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Abstract. This article shows how the interactive segmentation tool
termed “Active Paintbrush” and a fully automatic region merging can
both be based on the theoretical framework of contraction kernels within
irregular pyramids instead of their own, specialized data structures. We
introduce “continous pyramids” in which we purposely drop the common
requirement of a fixed reduction factor between successive levels, and
we show how contraction kernels can be annotated for a fast naviga-
tion of such pyramids. Finally, we use these concepts for improving the
integration of the automatic region merging and the interactive tool.

1 Introduction

One of the most valueable and most often employed tools for image segmenta-
tion is the watershed transform, which is based on a solid theory and extracts
object contours even with low contrast. On the other hand, it is often criticized
for delivering a strong oversegmentation, which is simply a consequence of the
fact that the watershed transform has no built-in relevance filtering. Instead, it
is often used as the basis for a hierarchical segmentation setting in which an
initial oversegmentation is successively reduced, i.e. by merging adjacent regions
that are rated similar by some appropriate cost measure (e.g. the difference of
their average intensity) [1,2,3,4]. This bottom-up approach fits very well with
the concept of irregular pyramids [5,6], and the main direction of this work is to
show how the Active Paintbrush – an interactive segmentation tool developed
for medical imaging [2] – and an automatic region merging [7,3,2] can be for-
mulated based on the concepts of irregular pyramids and contraction kernels.
This serves three goals: a) delivering a useful, practical application of contrac-
tion kernels, b) basing the description of segmentation methods on well-known
concepts instead of their own, specialized representation, and c) demonstrating
how a common representation facilitates the development of a more efficient
integration of the above automatic and interactive methods.

The following sections are organized as follows: In section 2, we summarize
previous work on the Active Paintbrush and automatic region merging (2.1) and
on irregular pyramids and contraction kernels (2.2). Section 3 combines these
concepts and introduces the ideas of continuous pyramids and annotated con-
traction kernels (3.1), before proposing methods that exploit this new foundation
for a better integration of automatic and interactive tools (section 3.2).



2 Previous Work

2.1 The Active Paintbrush Tool

The Active Paintbrush was introduced by Maes [2] as an efficient interactive
segmentation tool for medical imaging. It is based on an initial oversegmentation
produced using the watershed transform, and a subsequent merging of regions.
The latter is performed in two steps:

1. First, an automatic region merging reduces the oversegmentation by merg-
ing adjacent regions based on some homogeneity measure (in [2], an MDL
criterion is used, but there is a large choice of suitable measures [3,8]).

2. Subsequently, the Active Paintbrush allows the user to “paint” over region
boundaries to quickly determine the set of regions belonging to the object
to be delineated.

Since this is a pure bottom-up approach (i.e. the number of regions monotonically
decreases, and no new boundaries are introduced), this approach relies on all
important boundaries being already present in the initial oversegmentation. The
user steers the amount of merging performed in the first step in order to remove
as many boundaries as possible (to reduce the time spent in the second step)
without losing relevant parts.

Merge Tree Representation For this work, it is important to highlight the internal
representation built within the first step, in which the automatic region merging
interactively merges the two regions rated most similar (an equivalent approach
is used in [7,3,2,8]). This process is continued until the whole image is represented
by one big region, and at the same time a hierarchical description of the image is
built up: a tree of merged regions, the leaves of which are the primitive regions
of the initial oversegmentation (illustrated in Fig. 1a). This tree can also be
interpreted as encoding a stack of partitionings, each of which contains one
region less than the one below.
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Fig. 1: Hierarchical description of image as tree of merged primitive regions [2]

By labeling each merged node with the step in which the merge happened, it
becomes very easy to prune the tree as the user adjusts the amount of merging



interactively: for instance, the partitioning at level l = 4 within the above-
mentioned stack can be retrieved by pruning all branches below nodes with a
label≤ l (cf. Fig. 1b).

Limitations While this approach already allows for a relatively efficient interac-
tive segmentation, there is one limitation that we will remove in this article which
increases the efficiency a lot: the two above-mentioned steps are strictly sepa-
rated. This is unfortunate, since the automatic method used in the first step in
general produces partitionings that suffer from oversegmentation in some parts,
but already removed crucial edges elsewhere, e.g. at locations with very low
contrast. Thus, the merge parameter has to be set low enough not to lose the
part with the lowest contrast, and the interactive paintbrush needs to be used
to remove all unwanted edges in all other areas, too. It would be helpful if it
was possible to just make the needed manual changes and then go back to the
automatic method to quickly finish the segmentation.

