
IMAGE SEGMENTATION WITH THE EXACT WATERSHED TRANSFORM
Hans Meine and Ullrich Köthe

Cognitive Systems Group, University of Hamburg, Germany
{meine|koethe}@informatik.uni-hamburg.de

Abstract

Discrete algorithms for low-level boundary detection are
geometrically inaccurate and topologically unreliable. Cor-
responding continuous methods are often more accurate
and need fewer or no heuristics. Thus, we transfer discrete
boundary indicators into a continuous form by means of
differentiable spline interpolation and detect boundaries us-
ing the exact watershed transform. We demonstrate that this
significantly improves the obtained segmentations.
keywords: sub-pixel segmentation, watersheds, splines

1 Introduction

Edge detection and segmentation are fundamental tasks
in image analysis. But conventional algorithms often miss
parts of the true boundary or hallucinate non-existing
boundaries. Usually, these errors are attributed to noise and
low contrast, but this cannot be the whole truth: Errors oc-
cur even under good conditions, mainly near junctions and
in areas with small or narrow objects. In this paper we will
investigate how a continuous approach helps in overcom-
ing these problems. We consider low-level boundary detec-
tion as a four-step process, whose most prominent example
is Canny’s algorithm [1]:

1. A boundary indicator extracts a measure of boundary
strength from an image, e.g. the gradient magnitude.

2. During boundary detection (“non-maxima suppres-
sion”), boundary points are extracted from the pixel-
wise output of the boundary indicator.

3. These points are connected into a complete boundary
graph during the boundary linking stage.

4. Suitable relevance filtering (e.g. hysteresis threshold-
ing) is applied to remove insignificant boundaries and
create a perceptually meaningful result.

It is important to note that these steps can be varied rela-
tively independently of each other, provided that suitable
interfaces are defined. In Canny’s algorithm, step 2 usu-
ally achieves localization accuracy significantly below the
pixel size, but step 3 is less satisfying, as it heavily relies on
heuristics and does not always lead to topologically consis-
tent results. In this paper we will employ the exact water-
shed transform for steps 2 and 3.

In the context of the watershed transform, we think
of boundaries as ridges of the boundary indicator function.

The formal definition of watershed ridges was given by
Maxwell [5]: A watershed is a flowline that connects a local
maximum with a saddle point, where a flowline is defined
as the curve along which a drop of water runs downward
along the local gradient. This definition has two drawbacks:
First, one cannot decide locally whether a given flowline
ends at a saddle, i.e. whether it is indeed a watershed. Sec-
ond, flowlines are only uniquely defined when the function
is differentiable and all critical points are isolated.

To avoid the first problem, alternative ridge defini-
tions have been proposed that can be evaluated indepen-
dently at every pixel. Canny’s local maxima along the gra-
dient direction and the zero crossings of the Laplacian are
two common examples. A comparison of alternatives can
be found in [2]. Unfortunately, it turns out that local defini-
tions only work well for 1-dimensional ridges, but fail near
junctions. In contrast, watersheds can represent junctions
without difficulties, because arbitrary many watershed lines
may meet at a maximum. This makes the watershed trans-
form preferable for an integrated boundary detection algo-
rithm that handles edges, junctions and regions simultane-
ously and consistently.

The second problem is generally solved by replac-
ing Maxwell’s definition with some discrete analog. The
most common one restricts flowlines to a grid, i.e. water
can only flow horizontally and vertically, possibly also di-
agonally, see [7] for a survey of different algorithms. Dis-
crete watershed algorithms are fast and relatively simple,
and produce consistently linked boundary graphs that in-
clude both edges and junctions. However, watersheds com-
puted on the grid differ significantly from their continuous
counterparts. Not only is the geometry restricted to pixel
accuracy, but one commonly encounters missed or hallu-
cinated edges and junctions because pixels in only a 4- or
8-neighborhood cannot reveal the geometry of the bound-
ary indicator with sufficient certainty.

In this paper we solve both problems by applying the
watershed algorithm in the continuous domain, i.e. on a dif-
ferentiable spline interpolation of the boundary indicator.
To our knowledge, this has not been done before in the con-
text of image segmentation. We show that the new approach
has two important advantages: It keeps the topological ad-
vantages of the watershed transform (closed contours, arbi-
trary junctions without heuristics), and combines it with the
high subpixel accuracy of Canny’s algorithm. We also show
that subsequent relevance filtering (in a way very similar to
Canny’s algorithm) can remove the oversegmentation typi-
cally associated with the watershed algorithm.

