
Fachbereich Informatik der Universität Hamburg

Vogt-Kölln-Str. 30 ♦ D-22527 Hamburg / Germany

University of Hamburg - Computer Science Department

Mitteilung Nr. 276 • Memo No. 276

A Concept Language with Role-Forming
Predicate Restrictions

Carsten Lutz, Volker Haarslev, Ralf Möller

Arbeitsbereich KOGS

FBI-HH-M-276/97

Dezember 1997

A Concept Language with Role-Forming

Predicate Restrictions

Carsten Lutz, Volker Haarslev, Ralf Möller
University of Hamburg, Computer Science Department,

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
http://kogs-www.informatik.uni-hamburg.de/~<name>/

Abstract

The development of language constructs for defining concept and role
terms is an important goal of research on description logic formalisms.
However, most decidable descriptions logics only support the defini-
tion of roles with very limited properties. For more complex roles, e.g.
roles needed to represent Allen’s temporal relations, a higher expres-
sivity is required. This paper formally introduces a new description
logic formalism called ALCRP(D). It is a descendant of ALC(D)
and thus allows one to represent abstract and concrete information.
Furthermore, it contains a new operator for defining roles based on
predicates over (concrete) properties of objects. In previous work by
the authors, reasoning in ALCRP(D) was proven to be undecidable
in general. In this report we show that reasoning in ALCRP(D) is
decidable if certain restrictions are posed on the structure of termi-
nologies. In fact, the free combinability of some operators has to be
restricted. The representational expressiveness of so-called “restricted
terminologies” obtained in this way is of course lower than the expres-
siveness of unrestricted ones. Nevertheless, the resulting formalism is
still a powerful and usable tool for conceptual reasoning that supports
the definition of roles with very complex properties.

1 Introduction

Description logics (DLs) which are also known as terminological logics or
KL-ONE-like systems are a family of formalisms commonly used for the rep-
resentation of and reasoning about structured knowledge.1 In comparison
to other formalisms, a DL is based on a formal semantics, i.e. the reasoning
services to be provided by an inference engine can be specified without refer-
ence to a specific implementation. An important goal behind description logic
research is to design formalisms in which reasoning is decidable. Many re-
sults from description logic theory concerning decidability, expressiveness and
computational complexity of inference algorithms are available. Description

1For an introduction see e.g. Woods and Schmolze (1992).

1

logics follow a dichotomic paradigm for knowledge representation: General
conceptual knowledge about a domain is represented separately from specific,
assertional knowledge about a certain world. The first type of knowledge is
located in the TBox, which contains a taxonomy of concepts that is called
the terminology. The second kind of knowledge is represented in the so-called
ABox. In the TBox, definitions are checked for consistency and concepts are
hierarchically organized with respect to “specificity” (see below for a formal
definition). Concepts can be thought of as unary predicates in first order
logic. They can be defined using roles, which are interpreted as relations or
binary predicates of first order logic. For example, universal and existential
quantification over roles can be used for concept definitions. In the ABox,
concept membership can be asserted for individual domain objects.

In order to demonstrate modeling with description logics, we briefly dis-
cuss some examples. Let male be a concept. Then the concept male u
∃offspring.human has exactly the extension2 of all males which are related
to at least one human via the offspring role (existential quantification). Thus,
the concept term given above could have been named father .

It can be seen as a limitation that standard description logics can only
handle abstract knowledge. Imagine that we want to represent the ages of
humans as natural numbers. This cannot be done in most description logics.
There are, however, some DL formalisms which overcome this limitation and
are able to additionally represent knowledge about so-called concrete objects
such as numbers and polygons. One important formalism of this type is
the language ALC(D) defined by Baader and Hanschke (1991a). With this
language, one could define an old person as human u >60 (age). Here, age is
a single-valued role (those roles are called features). The feature age attaches
concrete objects that represent natural numbers to abstract objects (in this
case of type human). The extension of the above-mentioned concept term is
“All humans who are older than 60 years.” The example demonstrates that
defining concept terms based on predicates over concrete objects (e.g. “>60”)
is a valuable tool for knowledge representation.

The languageALCRP(D) defined in [Lutz and Möller 1997] goes one step
further. It also allows one to define roles based on predicates over concrete
objects. Like in the ALC(D) example above, these predicates over concrete
objects that are attached to abstract objects via features can be seen as
properties of these abstract objects. Take again humans and their ages as an
example. The age is a property of each object which is of type human (it is
a concrete object attached via the age feature). Assume that we would like

2The notion of an “extension” is used here in the sense of semiotics.

2

to define the concept oldest-person.3 In ALCRP(D), one could use the term
human u ¬∃older .human, where older is a defined role whose extension is
the set of those pairs of objects (a, b) such that the natural number attached
to object b via the feature age is greater then the natural number attached
to object a via the same feature. Thus, only those objects of type human
are inside the extension of the concept for which no other object exists that
is older and also of type human. An equivalent formalization that takes all
domain objects into account cannot be expressed using ALC(D).
ALCRP(D) is a very powerful language for reasoning about abstract and

concrete knowledge. Like ALC(D) it can be parameterized with a concrete
domain, which is a set of concrete objects plus a set of predicates over these
concrete objects. Unfortunately, reasoning in ALCRP(D) is undecidable in
general as proven in [Lutz and Möller 1997]. In this paper we propose syn-
tactic restrictions to be posed on ALCRP(D)-terminologies. We show that
w.r.t. these so-called restricted terminologies sound and complete algorithms
for deciding the common reasoning problems exist. Decidability is achieved
by restricting the free combinability of operators in restricted terminologies.
Some combinations of value and exists restrictions are not allowed if they
quantify over defined roles. Furthermore, the use of the concept forming
predicate operator known from ALC(D) has to be restricted, too. These
restrictions are solely motivated by decidability issues. From the knowledge
engineer’s point of view they are relatively strong constraints on the possible
structure of concept terms. Another approach for defining a decidable ver-
sion of ALCRP(D) would have been to pose limitations on the allowed set of
predicates that can be used with concept- and role-forming operators. But
this seems to be less promising because the intended areas of application,
representing time and space, already require fairly complex predicates which
presumably cause undecidability of the resulting language.

In [Möller, Haarslev, and Lutz 1997] it is shown that restricted terminolo-
gies are still a powerful tool for knowledge representation. Apart from toy
domains such as the one discussed above, ALCRP(D) with restricted termi-
nologies can (with an appropriate parameterization) immediately be used to
represent temporal as well as spatial (topological) relations (see [Allen 1983]
and [Egenhofer 1991; Randell, Cui, and Cohn 1992], respectively). Through-
out this paper, we will use examples from the domain of temporal reasoning.

The rest of this paper is organized as follows. In Section 2 and 3 the lan-
guage ALCRP(D) is formally introduced and the notion of a restricted ter-
minology is defined. Then, in Section 4 the reasoning services forALCRP(D)

3The extension of this concept does not have a cardinality greater than one unless there
are some people which have the same age.

3

are introduced. By representing Allen’s relations we demonstrate the expres-
siveness of restricted terminologies in Section 5. Afterwards, in Section 6 an
algorithm for deciding subsumption is proposed which is proven to be sound
and complete in Section 7.

2 Terminologies

In this section, the language for defining concepts inALCRP(D) is presented.
ALCRP(D) is a descendant of ALC(D). A formal definition of ALC(D) can
be found in [Baader and Hanschke 1991a]. The syntax and semantics defined
there have been used as a starting-point for the definition of ALCRP(D).
ALCRP(D) can be parameterized with a concrete domain which consists

of a set of concrete objects and a set of predicates.

Definition 1. [Baader and Hanschke 1991a] A concrete domain D is a pair
(∆D,ΦD), where ∆D is a set called the domain, and ΦD is a set of predicate
names. Each predicate name P from ΦD is associated with an arity n, and
an n-ary predicate PD ⊆ ∆n

D.
A concrete domain D is called admissible iff

1. the set of its predicate names is closed under negation and contains a
name for ∆D.

2. the satisfiability problem for finite conjunctions of predicates is decid-
able.

The fact thatALCRP(D) can be parameterized by only one concrete domain
is not a limitation because in [Baader and Hanschke 1991b] it is shown that
the union of two admissible concrete domains again yields an admissible
concrete domain. We are now ready to define role terms in ALCRP(D).

Definition 2. Let R and F be disjoint sets of role and feature names, respec-
tively. Any element of R and any element of F is a role term (atomic role
term). The elements of F are also called features. A composition of features
(written f 1f 2 · · ·) is called a feature chain. A feature chain of length one is
also a feature chain. If P ∈ ΦD is a predicate name with arity n+m and u1,
. . . ,un as well as v1, . . . ,vm are n + m feature chains, then the expression
∃(u1, . . . , un)(v1, . . . , vm).P (role-forming predicate restriction) is a role term
as well (complex role term).4 Let S be a role name and let T be a role term.
Then S

.
= T is a terminological axiom.