2.2 Contraction Kernels

The concept of contraction kernels has been introduced in the context of irregu-
lar pyramids [9,10]. Like regular (Burt-style) pyramids, irregular pyramids define
tapering stacks of images represented at increasingly coarser scales. However, ir-
regular pyramids are based on graph-like s [5,6] to overcome the drawbacks of
regular pyramids imposed by their rigid, regular structure. More recently, com-
binatorial maps have been widely adopted as the basis for representing irregu-
lar tessellations, hence irregular pyramids have been defined as stacks of such
maps [11,4,8].

Contraction kernels are used to encode a reduction of one such graph-like
structure into a simpler one, i.e. the difference between two levels in an irregular
pyramid. In order to give a formal definition, we first need to recall the definitions
of some underlying concepts, starting with combinatorial maps (see Fig. 2):

Definition 1 (combinatorial map). A combinatorial map is a triple (D, σ, α)
where D is a set of darts (half-edges), and σ, α are permutations defined on D
such that α is an involution (all orbits have length 2) and the map is connected,
i.e. there exists a σ-α-path between any two darts.

In order to represent a segmented image, each edge of the boundary graph is
split into two opposite darts, and the permutation α is used to tie these pairs
of darts together, i.e. each α-orbits represents an edge of the boundary graph.
The permutation σ then encodes the counter-clockwise order of darts around
a vertex, i.e. each σ-orbit corresponds to a vertex of the boundary graph. By
convention, D ⊂ Z \ {0} such that α can be efficiently encoded as α (d) := −d.
The dual permutation of σ is defined as ϕ = σ ◦ α and thus encodes the order
of darts encountered during a contour traversal of the face to the right, i.e. each
ϕ-orbit represents a face of the tessellation.

In contrast to earlier representations using simple [5,6] or dual graphs [12],
combinatorial maps explicitly encode the cyclic order of darts around a face,
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Fig. 2: Example combinatorial map representing the contours of a house

which makes the computation of the dual graph so efficient that it does not need
to be represented explicitly anymore.

Nevertheless, combinatorial maps also suffer from some limitations, most no-
tably that they rely on “pseudo edges” or “fictive edges” [12,13] to connect oth-
erwise separate boundary components. Topologically-wise, they are commonly
called “bridges”, since every path between their end nodes must pass via this
edge. These artificial connections have several drawbacks:

– In some situations, one may want to have bridges represent existing image
features, for instance incomplete boundary information or skeleton parts.
This would require algorithms to differentiate between fictive and real bridges.

– If we relate topological edges with their geometrical counterparts, we are
faced with the problem that fictive edges do not correspond to any ge-
ometrical entity. Even topologically-wise, fictive edges “appear arbitrarily
placed” [13].

– They lead to inefficient algorithms; e.g. contour traversals are needed to
determine the number of holes or to find an enclosing parent region.

Because of the above limitations, combinatorial maps are often used in conjunc-
tion with an inclusion relation that replaces the fictive edges [14,15].

Using these topological formalisms, segmentation algorithms can rely on a
sound topology that allows them to work with regions and boundaries as duals
of each other. However, segmentation first and foremost relies on an encoding of
the tessellation’s geometry, which is not represented by the above maps. Thus,
they are typically used side-by-side with a label image or similar.

Therefore, we have introduced the GeoMap [16,17,8] which represents both
topological and geometrical aspects of a segmentation, thus allowing algorithms
no longer to deal with pixels directly, and ensuring consistency between geometry
and topology. In particular, this makes algorithms independent of the embedding
model and allows to use either inter-pixel boundaries [18], 8-connected pixel
boundaries [16], or sub-pixel precise polygonal boundaries [17,8].



Reduction Operations In order to build irregular pyramids using any of the above
maps, one needs some kind of reduction operation for building higher levels from
the ones below, analogous to the operations used for regular pyramids. While
in Gaussian pyramids, the reduction operation is parametrized by a Gaussian
(smoothing) kernel, Kropatsch [9] has introduced contraction kernels for irregular
pyramids (for brevity, we give the graph-based definition here, which is less
involved than the analoguous definition on combinatorial maps [10]):
Definition 2 (contraction kernel). Given a graph G (V,E), a contraction
kernel is a pair (S,N) of a set of surviving vertices S ⊂ V and a set of non-
surviving edges N ⊂ E such that (V,N) is a spanning forest of G and S are the
roots of the forest (V,N).
A contraction kernel is applied to a graph whose vertices represent regions (cf. the
dual map (D, ϕ)) by contracting all edges in N , such that for each graph in
the forest, all vertices connected by the graph are identified and represented
by its root s ∈ S (details on contractions within combinatorial maps may be
found in [11]). In simple words, a contraction kernel is used to specify groups of
adjacent regions within a segmentation that should be merged together.