2 The Exact Watershed Transform

In order to detect watersheds with subpixel accuracy we
must start with Maxwell’s original definition: watersheds
are flowlines between maxima and saddles. Practical ap-
plication of this definition is simplified if the function f is
differentiable. Then a unique flowline exists at every point
with non-zero gradient, and flowlines can be traced (up-
wards) by integrating the following differential equation:

∂~x(t)
∂t

= ∇f(~x(t)) (1)

Numerical integration of (1) is stable near a watershed, be-
cause all flowlines in a neighborhood converge to the same
maximum. Matters simplify further if f is a Morse func-
tion [11], i.e. it is at least twice differentiable, and all crit-
ical points (points of zero gradient) are isolated and have
non-degenerate Hessian. This eliminates special cases such
as monkey saddles and plateaus and allows to classify crit-
ical points according to the signs of the Hessian’s eigenval-
ues: minima, maxima, and saddles have positive, negative
and mixed eigenvalues respectively.

For a long time, watershed algorithms based on these
assumptions have been considered as too expensive for im-
age analysis. However, Steger [9] demonstrated the oppo-
site by implementing a subpixel watershed algorithm for
digital elevation maps, which we adapt and enhance for
image segmentation. Key to his approach is the possibility
to adaptively sample the image at any required (subpixel)
location by means of an efficient spline interpolation. In
the present paper, we apply this idea to boundary indica-
tor functions. In addition to cubic splines as in [9], we also
investigate splines of order 2, 5 and 7. Splines of order n
possess n− 1 continuous derivatives and can be efficiently
computed at any location ~x = (x, y) by convolution of dis-
crete spline coefficients cij with continuous B-spline basis
functions βn:

f(x, y) =
∑
i,j

cij βn(i− x) βn(j − y) (2)

The coefficients cij depend on the order n of the spline and
can be computed from the sampling values fij by a cascade
of bn/2c first-order recursive filters. Details on these com-
putations can be found in [10]. In order for the spline to be a
good approximation of the continuous boundary indicator,
the sampling density of the fij must be sufficiently high.
For small scales (up to σ ≈ 1), the boundary indicators
must be computed with oversampling filters [3].

Next, we must determine the saddles and maxima of
the spline. There are two principle methods. First, we could
compute the gradient of (2) and set it to zero. For every
spline facet, this gives a polynomial system in two vari-
ables that can be solved by standard methods. Unfortu-
nately, the number of possible solutions per facet grows as
2n(n − 1) + 1 which quickly becomes impractical, given

that only very few solutions (at most 2 or 3 per facet) do
actually represent critical points of f(~x). Therefore, an it-
erative algorithm is more adequate. Consider the second
order Taylor series expansion of f(~x) around a point ~x0:

f(~x + ~x) = f(~x0) +∇f(~x0)(~x− ~x0) +
1
2
(~x− ~x0)T H(~x0)(~x− ~x0) (3)

where H(~x0) is the Hessian. When ~x0+~x is a critical point
(saddle or extremum), the gradient w.r.t. ~x of this expres-
sion must be zero:

∇f(~x0 + ~x) = ∇f(~x0) + H(~x0)(~x− ~x0)
!= 0 (4)

Solving for δ~x = (~x − ~x0) gives the following iteration
scheme:

~x(n+1) = ~x(n) + δ~x(n)

δ~x(n) = −H(~x(n))−1 ∇f(~x(n)) (5)

It rapidly converges to a (usually nearby) critical point.
We improved Steger’s algorithm in a seemingly simple,
but critical respect: Steger applied the above iteration only
when a critical point was first detected at pixel accuracy,
and also required the iteration to stay within the current
pixel. We dropped these restrictions because many critical
points were missed this way. To avoid missing points we
start iterating at four points within every pixel. Since many
points are now found multiple times, we added an efficient
algorithm to eliminate multiple detections.