4Note that there have to be at least one u and one v .

4

The next definition introduces concept terms of ALCRP(D). As we will see
later, if decidable reasoning algorithms are needed for a certain terminology,
not all of the given operators can be freely combined.

Definition 3. Let C be a set of concept names which is disjoint from R and
F. Any element of C is a concept term (atomic concept term). If C and
D are concept terms, R is an arbitrary role term or a feature, P ∈ ΦD is
a predicate name with arity n, and u1, . . . ,un are feature chains, then the
following expressions are also concept terms:

1. C u D (conjunction),

2. C t D (disjunction),

3. ¬C (negation),

4. ∃R.C (concept exists restriction),

5. ∀R.C (concept value restriction), and

6. ∃u1, . . . , un.P (predicate exists restriction).

For all kinds of exists and value restrictions, the role term or list of feature
chains may be written in parentheses. Let A be a concept name and let D be
a concept term. Then A

.
= D is a terminological axiom as well. A finite set

of terminological axioms T is called a terminology or TBox if no concept or
role name in T appears more than once on the left-hand side of a definition
and, furthermore, if no cyclic definitions are present.

The syntax we use for the concept-forming predicate restriction operator
is taken from [Hanschke 1996]. Please note that an all-quantified concept-
forming predicate operator ∀f 1, . . . , f m.P can be expressed as ∃f 1, . . . , f m.P t
∀f 1.⊥ t . . . t ∀f m.⊥, where ⊥I = ∅.5

We do not allow cyclic concept definitions. Please refer to [Nebel 1991]
for an investigation of terminological cycles. In the following, we will intro-
duce a special form of terminology called restricted terminology. It will be
shown later that reasoning with respect to this special kind of terminology
is decidable.

A terminology T is said to be in unfolded form iff none of the concept
and role names used on the right sides of the terminological axioms in T
occurs also on the left side of any terminological axiom in T . Any termi-
nology can be transformed into an unfolded form by iteratively replacing

5⊥ can be expressed as A u ¬A.

5

concept and role names by their defining terms. This algorithm terminates
since the terminology is required to be acyclic. It is deterministic since every
concept name is allowed only once on the left-hand side of a terminological
axiom. Any unfolded terminology can then be transformed to negation nor-
mal form (NNF). An unfolded terminology is said to be in NNF iff negation
is only applied to atomic concept terms. As we will see in Section 4, the
two transformations of unfolding and conversion to NNF are also needed as
preprocessing steps for terminological reasoning. The next lemma gives an
algorithm for converting an arbitrary concept term to an equivalent one that
is in NNF. We omit the proof of correctness which is trivial.

Lemma 4. Let D be an admissible concrete domain. Let the name for ∆D
in ΦD be >D. Let C and D be concept terms, R̂ be a role term which is
not a feature, f (possibly with index) be a feature name, P be a predicate
name with arity n from ΦD, P be the negation of P in ΦD and u1, . . . ,un
be feature chains. Then, if the following transformation rules are applied to
the concept terms of an unfolded TBox T as often as possible, the resulting
TBox T ′ is equivalent to T and in negation normal form (NNF).

1. ¬(C uD) =⇒ (¬C t ¬D), ¬(C tD) =⇒ (¬C u ¬D), ¬¬C =⇒ C

2. ¬(∃R̂.C) =⇒ ∀R̂.¬C , ¬(∀R̂.C) =⇒ ∃R̂.¬C ,
¬(∃f .C) =⇒ ∀f .¬C t ∃f .>D, ¬(∀f .C) =⇒ ∃f .¬C t ∃f .>D

3. ¬(∃u1, . . . , un.P) =⇒ ∃u1, . . . , un.P t ∀u1.> t . . . t ∀un.>

The term ∀u.C with a feature chain u is an abbreviation for ∀f 1. · · · ∀f n.C
if u = f 1 · · · f n.

Based on the definition of an unfolded terminology we now define the notion
of a restricted terminology.

Definition 5. A terminology T is called restricted iff its equivalent in un-
folded NNF fulfills the following conditions:

1. For any (sub)concept term C in T that is of the form ∀R1.D where
R1 is a complex role term, D does not contain any terms of the form
∃R2.D where R2 is also a complex role term.

2. For any (sub)concept term C in T that is of the form ∃R1.D where
R1 is a complex role term, D does not contain any terms of the form
∀R2.D where R2 is also a complex role term.

6

3. For any (sub)concept term C in T that is of the form ∀R.D or ∃R.D
where R is a complex role term, D contains only predicate exists restric-
tions that quantify over attribute chains of length of 1 and furthermore
do not occur inside any value and exists restrictions that are also con-
tained in D .

A grammar in EBNF notation that formalizes these conditions is given in
Appendix A. Using this grammar, an alternate definition of restrictedness
can be given as follows: A terminology T is restricted iff the unfolded NNF
equivalents of the right-hand sides of all axioms in T are words of the lan-
guage defined by this grammar.

Due to the nature of the restrictions, it may not be obvious for a knowl-
edge engineer to determine whether a new terminological axiom can safely
be added to a restricted terminology without losing the restrictedness prop-
erty. This is the case because the unfolded NNF of the concept term has
to be considered w.r.t. the whole terminology. We illustrate the result-
ing modeling constraints by considering three very simple terminologies.
The terminologies are not restricted because they all violate one of the
conditions given in Definition 5. Let C and D be concept names, Ra be
an atomic role term, Rc be a complex role term, P be a predicate name,
f be a feature, and u be a feature chain with a length greater than 1.

T 1 : {C .
= ∀Rc.∃Rc.D}

T 2 : {C .
= ∃Rc.∃u .P}

T 3 : {C .
= ∀Rc.∀Ra.∃f .P}

The next definition gives a set-theoretic semantics for the language just in-
troduced.

Definition 6. An interpretation I = (∆I , ·I) consists of a set ∆I (the ab-
stract domain) and an interpretation function ·I . The sets ∆D (see Defin-
ition 1) and ∆I must be disjoint. The interpretation function maps each
concept name C to a subset C I of ∆I , each role name R to a subset RI

of ∆I × ∆I , and each feature name f to a partial function f I from ∆I to
∆D ∪ ∆I , where f I(a) = x will be written as (a, x) ∈ f I . If u = f 1 · · · f n
is a feature chain, then uI denotes the composition f I1 ◦ · · · ◦ f In of the par-
tial functions f I1 , . . . , f

I
n. Let the symbols C , D , R, P , u1, . . . ,um, and v 1,

. . . ,vm be defined as in Definition 2 and 3, respectively. Then the interpreta-
tion function can be extended to arbitrary concept and role terms as follows:

7

(C u D)I := C I ∩ DI

(C t D)I := C I ∪ DI

(¬C)I := ∆I \ C I

(∃R.C)I := {a ∈ ∆I | ∃b ∈ ∆I : (a , b) ∈ RI , b ∈ C I}
(∀R.C)I := {a ∈ ∆I | ∀b ∈ ∆I : (a , b) ∈ RI → b ∈ C I}

(∃u1, . . . , un.P)I := {a ∈ ∆I | ∃x 1, . . . , xn ∈ ∆D :

(a, x 1) ∈ uI1 , . . . , (a, xn) ∈ uIn, (x 1, . . . , xn) ∈ PD}
(∃(u1, . . . , un)(v 1, . . . , vm).P)I :=

{(a, b) ∈ ∆I ×∆I | ∃x 1, . . . , xn, y1, . . . , ym ∈ ∆D :

(a, x 1) ∈ uI1 , . . . , (a, xn) ∈ uIn,

(b, y1) ∈ vI1 , . . . , (b, ym) ∈ vIm,

(x 1, . . . , xn, y1, . . . , ym) ∈ PD}
An interpretation I is a model of a TBox T iff it satisfies AI = DI for all
terminological axioms A

.
= D in T .

3 The Assertional Language

In this section, the language for representing knowledge about individual
worlds is introduced. An ABox is a finite set of assertional axioms which are
defined as follows:

Definition 7. Let OD and OA be two disjoint sets of object names. If A is
a concept name, R an atomic or complex role term, f a feature name, P a
predicate name with arity n, a and b are elements of OA and x , x 1, . . . ,xn
are elements of OD, then the following expressions are assertional axioms.

a : A, (a, b) : R, (a, x) : f , (x 1, . . . , xn) : P

In axioms of the form a : A, usually concept terms instead of concept names
are allowed. However, the more restricted form used here is not a limitation
because any concept term that would otherwise be used directly in the ABox
can first be defined as a concept in the TBox. Then, in the ABox, it can
simply be referred to by the associated name. If we supported concept terms
in the ABox we would have to ensure that the concept terms used there do not
violate the restrictedness criterion w.r.t. the TBox. For the sake of brevity
this is not discussed in this paper. In order to deal with ABox assertions, we
now extend the interpretation function.