3 Contraction Kernels for
Efficient Interactive Segmentation

3.1 Interactive Navigation of Continuous Pyramids

Contraction kernels as described in section 2.2 form a very general description
of a graph decimation, i.e. much more general than previous approaches [5,6],
which had strict requirements on the chosen survivors and contracted edges. For
example, although it may be desirable for some approaches to have a logarithmic
tapering graph pyramid for computational reasons [19], the above definition does
not enforce this at all.

Continuous Pyramids In fact, we can build “continuous pyramids” in which only
one region is merged in every step, as done by the stepwise optimization used for
the Active Paintbrush preprocessing [7,2]. In our context, the reduction factor
between successive levels can be declared irrelevant:
– In practice, it is unneeded to represent all levels at the same time; instead,

we will show in the following how to efficiently encode only the bottom layer
and an annotated contraction kernel that allows to directly recreate any level
of the whole hierarchy from it. Thus, memory is no issue.

– The whole purpose of introducing irregular pyramids is to preserve fine de-
tails at higher levels, which should let further analysis steps work on single
levels instead of the whole hierarchy at once.

– Given the right merge order, traditional irregular pyramids simply consist
of a subset of the levels of our continuous pyramid, and even for good cost
measures, it is unlikely that the implicit selection of the levels is optimal.
Therefore, we propose to separate the computation of the pyramid and the
subsequent level selection, and leave the latter up to the analysis algorithm.
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(b) contraction kernel for the fourth level

Fig. 3: Annotated contraction kernels for a continuous pyramid (cf. Fig. 1)

Annotated Contraction Kernels We have already hinted at how our representa-
tion of this continuous pyramid looks like: We simply represent the pyramid’s
bottom by means of one GeoMap and the series of merges by an annotated
contraction kernel that resembles the merge tree from section 2.1. Then, when
retrieving a given pyramid level l, we take advantage of the concept of equivalent
contraction kernels [9,11], which means that it is possible to combine the effect
of a sequence of contraction kernels (here, merging only two regions each) into
a single, equivalent kernel.

The contraction kernel illustrated in Fig. 3a reduces the bottom layer to a
single surviving region (represented by the leftmost vertex), i.e. it contains a
single, spanning tree. The key to its use is the annotation: while the automatic
algorithm used in the preparation step of the Active Paintbrush merged all
regions in order of increasing cost (i.e. increasing dissimilarity), we composed
the corresponding contraction kernels, effectively building the depicted tree, and
labeled each edge with the step in which the corresponding merge happened
(analoguous to the node labels used in [2]).

Now when a given level l shall be retrieved (e.g. the user interactively changes
the desired granularity of the segmentation), we do not have to explicitly perform
the sequence of region merges that led from the initial oversegmentation to l, but
we can apply the combined, equivalent contraction kernel at once, which can be
implemented much more efficently (e.g. partially parallelized). The annotation
allows us to derive this contraction kernel simply by removing all edges with
labels ≥ l. This is illustrated by the dashed cut in Fig. 3b, which shows the
contraction kernel leading to the same segmentation as in the example from
Fig. 1b. The same approach can be used to jump from any level l1 to a level
l2 ≥ l1, where edges with labels < l1 can be ignored (the reader may imagine a
second cut from below).

Often, we are also interested in the values of the merge cost (i.e. dissimilar-
ity) measure associated with each step; therefore, we do not only label each edge
in our annotated contraction kernel with the step, but with a (step, cost) pair.
This makes an efficient user interface possible that allows an operator to quickly
choose any desired level of segmentation granularity. Some example levels gener-
ated from a CT image of human lungs using the region-intensity- and -size-based
“face homogeneity” cost measure cfh from [3] are depicted in Fig. 4; from left



Fig. 4: Example pyramid levels generated by the automatic region merging

to right: level 0 with 9020 regions, level 7020 with 2000 regions (cfh ≈ 0.12),
level 8646 with 374 regions (cfh = 0.5), and level 9000 with 20 regions left
(cfh ≈ 5.07).