Next, we solve (1) starting at every saddle. Since the
gradient at a saddle is zero by definition, we cannot use it
for the initial step. Instead, we make use of the fact that the
local shape of a non-degenerate saddle is completely deter-
mined by the Hessian H. Thus, the proper initial directions
are ∂~x

∂t

∣∣
t=0

= ±τ~e1 where ~e1 is the unit eigenvector cor-
responding to the positive eigenvalue of H, τ = 0.1 is the
initial step size, and the sign selects one of the two opposite
watersheds starting at every saddle. Subsequent steps are
computed by means of a second-order Runge-Kutta method
with adaptive step size control which ensures that a tracing
error of 10−4 is not exceeded. This translates into a typical
step size of about 0.1 pixel. We could increase the step size
by using higher-order Runge-Kutta methods, as in [9], but
this is undesirable because we want the resulting polygonal
arc to be a good approximation of the actual edge, which
would no longer be the case with larger steps, especially
near corners. Iteration is finished when the curve’s distance
from the nearest maximum drops below τ .

Besides its high geometric accuracy, this algorithm
has a crucial advantage: In contrast to Canny’s method,
where edgel detection and edgel linking are separate steps,
Runge-Kutta flowline tracing connects the detected points
into a polygonal arc automatically and without any heuris-
tics. Thus, a large portion of boundary linking (step 3) is al-
ready done. Subsequent linking of the arcs into a boundary
graph is also simple as their end points are exactly known.

Figure 1. Left to right: Subregion of Brodatz texture D36;
watersheds from quadratic and quintic splines. The bound-
ary indicator was−f ?gσ , with gσ a Gaussian and σ = 1.6.
This segmentation was obtained with only two parameters:
the Gaussian’s scale and the spline order (whose influence
is unnoticeable here). Quadratic splines can be used if no
critical point falls exactly on a facet border (where the Hes-
sian is discontinuous).

Fig. 1 shows the graph thus obtained for a Brodatz texture
image. However, a boundary graph is not yet the final result
of boundary linking: In addition to edges and junctions, we
also need the faces of the graph, i.e. the regions of its planar
embedding. Hence, we transform the graph into a map [6]:

Definition 1 A map is a triple (D,σ, α) where D is a set
of half-edges, and σ, α are permutations on D. The orbits
(cycles) of α must have length 2 and pair half-edges into
edges, whereas the orbits of σ determine the vertices (and
thus the map’s connectivity) and the cyclic order of the half-
edges around vertices.

Regions then correspond to the orbits of the combined
permutation φ = σ−1α. Every flowline between a maxi-
mum and a saddle is a half-edge of the map. The α-orbits
are obtained by pairing the two half-edges that meet at the
same saddle. We also know which half-edges meet at each
junction. To obtain the σ-orbits, we must sort these edges so
that their order represents a counter-clockwise cycle around
the junction. Sorting is complicated by the phenomenon
that watersheds often converge tangentially towards the
maximum, cf. fig. 2. This is not an artifact of our imple-
mentation, but a well-known watershed property [2, 9]. In
theory, watersheds do not meet before the maximum, even
if they converge tangentially; however, due to the finite ac-
curacy of flowline tracing, the computed polygonal arcs do
cross in practice when they are very close to each other.
Therefore, one cannot simply use the angles at which flow-
lines leave the maximum to recover the orientation of the
graph. Instead, we apply the following algorithm to de-
termine the ordering at the position where the watersheds
eventually diverge:

1. Initialization: To recover the σ-order at junction k lo-
cated at ~pk: Set the reference point ~pref = ~pk, refer-
ence angle ϕref = 0 rad. Let g be the (unordered) set
of half-edges starting at ~pk.

2. For each half-edge i in g find the intersection ~pi of the
corresponding polygonal arc with an r-circle around
~pref (we use r = 0.5). If there are several intersections,
select the one whose arc length distance from the half-

Figure 2. Tangential watershed convergence at a local max-
imum. Top: illustration; bottom: actual watersheds on an
image – the single maximum of the boundary indicator in
the ROI is marked yellow, and the blue circles mark loca-
tions where the half-edges converge (precisely, the r-circles
where the σ-order is eventually found).

edge’s start is maximum. If there is no intersection,
use the half-edge’s end point.

3. For each half-edge i in g calculate the angle ϕi be-
tween the vector ~pi − ~pref and ϕ0, measured in the
interval −π < ϕi ≤ π. Sort g according to ϕi.