8

Definition 8. An interpretation for the assertional language is an interpre-
tation for the concept language which additionally maps every object name
from OA to a single element of ∆I and every object name from OD to a single
element from ∆D. We assume that the unique name assumption does not
hold, that is aI = bI may hold even if a 6= b. An interpretation satisfies an as-
sertional axiom

a : C iff aI ∈ C I , (a, b) : R iff (aI , bI) ∈ RI , (a, x) : f iff f I(aI) = xI ,

(x 1, . . . , xn) : P iff (x I1 , . . . , x
I
n) ∈ PD

An interpretation is a model of an ABox A w.r.t. a TBox T , iff it is a
model of T and furthermore satisfies all assertional axioms in A. An ABox
is consistent w.r.t. a TBox T iff it has a model.

4 Reasoning

In this section the standard inference problems on TBoxes and ABoxes are
formally defined. We will introduce all reasoning problems with reference to
a certain TBox. This is necessary because the reasoning problems are known
to be decidable only if the TBox is restricted (see Section 7).

Equivalence Two concept terms C and D are equivalent w.r.t. a TBox T ,
iff DI = C I for all models I of T .

Subsumption A concept term C subsumes a concept term D w.r.t. a TBox
T (written D �T C), iff DI ⊆ C I for all models I of T .

Satisfiability A concept term C is satisfiable w.r.t. a TBox T iff there exists
a model I of T such that C I 6= ∅.

ABox consistency An ABoxA is consistent w.r.t. a TBox T iff there exists
a model I of A w.r.t. T .

Equivalence is the problem of deciding if two different concept descriptions
in a TBox denote the same concept. Using subsumption one can determine
whether, in a given TBox, a concept is a subconcept of another concept. This
inference is needed to compute the taxonomy in the TBox. Satisfiability
is needed to detect concepts in a TBox that cannot have any instances.
And last, ABox consistency can be used to decide if a given world contains
contradictions w.r.t. a certain TBox.

All reasoning problems introduced here are often defined without refer-
ence to a TBox. As Baader and Hanschke (1991b) note, reasoning w.r.t. a

9

TBox can be reduced to reasoning without reference to a TBox by unfolding
the TBox and then operating directly on the concept terms. But, as has been
mentioned before, in the special case of ALCRP(D), reasoning is only known
to be decidable w.r.t. restricted TBoxes. Unfolding a restricted TBox yields
a restricted form of concept terms. The restricted form is formally defined
by the grammar given in Appendix A. Reasoning w.r.t. restricted TBoxes is
a more specific problem than reasoning without reference to a TBox.

There are intimate relationships between the inferences defined above.
In the following, we will give only those reductions that are needed in this
paper. In fact, equivalence, subsumption and satisfiability form a set of
mutually reducible inferences. ABox consistency is a more difficult problem.

• Equivalence can be reduced to subsumption since a concept C is equiv-
alent to a concept D w.r.t. a TBox T iff C �T D and D �T C .

• Subsumption can be reduced to satisfiability since C �T D iff C u ¬D
is not satisfiable w.r.t. T .

• Satisfiability can be reduced to ABox consistency since a concept C is
satisfiable w.r.t. a TBox T iff the ABox {a : C} is consistent w.r.t. T .

Hence an algorithm for deciding ABox consistency can be used to decide all of
the above reasoning problems. Such an algorithm is developed in Section 6.

The next section shows an application of ALCRP(D) using only re-
stricted terminologies. Some examples for the reasoning problems introduced
above are also given.

5 An Example Application

In [Baader and Hanschke 1991b], the expressiveness of ALC(D) is demon-
strated using the predicate exists concept operator in order to formally rep-
resent the thirteen mutually disjoint relations that may hold between two
time intervals as concepts. For instance, these concepts are used to prove the
exhaustiveness of the relations (see [Allen 1983]). We will show how Allen’s
relations can be represented as roles using ALCRP(D)’s role-forming predi-
cate exists restrictions. In ALCRP(D)-terminologies, concepts for temporal
domain objects can be defined by quantifying over these roles. This cannot
be done in ALC(D). In particular, unlike any other language we know of,
ALCRP(D) supports universal quantification (value restrictions) over roles
with very complex properties.

In order to represent temporal relations, we need an appropriate concrete
domain. As the domain ∆D we choose the set of real numbers and as the

10

Patch-WheelDamaged-Wheel Working-WheelRemove-Wheel Attach-Wheel

Repair-Wheel

Figure 1: Visualization of the Repair-Wheel concept.

set of predicates we use the set of first order formulae (using junctors and
quantifiers) over equalities and inequalities between linear integer polynomi-
als. This concrete domain is discussed as an example for admissible concrete
domains in [Baader and Hanschke 1991b]. More details on the decidability
of this kind of formulae can be found in [Tarski 1951].

We can define an interval as interval
.
= ∃start , end . ≤. Allen’s relations

can then easily be defined:

equal-p(a, b, c, d) : a− c = 0 ∧ b− d = 0

before-p(a, b) : b− a > 0

meets-p(a, b) : a− b = 0

equal
.
= ∃(start,end)(start,end).equal-p

before
.
= ∃(end)(start).before-p

meets
.
= ∃(end)(start).meets-p

. . .

The definition of all thirteen roles is given in Appendix B. Defined roles
can be used in concept definitions. Let us consider a repair action of a car
wheel. The action Repair-Wheel is composed of several subactions which are
temporally related to one another. Figure 1 shows a visualization of the tem-
poral structure induced by the concept Repair-Wheel . Let remove, patch and
attach be features.

Car-Repair
.
= ∃met-by .Not-Working u ∃meets.Working

Repair-Wheel
.
= ∃met-by .Damaged-Wheel u ∃meets.Working-Wheel u
∃remove.Remove-Wheel u ∃patch.Patch-Wheel u
∃attach .Attach-Wheel u
∃(start , end , remove ◦ start , remove ◦ end).started-by-p u
∃(start , end , patch ◦ start , patch ◦ end).contains-p u
∃(start , end , attach ◦ start , attach ◦ end).finished-by-p u
∃(remove ◦ end , patch ◦ start).meets-p u
∃(patch ◦ end , attach ◦ start).meets-p

11

meets

i1: Impossible-Repair-Wheel

i3:Remove-Destroy-Wheel

started-by

i2: Working

after

i2:Working-Wheel

Figure 2: Unsatisfiability of the Impossible-Repair-Wheel concept.

In order to improve readability, attribute chains are written as f 1 ◦ f 2 ◦ · · ·
instead of f 1f 2· · · in this example. The two axioms form a restricted termi-
nology since predicate exists restrictions are not used inside any quantifiers
over complex roles and, furthermore, there are exists restrictions over com-
plex roles but no value restrictions at all.

If we assume that Damaged-Wheel is subsumed by Not-Working and
Working-Wheel is subsumed by Working , then the concept Car-Repair sub-
sumes Repair-Wheel . The features remove, patch, and attach used in the
definition of the concept Repair-Wheel are needed to “label” temporally re-
lated entities uniquely. It is possible to employ the predicate exists restriction
operator to state temporal relations between entities labeled in this way. This
modeling technique is required to specify the order of deattachment, patching
and assembly of the wheel. Now let us consider the following concept defi-
nitions (the restrictedness criterion is fulfilled in the resulting terminology).

Remove-Destroy-Part
.
= Remove-Part u
∀meets.¬Working u ∀after .¬Working

Impossible-Repair-Wheel
.
= Repair-Wheel u
∀remove.Remove-Destroy-Part

Remove-Destroy-Part describes the action of ultimately destroying the wheel
during removal. Impossible-Repair-Wheel is an inconsistent concept. This
can be seen as follows (see Figure 2). For any interval i1 of type Repair-
Wheel there has to be an interval i2 that is met by i1. Furthermore, i2 has
to be of type Working-Wheel and hence also of type Working . There also has
to exist an interval i3 of type Remove-Wheel that starts i1. If i1 is specialized
to Impossible-Repair-Wheel , then i3 has to be of type Remove-Destroy-Part .

12

Then the reasoner has to infer that i2 is located temporally after i3 and thus
by definition of Remove-Destroy-Part i2 has to be of type ¬Working . But
this is a contradiction since i2 would have to be of both types Working and
¬Working . Hence, Impossible-Repair-Wheel cannot have any instances.