3.2 Efficient Integration of Manual and Automatic Segmentation

As described in section 2.1, the use of the Active Paintbrush [2] consists of two
steps: after the oversegmentation and the hierarchical representation have been
computed, the user first adjusts the level of automatic merging by choosing
an appropriate level from the imaginary stack of tesselations. Afterwards, the
operator uses the Active Paintbrush to “paint over” any remaining undesirable
boundaries within the object of interest, which effectively creates new pyramid
levels.

level: 0 1207 1211 2410

display/work level

2834

apex

ARM APB ARM

navigational range

(a) Naive representation of generated pyramid
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(b) Pyramid after reordering to protect manual changes from disappearing

Fig. 5: Alternating application of automatic and interactive methods

We can now implement the automatic and the interactive reduction methods
based on the same internal, map-based representation and contraction kernels.
This opens up new possibilities with respect to the combination of the tools,
i.e. we can now use one after the other for reducing the oversegmentation and
creating further pyramid levels up to the desired result. This is illustrated in
Fig. 5a: the levels of our continuous pyramid are ordered from level 0 (initial



oversegmentation) on the left to level 2834 (the apex, at which the whole image
is represented as one single region) on the right. The current pyramid is the
result of applying first the automatic region merging (ARM), then performing
some manual actions with the Active Paintbrush (APB), then using the ARM
again.

However, this architecture poses difficulties when the user is given the free-
dom to e.g. change the cost measure employed by the ARM or to navigate to
lower pyramid levels than those generated manually: it is very unintuitive if the
results of one’s manual actions disappear from the working level, or if the pyra-
mid is even recomputed such that they are lost completely. Again, the solution
lies in the concept of equivalent contraction kernels, which make it possible to
reorder merges: we represent the results of applying the Active Paintbrush in
separate contraction kernels such that they always get applied first, see Fig. 5b.
(This is equivalent to labeling the edges within our annotated contraction kernel
with zero.) In effect, this makes it possible to locally finish the segmentation of
an object at the desired pyramid level, but to go back to lower pyramid levels
when one notices that important edges are missing in other parts of the image.

We also add the concept of face protection to improve the workflow in the
opposite direction: often, the Active Paintbrush is used to remove all unwanted
edges within the contours of an object of interest. Then, it should be possible
to navigate to higher pyramid levels without losing it again, so we provide a
means to protect a face, effectively finalizing all of its contours. An example
segmentation session using these tools is illustrated in Fig. 6.

4 Conclusions

In this paper, we have shown how the theory of contraction kernels within irreg-
ular pyramids can be used as a solid foundation for the formulation of interactive
segmentation methods. We have introduced annotated contraction kernels in or-
der to be able to quickly retrieve a contraction kernel suitable for efficiently
computing any desired level directly from the pyramid’s bottom or from any of
the levels in between. Furthermore, we have argued that logarithmic tapering
with a fixed reduction factor is irrelevant for irregular pyramids in contexts like
ours, and we have introduced the term continuous pyramids for the degenerate
case in which each level has only one region less than the one below.

On the other hand, we proposed two extensions around the Active Paint-
brush tool which make it even more effective. First, we have expressed both the
automatic region merging and the interactive method as reduction operations
within a common irregular pyramid representation. This allowed us to apply the
theory of equivalent contraction kernels in order to separate the representation
of manual actions from automatically generated pyramid levels and thus to en-
able the user to go back and forth between segmentation tools. Along these lines,
we have also introduced the concept of face protection which complements the
Active Paintbrush very well in a pyramidal context.



(a) initial oversegmentation (pre-filtered
sub-pixel watersheds [20,8])

(b) with high thresholds, low-contrast
edges are removed by the automatic
method (38 regions left)

(c) the cost threshold is interactively ad-
justed so that no boundaries are damaged
(114 regions remaining)

(d) with a few strokes, single critical re-
gions are finalized and "fixed" by protect-
ing the faces (white, hatched)

(e) now, automatic region merging can be
applied again, without putting the pro-
tected regions at risk (30 regions left)

(f) with two quick final strokes, three re-
maining unwanted regions are removed to
get this final result (27 regions)

Fig. 6: Example session demonstrating our new face protection concept; the cap-
tions explain the user actions for going from (a) to (f)
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