4. Detect tangential half-edges: Compute the difference
angles ∆ϕi = ϕi+1 − ϕi. If ∆ϕi < ϕtang = 0.5 rad,
half-edges i and i+1 are considered tangential. Group
the half-edges of g into groups ĝm such that each
group contains a maximal sequence of tangential half-
edges. If all groups have only one member, there are
no tangential half-edges, and the algorithm stops. Oth-
erwise repeat the procedure for each group with sev-
eral members: Compute a new reference point ~̂pref
and reference angle ϕ̂0 as the average of the current
group’s members, and goto 2. (The choice of r and
ϕtang is not critical.)

In order to analyze region properties (e.g. for relevance
filtering), one can employ standard polygon filling proce-
dures on the contours given by the φ-orbits; we propose to
leave the pixels intersected by the boundary unlabeled as
they are not representative for any of the adjacent regions.

3 Boundary Indicator Functions

In this section we define the boundary indicators that we
are going to compare in section 4. Ideally, the ridges of
a boundary indicator correspond to the edges in the origi-
nal image, and its local maxima correspond to corners and
junctions. The most straightforward choice is the gradient
squared magnitude:

b1 = f2
x + f2

y with (fx, fy) = (gx,σ, gy,σ) ? f (6)

where gx,σ and gy,σ are Gaussian derivative filters at scale
σ, which also perform oversampling when σ ≤ 1 [3]. How-
ever, the gradient squared gives unsatisfying responses near
junctions – they don’t usually correspond to maxima and
can even be minima. Thus, it is customary to integrate edge
information over a neighborhood by means of the structure

tensor. The trace of this tensor is again a boundary indica-
tor and can be computed by Gaussian smoothing of b1:

b2 = gσ′ ? b1 (7)

where σ′ ≈ 2σ is the integration scale. This improves the
behavior near junctions, but it also smoothes perpendicular
to edges. Parallel edges are thus smeared into each other,
which reduces the effective resolution of the boundary in-
dicator. This can be avoided by means of an anisotropic fil-
ter that only integrates along edges, but not perpendicular
to them, e.g. an hour-glass shaped filter [3] defined by:

hσ′,ρ(~x, ~n) =

e
− ~xT ~x

2σ′2
− 1

2ρ2

„
~nT
⊥~x

~nT ~x

«2

if ~nT ~x 6= 0
0 if ~nT ~x = 0, ~x 6= 0
1 if ~x = 0

(8)
where σ′ is the integration scale as before, ρ controls the
opening angle of the hour-glass and thus the degree of spa-
tial anisotropy, and ~n is a unit vector determining the fil-
ter orientation. In our experiments, we use ρ = 0.4 corre-
sponding to an opening angle of ≈ 22◦. At every point, the
filter is oriented along the local edge direction. This gives
the following filtering equation:

b3(~x) =
∑
~x′

hσ′,ρ (~x− ~x′, ~n(~x′)) b1(~x′) (9)

where ~n(~x′) is the unit vector perpendicular to the gradient
at point ~x′. An alternative to edge integration according to
(7) or (9) is the extension of the boundary model: The gra-
dient is insufficient to characterize junctions as it is only
sensitive to step edges. A possible extension is the bound-
ary energy [4]. It can be computed by a family of filters
defined in the Fourier domain as:

F [tk,σ] = eikφ r2e−r2σ2/2

where F [.] denotes the Fourier transform, (r, φ) are polar
coordinates in the Fourier domain and σ is the scale. For
k = 0, this filter is the Laplacian of Gaussian, and for k >
0 we get the (complex valued) kth-order Riesz transforms
of the Laplacian. The filter pair for k = 1 is very similar
to the gradient (it has the same angular behavior) and acts
as a step edge detector. Combining this with the filters for
k = 0, 2, we obtain the boundary energy which correctly
indicates edges, lines and many junctions types [4]:

b4 = |t0,σ ? f |2 + 2|t1,σ ? f |2 + |t2,σ ? f |2 (10)

where |.| is the pointwise magnitude of the complex filter
result. Yet another principle is applied by the SUSAN op-
erator [8]. Its underlying assumption is that pixels within
a homogeneous region have similar intensities. Therefore,
when one measures the average similarity of a pixel with
its neighbors, one expects minima at junctions and edges.