In [Artale and Franconi 1997], a decidable temporal description logic is
presented which contains Allen’s relations. The logic incorporates a special
operator that allows one to define complex temporal constraints between
concepts. It does, however, not allow universal quantification over temporal
roles. A good overview over existing temporal description logics can also be
found there. Logic of time is a very lively field. Logics of all kinds (e.g.
modal logics which are closely related to description logics, see [Schild 1991])
have been developed for temporal reasoning (see e.g. [Manna and Pnueli
1992]). Since ALCRP(D) is not primarily a temporal logic, we will not
discuss related work from this field. In [Möller, Haarslev, and Lutz 1997],
the applicability of restricted ALCRP(D) terminologies for spatial reasoning
is demonstrated. In the next section we develop an algorithm for reasoning
with restricted terminologies.

6 The Calculus

In this section, an algorithm for deciding ABox consistency w.r.t. restricted
terminologies of ALCRP(D) is presented. In the next section, we prove
soundness and completeness of the algorithm.

To work with a given pair of an ABox A and a TBox T , it is necessary
to unfold all concept-terms in T . In Section 2, we have already seen that
unfolding is always possible. It has to be noted that, in general, unfolding
has exponential complexity (see [Nebel 1990]). Furthermore, it is necessary
to convert all concept terms in the unfolded TBox into their equivalent ones
in negation normal form (see Section 2 for details on the algorithm).

Let A0 be the ABox for which the consistency problem is to be decided.
Assume that all concept names in A0 have been replaced by their defining
terms in the unfolded TBox T , which was previously converted to NNF. We
use a standard tableau-based algorithm (see e.g. [Fitting 1996] and [Schmidt-
Schauss and Smolka 1991]). Algorithms of this type are often called semantic
tableaux. The algorithm works as follows. The ABox axioms are viewed as
constraints on individual objects. Starting with the initial ABox A0, the al-
gorithm iteratively applies completion rules to transform a given ABox into
one or more descendant ABoxes. The descendant ABoxes are constructed
by adding at least one additional constraint to the original ABox. The new
constraints explicitly represent knowledge which was only “contained” im-
plicitly in the ABox before the application of the rule. Sometimes there is

13

more than one possible way to extend the original ABox. In this case, more
than one descendant ABox is created by the application of a single rule. By
iteratively applying rules, the algorithm thus produces a tree of ABoxes Υ.
The applications of some rules also add new individuals to the corresponding
ABoxes. Iterative rule application can be understood as an attempt to build
a model for the initial ABox A0. The iteration continues until either an ABox
is produced that is complete, i.e. to which no more rules are applicable, or all
leaf ABoxes in the tree Υ contain a clash. In the former case, the complete
ABox defines a model for the initial ABox A0, in the latter case, no model for
A0 exists. We will formally introduce the notion of a clash below. Whether
the algorithm terminates or not obviously depends on the set of completion
rules used in the algorithm. We have to ensure that eventually one of the
two cases mentioned above will occur.

Before the completion rules can be defined, we introduce some technical
terms. Let A be an ABox, R be a role term, a and b be object names from
OA, γ be a symbol that is not element of OD, u be a feature chain f 1 . . . f k,
and let u1, . . . ,un and v 1, . . . ,vm (possibly with index) be arbitrary feature
chains. For convenience we define three functions as follows:

fillerA(a , u) :=

x where x ∈ OD such that
∃b1, . . . , bk−1 ∈ OA :

((a, b1) : f 1 ∈ A, . . . , (bk−1, x) : f k ∈ A)
γ if no such x exists.

createchainA(a , x , u) := {(a, c1) : f 1, . . . , (ck−1, x) : f k}
where c1, . . . , ck−1 ∈ OA are not used in A.

relatedA(a, b,R) :=

true if (a , b) : R ∈ A
true if R is of the form ∃(u1, . . . , un)(v 1, . . . , vm).P ,

and ∃x 1, . . . , xn, y1, . . . , ym ∈ OD such that
fillerA(a, u1) = x 1, . . . , fillerA(a, un) = xn,
fillerA(b, v1) = y1, . . . , fillerA(b, vm) = ym,
(x 1, . . . , xn, y1, . . . , ym) : P ∈ A

false otherwise

Let A be an ABox, f be a feature name, a, b, c be object names from OA,
and x , y be object names from OD. If A contains the constraints (a, b) : f
and (a , c) : f (resp. (a, x) : f and (a, y) : f) then this pair of constraints is
called a fork in A. Since f is interpreted as a partial function, b and c (resp. x
and y) have to be interpreted as the same objects. Each ABox is checked for
forks immediately after a completion rule was applied. If a fork is detected,

14

all occurrences of c in A are replaced by b (resp. y by x). Before any rule is
applied to the initial ABox A0, any forks in A0 have to be eliminated. It is
easy to prove that fork elimination preserves (in)consistency by showing that
a model I for an ABox A is also a model for an ABox A′ which is obtained
from A by fork elimination.

Definition 9. The following completion rules will replace an ABox A by an
ABox A′ or by two ABoxes A′ and A′′ (descendants of A). In the following C
and D denote concept terms, R denotes a role term, and P denotes a predi-
cate name from ΦD. Let f 1, . . . ,f n as well as g1, . . . ,gn denote feature names,
and u1, . . . ,um denote feature chains. a and b denote object names from OA.

Ru The conjunction rule.
Premise: a : C u D ∈ A, a : C 6∈ A ∨ a : D 6∈ A
Consequence: A′ = A ∪ {a : C , a : D}

Rt The disjunction rule.
Premise: a : C t D ∈ A, a : C 6∈ A ∧ a : D 6∈ A
Consequence: A′ = A ∪ {a : C}, A′′ = A ∪ {a : D}

R∃C The concept exists restriction rule.
Premise: a : ∃R.C ∈ A, ¬∃b ∈ OA : (relatedA(a, b,R) ∧ b : C ∈ A)
Consequence: A′ = A ∪ {(a, b) : R , b : C} where b ∈ OA is not used in A.
This rule may create a fork if R is a feature.

R∀C The concept value restriction rule.
Premise: a : ∀R.C ∈ A, ∃b ∈ OA : (relatedA(a, b,R), ∧ b : C 6∈ A)
Consequence: A′ = A ∪ {b : C}

R∃P The predicate restriction rule.
Premise: a : ∃u1, . . . , un.P ∈ A,¬∃x 1, . . . , xn ∈ OD :

(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a , un) = xn ∧
(x 1, . . . , xn) : P ∈ A)

Consequence: A′ = A ∪ {(x 1, . . . , xn) : P} ∪
createchainA(a , x 1, u1) ∪ . . . ∪ createchainA(a, xn, un)
where the x i ∈ OD are not used in A.

This rule may create forks.

Rr∃P The role-forming predicates restriction rule.
Premise: (a, b) : ∃(u1, . . . , un)(v1, . . . , vm).P ∈ A,

¬∃x 1, . . . , xn, y1, . . . , ym ∈ OD :
(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a , un) = xn ∧

fillerA(b, v1) = y1 ∧ . . . ∧ fillerA(b, vm) = ym ∧
(x 1, . . . , xn, y1, . . . , ym) : P ∈ A)

15

Consequence: A′ = A ∪ {(x 1, . . . , xn, y1, . . . , ym) : P} ∪
createchainA(a , x 1, u1) ∪ . . . ∪ createchainA(a, xn, un) ∪
createchainA(b, y1, v 1) ∪ . . . ∪ createchainA(b, ym, vm)
where the x i ∈ OD and y i ∈ OD are not used in A.
This rule may create forks.

RChoose The choose rule.
Premise: a : ∀(∃(u1, . . . , un)(v 1, . . . , vm).P).C ∈ A,

∃b ∈ OA, x 1, . . . , xn, y1, . . . , ym ∈ OD :
(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a , un) = xn ∧

fillerA(b, v1) = y1 ∧ . . . ∧ fillerA(b, vm) = ym ∧
(x 1, . . . , xn, y1, . . . , ym) : P 6∈ A ∧
(x 1, . . . , xn, y1, . . . , ym) : P 6∈ A)

Consequence: A′ = A ∪ {(x 1, . . . , xn, y1, . . . , ym) : P},
A′′ = A∪ {(x 1, . . . , xn, y1, . . . , ym) : P}

Termination of the tableau algorithm using this set of rules is proven in
the following section. The proof shows that after a finite number of rule
applications a tree Υ of ABoxes is obtained for which one of the following
conditions holds: (i) it contains an ABox A which is complete or (ii) all leaf
ABoxes in the tree contain a clash. In both cases no more completion rules
will be applied. In the following we will formalize the notion “to contain a
clash” and then discuss the various transformation rules.

