 1.41 | 0.25|0.44 | 1.41 | 0.26 | 0.44 | 1.41
tp = % 0.37 1051 | 2.24 | 0.26 | 0.45 | 2.24 | 0.26 | 0.45 | 2.24

tp = % 054 | 1.82 | 2759 ] 0.25 | 043 | 1.00 | 0.28 | 0.58 | 7.81

ny | tg = % 041 (053 | 1.41 | 0.26 | 044 | 1.41 | 0.26 | 0.44 | 1.41
tp = % 042 | 055 | 224 | 0.26 | 044 | 1.41 | 0.26 | 0.44 | 1.41

(a) Errors of extracted edge from SE1.

0.35 // 0.35 0.35
0.3 0.3 0.3
" — — —_
0.25] oottt &= 0.25] m— - o T R " 0.25}  *- ST R e
e € o C o, te,, t gEtE e € t
wnO d)ns wnlo
(b) Graphical illustration of 1) (—4#— : Pr, -k bry o=~ W= gg,)

Table 4.11: Steadiness from adjacency of the discrete first-order differencing kernels for
edge extraction in case of SE1 given in Fig 3.4(a). tg presents the blurred edge width, and
ng, 15, and nqp denote that the three levels of noise added to SE1, (i.e. ng : noiseless, ns :

the additive Gaussian noise of o = 5.0, and nyo : the additive Gaussian noise of ¢ = 10.0).
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Th,,.n TA, . SGa

V| Yo | Ymae | ¥ | Yo | Yma | ¥ | Yo | Ve

g = % 0.86 | 0.38 | 2.00 1 0.38 | 0.49 | 2.00 | 0.38 | 0.49 | 1.00

nyg || tg = % 0.86 | 0.40 | 2.00 1 0.39 | 0.49 | 1.00 | 0.38 | 0.49 | 1.00
tg = % 0.86 | 0.40 | 2.00 | 0.40 | 049 | 1.41 J 0.40 | 0.49 | 1.41

tg = % 0.84 {041 | 2.00 | 0.37 | 0.49 | 2.00 | 0.37 | 0.49 | 2.00

ns || tg = % 0.82]0.43 | 2.00 1 0.38|0.49 | 1.00 | 0.37 | 0.48 | 1.00
tp = % 0.82 1044 | 2.00 | 0.40 | 049 | 1.41 1 0.41 | 0.49 | 1.41

g = % 0.94 | 1.87 | 30.00 | 0.36 | 0.49 | 2.00 | 0.47 | 1.86 | 30.00

Ny || tg = % 0.80 { 0.45 | 2.00 | 0.38 | 0.48 | 1.00 ] 0.36 | 0.48 | 1.00
g = % 0.80 | 0.47 | 2.00 | 0.40 | 0.50 | 2.00 § 0.39 | 0.50 | 2.00

(a) Errors of extracted edge from SE4.

R G 0.4 e g * 0.4 Tl SRR
t t o © t Eeiun t getz t t -
¢n0 ¢n5 ¢n10
(b) Graphical illustration of ¢ (—4— : ETAMM’ D SRR ETAMM’ = — = — ESGA).

Table 4.12: Steadiness from adjacency of the discrete first-order differencing kernels for
edge extraction in case of SE4 given in Fig 3.4(b). tg presents the blurred edge width, and
ng, ns, and nyg denote that the three levels of noise added to SE4, (i.e. ng : noiseless, ns :

the additive Gaussian noise of o = 5.0, and nyg : the additive Gaussian noise of o = 10.0).

48



Th,,.n TA, . SGa

V| Yo | Ymae | ¥ | Yo | Yma | ¥ | Yo | Ve

tp = % 0.78 1042 | 1.41 | 0.37 | 0.48 | 1.00 | 0.37 | 0.48 | 1.00

nyg || tg = % 0.79 1047 | 2.00 | 0.45 | 0.50 | 1.00 | 0.43 | 0.49 | 1.00
tg = % 0.84 | 0.50 | 2.00 | 0.50 | 0.50 | 1.41 } 0.50 | 0.50 | 1.41

tp = % 0.76 | 0.43 | 1.41 | 0.40 | 0.49 | 1.00 ] 0.40 | 0.49 | 1.00

ns || tg = % 0.79 1047 | 2.00 | 0.43 049 | 1.00 | 0.44 | 0.50 | 1.00
tp = % 0.84 1 049 | 2.00 | 0.50 | 0.51 | 1.41 J 0.49 | 0.50 | 1.41

tp = % 0.95 | 2.21 | 30.00 | 0.40 | 0.49 | 1.41 | 0.53 | 1.96 | 30.00

Ny || tg = % 0.78 1 0.48 | 2.00 | 0.43 | 0.50 | 1.00 | 0.44 | 0.50 | 1.00
g = % 0.86 | 0.47 | 2.00 | 0.50 | 0.51 | 1.41 | 0.50 | 0.51 | 1.41

(a) Errors of extracted edge from CEl.