The average similarity is inverted and a threshold γ added
to get the SUSAN boundary indicator:

b5(~x) = max

(
0, γ −

∑
~x′∈W(~x)

e
−

“
f(~x)−f(~x′)

δ

”6
)

(11)

where W(~x) is a window around ~x, and δ scales the simi-
larity of intensities.

4 Experiments

In our experiments, we computed the boundary indicators
b1 to b5, interpolated them with splines of order 2 to 5
and computed the exact watershed transform. For compari-
son, we also determined pixel-based watersheds and Canny
edgels. To isolate the properties of these algorithms w.r.t.
boundary detection and linking, we first performed experi-
ments without any relevance filtering. Fig. 3 illustrates im-
portant results on the well-known “blox” image (3.1). It
does not contain very small objects, so we can work at
scales where no oversampling is necessary. As expected,
pixel-based watersheds (3.2) result in low geometric ac-
curacy and significant oversegmentation, and inter-pixel
(crack-edge) ones fare only slightly better (3.3). Canny’s
algorithm (3.4) produces relatively accurate edges, but it
leaves gaps of about twice the gradient scale near junc-
tions, and this significantly complicates boundary linking.
The exact watershed algorithm achieves both high geo-
metric accuracy and completely linked boundaries (3.5 to
3.7). The quintic spline slightly reduces oversegmentation
compared with quadratic and cubic splines. No further im-
provement is achieved by going to a seventh order spline
(not shown). These results were all obtained from identical
gradient magnitude data, only the watershed algorithm was
changed. In the remaining experiments, we will compare
alternative boundary indicators using the quintic spline-
based watershed transform. The hour-glass operator (3.8)
gives the best results: oversegmentation is further reduced,
and geometric accuracy of the junction response improves
(especially visible at the T-junctions in the lower part of the
ROI). The boundary energy (3.9) also improves the junc-
tion response, but it is slightly more susceptible to noise.
Finally, the SUSAN operator (3.10) seems to be a less use-
ful boundary indicator for the exact watershed transform.

Results at low resolution are shown in Fig. 4: The
tiling of the building’s wall is only coarsely sampled – the
smallest tiles (small white triangles) have a diameter of
only 4 pixels. The gradient magnitude result (4.2) exhibits
the usual oversegmentation, but there is also a severe sys-
tematic error: The operator hallucinates non-existing tiles
at the corners of the actual ones, because such configu-
rations (saddle junctions) are not covered by the gradient
edge model. In principle, this kind of error can be avoided
by using the structure tensor (4.3), but in this image it does
not work well: Due to the low resolution, small regions (e.g.
the white triangles) are completely lost, and due to uneven

1 2

3 4

5 6

7 8

9 10

Figure 3. Evaluation of the exact watershed algorithm. 1)
original image, ROI marked in yellow; 2) pixel-based wa-
tersheds of b1 (σ = 1.6); 3) inter-pixel (crack edge) water-
sheds of b1; 4) Canny edgels from Gaussian gradient with
σ = 1.6; 5 to 9: exact watersheds: 5) order 2 interpolation
of b1; 6) order 3 interpolation of b1; 7) order 5 interpo-
lation of b1; 8) dto. for b3 (σ = 1.1, σ′ = 2.2); 9) dto.
for b4 (σ = 1.1); 10) dto. for b5 (window radius = 3.4,
γ = ||W||, δ = 15). Maxima of the boundary indicators
are marked in yellow.

edge contrast, the edge geometry is significantly distorted.
In contrast, an almost perfect segmentation is achieved by
the nonlinear hour-glass filter (4.4).

Finally, we report an experiment with relevance filter-
ing similar to Canny’s hysteresis thresholding: We compute
the minimal boundary strength for each edge and the con-
trast between the means of the adjacent regions, weighted
by their average area. An edge is removed if both measures
are below a threshold, fig. 5. The second measure replaces
Canny’s upper threshold which would make no sense in
the context of the watershed transform because all edgels
form a single connected component. The exact watershed
result contains fewer irrelevant edges, because high geo-
metric accuracy indirectly improves the expressiveness of
the relevance measures. The difference in accuracy can be
directly measured by fitting lines to the straigth edges of the
scene. For example, the RMS residuals for the edge marked
by an arrow are 0.57 pixels for the discrete vs. 0.10 pixels
for the exact algorithm, given the same raw data.