Definition 10. Let the same naming conventions be given as in Definition 9.
Additionally, let f be a feature. An ABox A contains a clash if any of the
following clash triggers are applicable:

Primitive Clash a : C ∈ A, a : ¬C ∈ A

Feature Domain Clash (a, x) : f ∈ A, (a, b) : f ∈ A

All Domain Clash (a, x) : f ∈ A, a : ∀f .C ∈ A

Concrete Domain Clash (x
(1)
1 , . . . , x

(1)
n1) : P1 ∈ A, . . . , (x

(k)
1 , . . . , x

(k)
nk) :

Pk ∈ A and the corresponding conjunction
∧k
i=1 P i(x

(i)) is not satisfi-
able in D. This can be decided because D is required to be admissible.

Most of the rules can also be found in algorithms for related languages such as
ALC(D) and ALC (see [Baader and Hanschke 1991b] and [Schmidt-Schauss
and Smolka 1991], respectively). The new rules are Rr∃P and RChoose. The
use of the related function is also new and was necessary because the new
role-forming operator was introduced. In the following we will exemplarily

16

discuss some of the rules. We will give a detailed explanation of all novelties
compared to the completion rules needed for ALC(D). Consider the rule
R∀C. Let us assume there is an object a, for which the constraint a : ∀R.C
is in A. We further assume the constraint (a, b) : R is also in A. Then we
know by the semantics of the ∀ operator that the object b must be in the
extension of the concept C and thus we can add the constraint b : C to A.
But the rule R∀C is in fact a little more complicated since it uses the related
function. This is necessary because not all role fillers might appear explicitly
as constraints of the form (a, b) : R. If R is a complex role then b could
be an R role filler of a, although there is no constraint of the above form.
Two objects can also be related simply because a predicate holds over the
concrete fillers of feature chains starting from a and b, respectively. This can
be seen by considering the semantics of the role-defining operator. The two
possible types of role fillers (explicit and implicit) are both captured by the
related function.

The meaning of the rule Rr∃P is straightforward. If we know that two
objects are related via a complex role, we can immediately create concrete
objects as fillers of those feature chains being used in the definition of the
complex role. We then also know that the predicate used in the definition of
the role holds over the newly created concrete objects and thus can add an
appropriate constraint. This is what Rr∃P does.

The meaning of RChoose is a little less obvious. Choose rules are used
when, at a certain point of computation, each of several possibilities has to
be examined. In this sense, Rt can also be seen as a choose rule. A choose
rule is also needed when dealing with qualified number restrictions (see e.g.
[Hollunder and Baader 1991]). In our case, the choose rule can be understood
as follows. If a set of feature chains is used in the definition of a complex
role R and (loosely spoken) there are the appropriate concrete fillers for two
objects a and b for all the feature chains in this set, then b might be an R
role filler of a. But unless there is an explicit constraint which states that
the predicate P used in the definition of the role R holds (or does not hold),
we do not know if this is really the case. So if there is no such constraint we
have to try both alternatives and test whether P holds or does not hold. If
any of these two alternatives is the wrong one, we will end up with a concrete
domain clash in this branch of the ABox tree Υ. Like Rt, an application of
RChoose creates a branching in Υ.

The presence of branching rules like Rt and RChoose has been identified
as a source of complexity [Donini, Lenzerini, Nardi, and Nutt 1995]. Schmidt-
Schauss and Smolka (1991) show that the satisfiability problem for ALC is
PSPACE-hard. Hence deciding ABox consistency for restricted terminologies
of ALCRP(D) is at least PSPACE-hard because the language is a proper

17

superset of ALC and deciding ABox consistency is a more difficult problem
than deciding satisfiability. But like ALC(D), our language has at least one
additional source of complexity: The test for concrete domain clashes. This
task requires checking the satisfiability of finite conjunctions of predicates of
the concrete domain (this is why a concrete domain is required to be admis-
sible). The complexity of this test depends entirely on the concrete domain.
This shows that there exist instantiations of ALCRP(D) for which decid-
ing ABox consistency w.r.t. restricted terminologies is arbitrarily complex.
It is yet unknown how the complexity of deciding ABox consistency w.r.t.
restricted terminologies in ALCRP(D) can be derived from the complexity
of deciding satisfiability of finite conjunctions of predicates of the concrete
domain.

7 Soundness and Completeness

In this section we prove the soundness and completeness of the algorithm for
deciding ABox consistency w.r.t. restricted terminologies in ALCRP(D), as
it was defined in the previous section.

Proposition 11. The algorithm presented in Section 6 is sound and com-
plete.

First, termination has to be proven. We explain the motivation for the
definition of the restricted terminologies because the restrictions are reflected
in the termination proof.

There exist a few decidable languages that can be used to construct con-
cepts whose models are not necessarily trees (see ALCtrans [Baader 1991]
and T SL [Schild 1991]). Deciding subsumption in these languages requires
extensions to standard semantic tableaux algorithms to ensure termination.
For other logics even the finite model property does not hold. Although there
are decidable languages without finite model property (e.g. FSL with inverse
roles [Schild 1991]), for other languages (e.g. MIRTL [Buongarzoni, Meghini,
Salis, Sebastiani, and Straccia 1995]) it is unknown whether subsumption is
decidable. Proving termination of decision algorithms is extremely difficult
if the finite model property does not hold. For non-restricted TBoxes in
ALCRP(D), subsumption is known to be undecidable (see [Lutz and Möller
1997]). Depending on the concrete domain, roles can be defined in such a
way that concepts can be fulfilled only by infinite models. A tableau algo-
rithm can be found which, in principle, would be sound and complete, but
termination cannot be guaranteed due to the presence of infinite models. One
possible way to overcome this problem is to restrict the structure of TBoxes

18

such that unfolding will not produce any concepts that can be fulfilled only
by infinite models. This is exactly what is achieved by defining the notion of
a restricted terminology. The drawback of this approach is limited expressiv-
ity, i.e. modeling becomes harder if seen from the knowledge engineer’s point
of view.

A simple example for a concept only fulfilled by an infinite model in
unrestricted terminologies of ALCRP(D) is ∃before.> u ∀before.∃before.>,
where before is one of Allen’s relations as defined in Section 5. This concept
cannot be defined in restricted terminologies. Let us see how the tableau
algorithm would handle the concept above. All the new objects that are
created by the R∃C rule have concrete objects attached via the end feature
because the rule Rr∃P fires (see the definition of the before role in Section 5).
The role before is a transitive (and irreflexive) role and thus an implicit role
filler relationship is established between the original object and the newly
created object (the predicate before-p holds for the corresponding concrete
objects). This means the rule R∀C can be applied and in the following
another new object is created. Thus, an infinite chain of objects is created
and the algorithm does not terminate. The restrictions posed on restricted
terminologies are constructed in such a way that beyond a certain point
none of the new objects can have any concrete objects attached via feature
chains as it happened with the end feature above. The restrictions ensure
that any new objects being created beyond this point will not be connected
to already existing objects via an implicit role filler relationship. Thus, we
cannot run into a cycle as with the concept given above. The rules responsible
for creating abstract objects with concrete fillers being attached via feature
chains are R∃P and Rr∃P together with R∃C. Hence, it was the use of the
concept forming predicate restriction and of exists and value restrictions6

quantifying over complex roles that had to be restricted. The properties of
models of restricted terminologies will become clear when, in the following,
the termination proof is given.

Lemma 12. The tree of ABoxes Υ computed by the algorithm presented in
Section 6 has no infinite branch. Thus by König’s Lemma the algorithm
terminates in finite time.

It will be shown that there can be no infinite sequence of ABoxes A0,A1, . . .
where Ak+1 is obtained from Ak by the application of a completion rule.
Such a sequence corresponds to a branch in Υ that begins at the root of the
tree. Before we can start the proof we need some definitions.

6Value restriction has to be considered because of the presence of general negation.

19

A constraint that is already present in the initial ABox A0 is called old.
All other constraints are called new. We need some upper bounds for the
number of concept terms and other entities that can appear during the com-
putation. Let NC be the number of concept terms that are present directly
or as subterms in A0. Let NF be the number of distinct attributes and
NP (n) be twice the number of n-ary distinct predicates occurring in A0.
Twice because the negations may also be used during the computation. Let
NR be NF plus the number of distinct atomic roles occurring in A0 plus the
number of distinct role-forming operators in the initial ABox.