0.5 - —a 0.5 . & 0.5 — - .
T e T
0.4 = 0.4 L e ) 0.4
.
. t t ® t. te,, t € t t
¢n0 ¢n5 ¢n10
(b) Graphical illustration of ¢ (—4#— : ¥y, k- P, e Psan)-

Table 4.13: Steadiness from adjacency of the discrete first-order differencing kernels for
edge extraction in case of CE1 given in Fig 3.4(c). tg presents the blurred edge width, and
ng, ns, and nig denote that the three levels of noise added to CE1, (i.e. ng : noiseless, ns :

the additive Gaussian noise of o = 5.0, and nyg : the additive Gaussian noise of o = 10.0).
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Th,,.n TA, . SGa

V| Yo | Ymae | ¥ | Yo | Yma | ¥ | Yo | Ve

tp = % 0.60 [ 0.51 | 1.41 | 0.30 | 0.46 | 1.00 ] 0.30 | 0.46 | 1.00

nyg || tg = % 0.60 | 0.53 | 2.00  0.34 | 0.47 | 1.00 | 0.34 | 0.47 | 1.00
tg = % 0.63 | 0.56 | 2.00 | 0.36 | 0.48 | 1.41 ] 0.36 | 0.48 | 1.41

g = % 0.59 | 0.52 | 2.00 J0.33 |0.47 | 1.00 | 0.34 | 0.47 | 1.00

ns || tg = % 0.59 1053 | 2.00 J0.34|0.47 | 1.00 | 0.34 | 0.47 | 1.00
g = % 0.62 | 0.54 | 2.00 | 0.37 048 | 1.41 1 0.37 | 0.48 | 1.41

g = % 0.76 | 1.99 | 30.00 | 0.34 | 0.47 | 1.00 ] 0.38 | 0.81 | 12.08

Ny || tg = % 0.59 1053 | 2.00 | 0.35 048 | 1.00 J 0.37 | 0.48 | 1.00
g = % 0.61|0.54 | 2.00 { 0.380.49 | 1.41 | 0.37| 0.48 | 1.00

(a) Errors of extracted edge from CE4.

e L B = = — R T ke
0.3t m— 0.3 0.3
¢n0 ¢n5 ¢n10
(b) Graphical illustration of ¢ (—4— : ¢y, , -+ Fk -+ 1 P, IEEEE EXE Psc,)-

Table 4.14: Steadiness from adjacency of the discrete first-order differencing kernels for
edge extraction in case of CE4 given in Fig 3.4(d). ¢ presents the blurred edge width, and
ng, ns, and nig denote that the three levels of noise added to CE4, (i.e. ng : noiseless, ns :

the additive Gaussian noise of o = 5.0, and nyg : the additive Gaussian noise of o = 10.0).
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Figure 4.5: Error of edge extraction applied to the images in Fig 3.5. Each row differs
in the level of noise and each column differs in the type of the used discrete first-order
differencing kernel (—4— : SE1, ---%--- : SE4, - — - —B—-—.: CEl, ———A———:
CE4).
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4.4 Summary

We give here a brief summary of the main results of the validation study as follows:
e Accuracy of approximation : T'(z;t) is superior to SG(z;t).

e Fulfillment of the non-enhancement requirement : T'(z;t) and SG(z;t) both fulfill

the non-enhancement requirement.
e Accuracy of edge extraction

— Rotation invariance : Th,,,, is inferior to Tx_,, and to SGa.
— Steadiness from adjacency :

* Th,,.,is generally inferior to TA_,, and to SG .

* In the case of tg with nig, Ta ., is obviously superior to SGA.

small odd

x SE1 (CEA4) is the steadiest (the second steadiest) image type.

As a consequence, our derived DSS kernel does not only match the performance of the
commonly used SG kernel but also clearly exhibits superior performance with respect to

smoothing and differentiation.
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5 Conclusion

In this report, we closely investigated the properties of the derived DSS kernel compared
with the SG kernel, and presented the results of a validation study in which the performance
of the DSS kernel compared with that of the SG kernel is characterized with respect to
accuracy of approximation, to fulfillment of the non-enhancement requirement, and to
accuracy of edge extraction divided into two subcriteria, namely rotation invariance and
steadiness from adjacency.

With regard to the sampled Gaussian kernel, several problems have been observed.
First, it was shown in [13] that a sampled Gaussian can lead to undesirable effects. More-
over, one can see from the mathematical derivation in [10, Sec. 4] that a sampled Gaussian
of a small scale is not appropriate for approximating the continuous Gaussian. Further-
more, according to our investigation in Section 2, the sampled Gaussian is not always
normalized both for smoothing and for differentiation, whereas the DSS kernel is always
normalized for any scale.

The result of our validation study proves that i) SG(z;t) is not superior to T'(x;¢) with
respect to approximation for discrete convolution when ¢ gets smaller, ii) the DSS kernel as
well as the SG kernel fulfills the non-enhancement requirement, and iii) regarding accuracy
of edge extraction, T,,,, is generally inferior to T'»_,, and to SG o with respect to rotation
invariance as well as to steadiness from adjacency.

Consequently, we conclude that our derived DSS kernel does not only match the per-
formance of the commonly used SG kernel but also clearly exhibits superior performance

with respect to smoothing and differentiation.
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