5 Conclusions

In this paper we analyzed boundary detection with an ex-
act watershed transform. This algorithm combines the ad-
vantages of the discrete watershed transform and Canny’s
method: It produces connected boundary graphs, and it
finds edges with sub-pixel accuracy. We thus demonstrated
that both topology and geometry are determined more ac-
curately than was proviously possible. Results can be fur-
ther improved by selecting appropriate boundary indica-
tor functions (e.g. the hour-glass filtered gradient), and the
method could be adapted to new applications (e.g. texture
analysis) by changing the boundary indicator.

The high geometric accuracy of the exact watershed
transform makes it a prime candidate for tasks involving
geometric measurements, such as 3D reconstruction. Fur-
thermore, we are currently investigating new classes of ge-
ometric edge relevance criteria which would be too inac-
curate and therefore useless on pixel-based edges. On the
other hand, exact watershed computation may be too slow
for certain tasks (on a 256 × 256 image, it takes about 10
seconds on a Pentium M, 1.7 GHz), but it can still be used
as a reference algorithm during solution development in or-
der to check how much information is in the data.

A problem with our method is tangential convergence
of watersheds: When watersheds come very close to each
other, we humans perceive this as a junction, but the data
tell otherwise. There are two possible solutions: First, we
can explicitly place additional vertices at such points. This
is topologically trivial, but finding the correct modified ge-
ometry is much harder. Alternatively, we can seek bound-
ary indicators that have maxima at all perceptually signif-
icant junctions, but this is also a hard problem. This issue
will be discussed in a future publication.

1 2 3 4
Figure 4. 1) original image with ROI (30×58 pixels, the small triangular tiles are≈ 4 pixels in diameter); 2) order 5 interpolation
of b1 (σ = 0.9, oversampling); 3) dto. for b2 (σ = 0.7, σ′ = 1.4, oversampling); 4) dto. for b3 (σ = 0.9, σ′ = 1.8, oversampling)

Figure 5. Pixel-based (top) and exact (bottom) watersheds
after relevance filtering with the same criteria. The original
oversegmentation is overlaid in light gray. When a straight
line is fitted to the edge indicated by an arrow, the RMS
errors are 0.57 (top image) and 0.10 (bottom) respectively.

References

[1] J. Canny: A Computational Approach to Edge Detec-
tion, IEEE Trans. Patt. Anal. Mach. Intell. 8(6):679-
698, 1986

[2] J. Koenderink, A. v. Doorn: Local Features of Smooth
Shapes: Ridges and Courses, SPIE vol. 2031: Proc.
Geometric Meth. in Comp. Vision, pp. 2-13, 1993

[3] U. Köthe: Edge and Junction Detection with an Im-
proved Structure Tensor, in: B. Michaelis, G. Krell
(Eds.): Pattern Recognition, Proc. of 25th DAGM
Symposium, Springer LNCS 2781, pp. 25-32, 2003

[4] U. Köthe: Integrated Edge and Junction Detection
with the Boundary Tensor, in: ICCV ’03, Proc. 9th

Intl. Conf. Computer Vision, vol. I, pp. 424-431, 2003

[5] J.C. Maxwell: On Hills and Dales, reprinted in: W.
Niven (Ed.): The Scientific Papers of James Clark
Maxwell, vol. II, Dover, 1965

[6] H. Meine, U. Köthe: The GeoMap: A Unified Rep-
resentation for Topology and Geometry, in: L. Brun,
M. Vento (Eds.): Graph-Based Repr. in Pattern
Recogn., Springer LNCS 3434, pp. 132-141, 2005

[7] J. Roerdink, A. Meijster: The Watershed Trans-
form: Definitions, Algorithms, and Parallelization
Strategies, Fundamenta Informaticae 41(1-2):187-
228, 2000

[8] S. Smith, M. Brady: SUSAN – A New Approach to
Low-level Image Processing, Intl. J. Computer Vi-
sion, 23(1):45-78, 1997

[9] C. Steger: Subpixel-Precise Extraction of Watersheds,
in: ICCV ’99, Proc. 7th Intl. Conf. Computer Vision,
vol. II, 884-890, 1999

[10] M. Unser, A. Aldroubi, M. Eden: B-Spline Signal
Processing, Parts I and II, IEEE Trans. Signal Proc.
41(2):821-848, 1993

[11] A. Zomorodian: Topology for Computing, Cambridge
University Press, 2005