We define a graph GA = (VA, EA) for every ABox A as follows. For each
abstract or concrete object o in A, the graph contains a vertex ν(o). The
graph contains an edge ρ(ax) only for each new constraint ax that is of the
form (a , b) : R. Please note that edges in the graph correspond to constraints
of the above form where R may be atomic or complex. In the following we
will (not quite accurately) use the term edge to refer to a constraint of the
above form. There is a sequence of graphs GA0, GA1 , . . . corresponding to
the sequence of ABoxes A0,A1, The graph GA0 for the ABox A0 does
not contain any edges because there are no new constraints at all in this
ABox. The graph only grows if one of the rules R∃C, R∃P, or Rr∃P is
applied, since only these rules add new objects and edges. The rules R∃C,
R∃P, and Rr∃P are called generating rules. All other rules are called non-
generating. The application of any of the generating rules may create forks.
It may even be the case that only forks but no new objects (abstract or
concrete) and no new edges are created. In these cases we will, without loss
of generality, consider these rules as non-generating ones. An examination of
the generating rules reveals that the graphsGAi in the sequence have the form
of a forest (a collection of unconnected trees7): Each of the rules generates
exactly one incoming edge for each new object. None of the rules generates
any incoming edges for already existing objects. Each object in the ABox
A0 is an initial tree consisting only of a root node. Since no rule introduces
a new object without an incoming edge, the number of trees cannot grow
by the application of completion rules. Hence, since the ABox A0 has to be
finite, there is only a finite number of trees in any of the forests GAi .

Lemma 13. If the sequence of ABoxes A1,A2, . . . is infinite, then at least
one of the trees in the corresponding sequence of forests GA0

, GA1
, . . . grows

infinitely.

Proof: An application of any of the generating rules leads to the growth of
exactly one tree. Because there are only finitely many trees in the forests GAi,

7These trees should not be confused with the tree of ABoxes Υ.

20

infinitely many applications of generating rules lead to the infinite growth
of at least one of the trees. Hence, an infinite sequence of ABoxes that
corresponds to a sequence of graphs in which no tree grows infinitely can only
exist if it is possible to apply the non-generating rules an infinite number of
times without applying a generating rule. Assume that this is the case for
a given computation. Note that none of the non-generating rules generates
objects (neither abstract nor concrete). Furthermore, every rule application
adds a constraint to the ABox which was not already present. On the other
hand, only finitely many distinct constraints can be asserted for a given,
finite number of objects: For any single abstract object o, no more than
NC distinct constraints can be asserted. For each pair of abstract objects,
no more than NR distinct constraints can be asserted. For any pair of an
abstract and a concrete object, no more than NF distinct constraints can be
asserted. And last, for any n concrete objects, no more than NP (n) distinct
constraints can be asserted. This shows that there can only be finitely many
applications of non-generating rules without adding new objects. That is a
contradiction to the assumption and thus completes the proof. 2

We now show that none of the trees in the forest sequence GA0
, GA1

, . . .
can grow infinitely. From this and Lemma 13 it follows that the algorithm
terminates in finite time.

Proposition 14. In the sequence of forests GA0 , GA1, . . . , none of the trees
grows infinitely.

Proof: We show that each of the trees is finitely branching and has a finite
depth. By König’s Lemma it follows that the trees cannot grow infinitely.
In the following, we can safely ignore concrete objects since an examination
of the completion rules reveals that the nodes corresponding to these objects
cannot have any successors.

Lemma 15. There is an upper limit for the branching factor of each of the
trees in each of the graphs GAi.

Proof: We have to examine each of the generating rules and show that it can
only be applied finitely many times to a single object.

Let us first consider the R∃C rule. Let NE be the number of subterms of
the form ∃R.C (with R atomic or complex) which occur in the initial ABox
A0. For each of these terms the R∃C rule may be applied at most once to a
single object because the its premise is not fulfilled afterwards. Thus, there
can exist at most NE successors of each node generated by the R∃C rule.

The same argumentation holds for the R∃P rule. But this rule may create
more than one object per application. These objects are organized in chains

21

and only a finite number of these chains are created per rule application
because the operator only accepts a finite number of arguments. Thus, only
finitely many successors per object are generated by this rule.

Now we consider the Rr∃P rule. Let NF be the number of feature names
used in the initial ABox A0. Like R∃P (for which we could also have argued
this way), Rr∃P only creates successors that are fillers of features. However,
features may have at most one filler. If there is more than one filler, fork
elimination immediately occurs and we can consider the Rr∃P rule as non-
generating. Since the number of features is limited by NF , at most NF
successors may be created per object by applications of the Rr∃P rule.

Summing up, any node in the tree has at most NE + NF successors. 2

Lemma 16. There is an upper limit for the depth of each of the trees in
each of the graphs GAi.

Proof: We show that there exists a number n such that the rule cannot
generate any objects that correspond to nodes ν(o) with a depth greater
than n. But first, the notion of a phantom edge is introduced. We say, there
exists a phantom edge between two abstract objects in an ABox A iff there
exists a complex role R in the initial ABox A0 such that (a, b) : R is not in
A but nevertheless relatedA(a , b,R) holds (see chapter 6). In the following,
when we refer to the level of an object o, we mean the distance between the
node ν(o) and the root of the tree containing ν(o).

Let CD be the maximum nesting depth of any concept term in A0. Let
CL be the maximum length of a feature chain present inA0. In order to prove
Lemma 16, constraint propagation along the edges of the tree is examined.
First, we assume there exist no phantom edges.

Let us suppose a concept term of the form ∃R.C is propagated along the
edges of the graph. The concept triggers the R∃C rule which generates new
abstract objects. However, a concept ∃R.C cannot be propagated to a level
deeper than CD − 1 because to be propagated over an edge either the R∃C
or the R∀C rule has to be applied and hence the nesting depth is decreasing
by one for each propagation over an edge in the graph. The terms of the
above form which are propagated along the graph edges can obviously not
lead to the creation of any objects with a level greater than CD. This can
easily be shown formally using an induction proof. When the R∃C rule is
applied to a constraint of the above form on level CD − 1, it may, however,
propagate a predicate exists restriction to an object on level CD. It may
also be the case, that the incoming edge of the level CD object is a complex
one. In both cases chains of abstract objects with a level greater than CD
may be created by applying the rules R∃P and Rr∃P, respectively. But in

22

either case the maximum length of the feature chains used in the according
concept and role terms forms a limit for the maximum object level reachable
in this way. Namely, no objects will be created on any level greater than
CD + CL (on the deepest level only concrete objects can be created). This
is the maximum depth that may be reached without considering phantom
edges.

But then, a phantom edge may exist between an object o0 on level 0 and
an abstract object o1 on level CD + CL − 1 that was created as described
above. Along this edge, a concept term C may be propagated to the object
o1. Let us analyze this concept term C . Its structure has a restricted form be-
cause of the properties of restricted terminologies. The syntactic structure of
the concept term C is characterized formally by the nonterminal “EFreeCT”
of the EBNF grammar in Appendix A. It has a maximum nesting depth of
CD − 1 because it was already propagated over an edge by application of
the R∀C rule. It may only contain predicate exists restrictions that are not
contained inside any value or exists restrictions which are also subconcepts
of C . The feature chains used as arguments in these predicate exists restric-
tions have a maximum length of 1. Thus, these predicate exists restrictions
may only lead to the creation of concrete objects on level CD + CL which
may in turn lead to new incoming phantom edges for the object o1. This is
the case we are just examining. The concept C may also contain exists and
value restrictions. Hence, starting from o1, one or more chains of abstract
objects with a maximum length of CD − 1 could be created.8 But since C
has a restricted form, there are no predicate exists restrictions propagated to
levels deeper than the level of the object o1. Moreover, no exists restrictions
with complex roles occur as subconcepts in C . Hence none of the abstract
objects in the chains being created will have any concrete objects attached
via features because concrete objects are only created by the rules R∃P and
Rr∃P together with R∃C. But this means that none of the objects in these
chains can have any incoming phantom edges and thus there are no alter-
nate paths (except the one we are just considering) over which concept terms
can be propagated into the chains being created. We have just seen that by
propagating constraints over phantom edges, chains of abstract objects with
a length of at most CD− 1 may be attached to any abstract object on level
CD + CL− 1.

To summarize, the maximum depth of any tree in the graph sequence
GA0, GA1, . . . is 2 ∗ CD + CL− 2. 2

8The −1 results from the fact that the concept C has already been propagated over a
phantom edge by a value restriction.

23

Now, after termination has been proven, we can finish the proof of Propo-
sition 11. The proof idea is taken from [Baader and Hanschke 1991b]. The
purpose of our algorithm is to decide whether a given ABox A is consistent.
In order to prove soundness, we have to show that if the algorithm termi-
nates because a complete ABox was computed, then A has a model. To prove
completeness, we have to show that an ABox which contains a clash cannot
have a model. We first need to establish a theorem known as the invariance
theorem (see e.g. [Donini, Lenzerini, Nardi, and Nutt 1995]).

Theorem 17. (Invariance)

1. If an ABox A′ is obtained from an ABox A by a rule generating only
a single descendant ABox, then A has a model iff A′ has a model.

2. If two ABoxes A′ and A′′ are obtained from an ABox A by a rule which
generates two descendant ABoxes, then A has a model iff at least one
of A′ and A′′ has a model.

Proof. This lemma has to be proven for each completion rule separately.
We will only give the proof in detail for the R∃C rule. All other rules can be
treated similarly. We have to prove two directions:

(i) Assume that an ABox A′ was obtained from an ABox A by applying
the R∃C rule to an axiom a : ∃R.C . Assume furthermore that A′ is known
to have a model I. A′ differs from A only in having two additional axioms
(a , o) : R and o : C , where o is a new individual. If I is considered as an
interpretation for A, then the fourth equation in Definition 6 is satisfied for
the above axiom a : ∃R.C , although the two explicit axioms “enforcing” this
are not present. The other axioms in A are not involved. Hence, I is also a
model for A. This illustrates the view that the application of a completion
rule makes implicit knowledge explicit.

(ii) Assume that an ABox A that contains the axiom a : ∃R.C is known
to have a model I. Assume furthermore that the R∃C rule has been applied
to A yielding the ABox A′. Then A′ differs from A again in having two
additional axioms (a , o) : R and o : C , where o is a new individual. We are
done if we can show that the model I of A can be extended to also satisfy
these two axioms. That this is possible can be seen by looking at the fourth
equation in Definition 6. Since the axiom a : ∃R.C is satisfied the equation
reveals that there exists an element b of ∆I for which the following holds: If
we extend I to I ′ by setting oI := b, then the resulting interpretation I ′ is a
model for A′ because by equation four, it also satisfies the two new axioms.
2

We now prove the soundness of our tableau calculus.

24

Proposition 18. (Soundness) When the algorithm terminates because a com-
plete ABox Ac has been derived (i.e. an ABox to which no more completion
rules are applicable) then the initial ABox A0 has a model.

Proof. The complete ABox Ac is used to define an interpretation I = (∆I , ·I)
that is also a model:

1. ∆I consists of all the objects of OA which occur in Ac.

2. If C is a concept name then a ∈ C I iff a : C ∈ Ac.

3. If R is a role or feature name then (a, b) ∈ RI iff (a, b) : R ∈ Ac.

4. Because there is no concrete domain clash in Ac, there is a variable
assignment α that satisfies the conjunction of all occurring axioms
(x 1, . . . , xn) : P . So we set x I = α(x) iff x ∈ OD.

Since I is obviously an interpretation function, it can be extended to arbi-
trary concept and role terms as defined in Definition 6. We have to show
that I is also a model of the ABox Ac, i.e. that it satisfies all assertional ax-
ioms in Ac in the sense of Definition 8. It is then an immediate consequence
of Theorem 17 that I is also a model for A0. The proof can be done by
induction on the size of the axioms ax in Ac as follows:

1. Axioms ax of the form a : C , where C is an atomic concept term, or
of the form (a, b) : R, where R is an atomic role term, are satisfied by
I by definition.

2. Let ax be of the form a : ¬C (C can only be an atomic concept term),
then the axiom a : C is not in Ac since the primitive clash trigger is
not applicable. Hence, ax is satisfied by I.

3. Let ax be of the form a : C u D , then the rule Ru has been applied
and the axioms a : C and a : D are also in Ac. By induction, these
axioms are also satisfied by I and hence ax is satisfied by I.

4. Let ax be of the form a : C t D , then the rule Rt has been applied
and at least one of the axioms a : C or a : D is also in Ac and, in turn,
is by induction satisfied by I. Hence, ax is satisfied by I.

5. Let ax be of the form a : ∃R.C . Then the R∃C rule has been applied
and two axioms (a , b) : R and b : C are in Ac. Both axioms are
satisfied by induction. Thus, I satisfies ax.

25

6. Let ax be of the form a : ∃u1, . . . , un.P . Then the R∃P rule has been
applied and an axiom (x 1, . . . , xn) : P is in Ac and uIi (a) = x Ii holds
for i = 1, . . . , n. Hence by definition of α, I satisfies ax.

7. Let ax be of the form a : ∀R.C . First assume that R is an atomic or
complex role and (a, b) : R is in Ac. Then b is in OA because there
is no all domain clash in Ac. Then, for ax together with (a, b) : R
the rule R∀C has been applied. By induction, I satisfies b : C for
all these b and hence ax is satisfied. Now assume R is of the form
∃(u1, . . . , un)(v1, . . . , vm).P and (a, b) : R is not in Ac but there exist
objects x 1, . . . ,xn, y1, . . . ,ym in OD such that uIi (a) = xIi and vIj (b) =
yIj holds for i = 1, . . . , n and j = 1, . . . , m, respectively (i.e. possibly
there exists a phantom edge between a and b). Then b is in OA be-
cause there are axioms of the form (b, x) : f . Furthermore, there have
to be exactly one of the two axioms (x 1, . . . , xn, y1, . . . , ym) : P and
(x 1, . . . , xn, y1, . . . , ym) : P in Ac, since the rule RChoose is not ap-
plicable and there is no concrete domain clash in Ac. If the first of
these two axioms is in Ac, the rule R∀C has been applied. Like above,
the axiom ax is satisfied by I. In the other case the rule R∀C is not
applicable to the objects a and b.

8. Let ax be of the form (a, b) : ∃(u1, . . . , un)(v1, . . . , vm).P . Then the
rule Rr∃P has been applied, the axiom (x 1, . . . , xn) : P is in Ac and
uIi (a) = x Ii as well as vIj (b) = yIj holds for i = 1, . . . , n and j =
1, . . . , m. By definition of α I satisfies ax as well. 2

Proposition 19. (Completeness) If the algorithm does not derive a complete
ABox Ac, then every leaf ABox in Υ contains a clash (see the termination
proof). In this case, the initial ABox A0 does not have a model.

Proof. Termination was already proven. We still have to show that when
all leaves in the tree Υ contain a clash, then the initial A-Box A0 does not
have a model. There are two possible cases. First, A0 itself could contain
a clash which means that no descendant ABoxes have been computed. In
this case, a look at the definition of the clash triggers reveals that A0 cannot
have a model. In the second case, A0 does not contain a clash itself but all
the leaf ABoxes in Υ do. Like A0 in the first case, none of the leaf ABoxes
can have a model. In this case, using Theorem 17 it can easily be proven by
induction that A0 cannot have a model as well.

26

8 Conclusions

ALCRP(D) is a concept language which supports the representation of ab-
stract and concrete knowledge. It provides an operator for defining roles
based on properties of objects. This allows one to define roles with very
complex properties. ALCRP(D) was first introduced in [Lutz and Möller
1997]. It was proven that reasoning in ALCRP(D) is undecidable in the
general case. In this paper we have shown that reasoning in ALCRP(D) is
decidable if a restricted form of terminology is used.

Restricted terminologies are defined by posing constraints on the form
of concept terms being used in a TBox. The constraints restrict the com-
binability of exists and value restrictions with defined roles and the use of
the concept-forming predicate operator known from ALC(D). Although
ALCRP(D) is more powerful than ALC(D), a knowledge engineer has to
pay the price of dealing with more complex syntactic restrictions on termi-
nologies. However, even with restricted terminologies, ALCRP(D) is still a
powerful tool for representing conceptual knowledge in domains where com-
plex relationships between concepts have to be represented. As an example,
we have shown in this paper that, with the restricted formalism, Allen’s tem-
poral relations can be defined as roles which, in turn, can be used to define
concepts. In [Möller, Haarslev, and Lutz 1997] the usefulness of restricted ter-
minologies for reasoning in spatial domains is demonstrated. We expect that
additional operators such as qualified number restrictions for atomic roles
can be included without losing decidability yielding a yet more expressive
language. We do not have a formal proof for this, however. The restricted
combinability of operators can be seen from different perspectives. From the
logical point of view, the restrictions are unusually complicated and not very
elegant. The practical point of view is somewhat different. A knowledge en-
gineer who uses an actual system which implements ALCRP(D) has to fully
understand the restrictions to work efficiently. This may not be an easy task.
On the other hand, a concrete implementation of ALCRP(D) can support
a knowledge engineer in the process of defining a restricted terminology by
labeling concepts with certain attributes indicating how these concepts may
be used in new concept definitions.

With restricted terminologies ofALCRP(D), a decidable DL-formalism is
presented that is capable of representing roles based on properties of objects.
To the best of our knowledge, no other of the description logics defined until
now offers this kind of expressivity. The presented formalism is very general
since it can be parameterized with an arbitrary admissible concrete domain.
In future work, we will further examine the relationship between necessary
restrictions for terminologies and properties of concrete domain predicates
being used in a certain language instantiation.

27

A EBNF Syntax Specification

Let in the following C , D , . . . be the elements of C. Let Rp denote an atomic
role (it may also be a feature) and Rd denote a complex role. Let P denote a
predicate, f 1, . . . ,f n denote features, and u1, . . . ,un denote feature chains.

ConceptTerm ::= C | D | . . .
ConceptTerm ::= “¬” ConceptTerm
ConceptTerm ::= ConceptTerm (“ u ” | “ t ”) ConceptTerm
ConceptTerm ::= (“∃” | “∀”) Rp “.” ConceptTerm
ConceptTerm ::= “∃” Rd “.” AFreeCT
ConceptTerm ::= “∀” Rd “.” EFreeCT
ConceptTerm ::= “∃” u1 “, ” . . . “, ” un “.” P

AFreeCT ::= C | D | . . .
AFreeCT ::= “¬” EFreeCT
AFreeCT ::= AFreeCT (“ u ” | “ t ”) AFreeCT
AFreeCT ::= (“∃” | “∀”) Rp “.” AFCTBody
AFreeCT ::= “∃” Rd “.” AFCTBody
AFreeCT ::= “∃” f 1 “, ” . . . “, ” f n “.” P

EFreeCT ::= C | D | . . .
EFreeCT ::= “¬” AFreeCT
EFreeCT ::= EFreeCT (“ u ” | “ t ”) EFreeCT
EFreeCT ::= (“∃” | “∀”) Rp “.” EFCTBody
EFreeCT ::= “∀” Rd “.” EFCTBody
EFreeCT ::= “∃” f 1 “, ” . . . “, ” f n “.” P

AFCTBody ::= C | D | . . .
AFCTBody ::= “¬” EFCTBody
AFCTBody ::= AFCTBody (“ u ” | “ t ”) AFCTBody
AFCTBody ::= (“∃” | “∀”) Rp “.” AFCTBody
AFCTBody ::= “∃” Rd “.” BodyCT

EFCTBody ::= C | D | . . .
EFCTBody ::= “¬” AFCTBody
EFCTBody ::= EFCTBody (“ u ” | “ t ”) EFCTBody
EFCTBody ::= (“∃” | “∀”) Rp “.” EFCTBody
EFCTBody ::= “∀” Rd “.” BodyCT

28

B Allen’s Relations as Roles

equal-p(a, b, c, d) : a− c = 0 ∧ b− d = 0

before-p(a, b) : b− a > 0

after-p(a, b) : a− b > 0

meets-p(a, b) : a− b = 0

overlaps-p(a, b, c, d) : c− a > 0 ∧ b− c > 0 ∧ d− b > 0

overlapped-by-p(a, b, c, d) : a− c > 0 ∧ d− a > 0 ∧ b− d > 0

during-p(a, b, c, d) : a− c > 0 ∧ d− a > 0 ∧ b− c > 0 ∧ d− b > 0

contains-p(a, b, c, d) : c− a > 0 ∧ b− c > 0 ∧ d− a > 0 ∧ b− d > 0

starts-p(a, b, c, d) : c− a = 0 ∧ d− b > 0

started-by-p(a, b, c, d) : c− a = 0 ∧ b− d > 0

finishes-p(a, b, c, d) : d− b = 0 ∧ a− c > 0

finished-by-p(a, b, c, d) : d− b = 0 ∧ c− a > 0

equal
.
= ∃(start,end)(start,end).equal-p

before
.
= ∃(end)(start).before-p

after
.
= ∃(start)(end).after-p

meets
.
= ∃(end)(start).meets-p

met-by
.
= ∃(start)(end).meets-p

overlaps
.
= ∃(start , end)(start , end).overlaps-p

overlapped-by
.
= ∃(start , end)(start , end).overlapped-by-p

during
.
= ∃(start , end)(start , end).during-p

contains
.
= ∃(start , end)(start , end).contains-p

starts
.
= ∃(start , end)(start , end).starts-p

started-by
.
= ∃(start , end)(start , end).started-by-p

finishes
.
= ∃(start , end)(start , end).finishes-p

finished-by
.
= ∃(start , end)(start , end).finished-by-p

29

References

Allen, J. (1983). Maintaining knowledge about temporal intervals. Com-
munications of the ACM 26 (11), 832–843.

Artale, A. and E. Franconi (1997). A temporal description logic for rea-
soning about actions and plans. Preprint.

Baader, F. (1991, August). Augmenting concept languages by transitive
closure of roles: An alternative to terminological cycles. In Twelfth
International Conference on Artificial Intelligence, Darling Harbour,
Sydney, Australia, Aug. 24-30, 1991, pp. 446–451.

Baader, F. and P. Hanschke (1991a, August). A scheme for integrating con-
crete domains into concept languages. In Twelfth International Con-
ference on Artificial Intelligence, Darling Harbour, Sydney, Australia,
Aug. 24-30, 1991, pp. 452–457.

Baader, F. and P. Hanschke (1991b). A scheme for integrating concrete do-
mains into concept languages. Technical Report DFKI-RR-91-10, Ger-
man Center for AI (DFKI).

Buongarzoni, P., C. Meghini, R. Salis, F. Sebastiani, and U. Straccia (1995,
June). Logical and computational properties of the description logic
MIRTL. In A. Borgida et al. (Ed.), Working notes of the 1995 Inter-
national Workshop on Description Logics DL’97, Rome, Italy, June
1995, pp. 80–84.

Donini, F., M. Lenzerini, D. Nardi, and W. Nutt (1995). The complexity
of concept languages. Technical Report RR-95-07, German Center for
AI (DFKI).

Egenhofer, M. (1991, August). Reasoning about binary topological rela-
tions. In O. Günther and H.-J. Schek (Eds.), Advances in Spatial Data-
bases, Second Symposium, SSD’91, Zurich, Aug. 28-30, 1991, Volume
525 of Lecture Notes in Computer Science, pp. 143–160. Springer Ver-
lag, Berlin.

Fitting, M. (1996). First-Order Logic and Automated Theorem Proving.
Springer Verlag, Berlin.

Hanschke, P. (1996). A Declarative Integration of Terminological,
Constraint-based, Data-driven, and Goal-directed Reasoning. Sankt Au-
gustin: Infix.

Hollunder, B. and F. Baader (1991, April). Qualifying number restrictions
in concept languages. In J. Allen, R. Fikes, and E. Sandewall (Eds.),

30

Second International Conference on Principles of Knowledge Represen-
tation, Cambridge, Mass., April 22-25, 1991, pp. 335–346. A detailed
version appeared as DFKI Research Report RR-91-03, Kaiserslautern.

Lutz, C. and R. Möller (1997, September). Defined topological relations in
description logics. In M.-C. Rousset et al. (Ed.), Proceedings of the In-
ternational Workshop on Description Logics, DL’97, Sep. 27-29, 1997,
Gif sur Yvette, France, pp. 15–19. Universite Paris-Sud, Paris.

Manna, Z. and A. Pnueli (1992). The Temporal Logic of Reactive and
Concurrent Systems. Springer Verlag, Berlin.

Möller, R., V. Haarslev, and C. Lutz (1997). Spatioterminological reason-
ing based on geometric inferences: The ALCRP(D) approach. Techni-
cal Report FBI-HH-M-277/97, University of Hamburg, Computer Sci-
ence Department.

Nebel, B. (1990). Terminological reasoning is inherently intractable. Arti-
ficial Intelligence 43, 235–249.

Nebel, B. (1991). Terminological cycles: Semantics and computational
properties. In J. Sowa (Ed.), Principles of Semantic Networks: Ex-
plorations in the Representation of Knowledge, pp. 331–361. Morgan
Kaufmann Publishers, San Mateo.

Randell, D., Z. Cui, and A. Cohn (1992, October). A spatial logic based on
regions and connections. In B. Nebel, C. Rich, and W. Swartout (Eds.),
Principles of Knowledge Representation and Reasoning, Cambridge,
Mass., Oct. 25-29, 1992, pp. 165–176.

Schild, K. (1991, August). A correspondence theory for terminological log-
ics: Preliminary report. In Twelfth International Conference on Ar-
tificial Intelligence, Darling Harbour, Sydney, Australia, Aug. 24-30,
1991, pp. 466–471.

Schmidt-Schauss, M. and G. Smolka (1991). Attributive concept descrip-
tions with complements. Artificial Intelligence 48 (1), 1–26.

Tarski, A. (1951). A Decision Method for Elementary Algebra and Geom-
etry. University of California Press, Berkeley, CA.

Woods, W. and J. Schmolze (1992). The KL-ONE family. In F. Lehmann
(Ed.), Semantic Networks in Artificial Intelligence, pp. 133–177. Perg-
amon Press, Oxford.

31

