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Abstract

This report presents a method for reasoning about spatial objects and
their qualitative spatial relationships. In contrast to existing work,
which mainly focuses on reasoning about qualitative spatial relations
alone, we integrate quantitative and qualitative information with ter-
minological reasoning by providing an admissible concrete domain for
the description logic ALCRP(D). The theory is motivated as a basis
for knowledge representation and query processing in the domain of
environmental geographic information systems.

1 Introduction

Qualitative relations play an important role in formal reasoning systems that
can be part of, for instance, geographic information systems (GIS). In this
context, inferences about spatial relations should not be considered in iso-
lation but should be integrated with formal inferences about structural de-
scriptions of domain objects (e.g. automatic consistency checking and clas-
sification) and inferences about quantitative data. In our opinion, the ab-
stractions provided by qualitative spatial relations can be interpreted as an
interface from a conceptual model about the world to quantitative spatial
data representing spatial information about domain objects. The combina-
tion of formal conceptual and spatial reasoning serves as a theoretical basis
for knowledge representation in GIS and can be used to solve important ap-
plication problems. Continuing our work presented in [Haarslev and Möller
1997] and [Haarslev, Möller, and Schröder 1994] we demonstrate the impor-
tance of terminological inferences with spatial relations in the domain of map
databases and spatial query processing.

For instance, in order to answer a GIS query, concept terms are computed
on the fly and have to be checked for consistency. Furthermore, we assume
that computed concept terms must be automatically inserted into the sub-
sumption hierarchy of a knowledge base. Concerning applications in the area
of map interpretation we would like to emphasize a characteristic of these
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problems. It is often very difficult to describe a fixed algorithm that defines
an exact sequence of “interpretation steps” because several different “cues”
have to be integrated. In other words: the solution has to be computed by
adequately integrating partial information about domain objects. Therefore,
we need sound and complete formalisms such as description logics that do
not depend on any serialization steps. We developed the description logic
ALCRP(D) [Lutz, Haarslev, and Möller 1997] that is well suited for mod-
eling GIS objects. The information about objects is given by conceptual
background knowledge and GIS data.

As an example, a small subsection of a vector map from the city of Hamburg
is shown in the left part of Figure 1. We assume that basic map objects
are predefined in a GIS. Furthermore, spatial areas are defined by polygons.
Map elements (e.g. polylines, polygons) are partly annotated with labels like
“living-area”, “building”, “ordinary-road” etc. The upper right part of Fig-
ure 1 contains a sketch describing a visual query. In this example we search
for a constellation where three buildings are aligned in parallel. The form and
position of the buildings may vary. We refer to [Haarslev and Wessel 1997]
for more details about the visual query language. The right part of Figure
1 also contains a small magnified clip from the lower left corner of the map.
This clip shows in its center three parallel rectangles aligned in north-east
direction. These rectangles represent buildings that are an example match
for the visual query of Figure 1. Because of the intended vagueness of visual
queries, qualitative spatial relations like touching, overlapping, disjoint etc.
are used to define the semantics of a query sketch (see [Haarslev and Wessel
1997] for details). Reasoning about spatial relations has to be combined with
reasoning about conceptual information attached to the visual objects (e.g.
house, street, living-area).

For formalizing reasoning about spatial structures many theories have been
published (see e.g. [Stock 1997] for an overview). Ignoring decidability, Borgo
et al. [Borgo, Guarino, and Masolo 1996] have developed a first order theory of
space which formalizes different aspects such as mereology etc. An algebraic
theory about space has been proposed by [Pratt and Lemon 1997; Pratt and
Schoop 1997]. The well-known RCC theory [Cohn, Bennett, Gooday, and
Gotts 1997] also formalizes qualitative reasoning about space. While first
axiomatizations used first-order logic, recently, the spatial relations used in
RCC have been defined in terms of intuitionistic logic and propositional
modal logic [Bennett 1995]. Although qualitative reasoning with RCC can
be used in many applications, in GIS also conceptual knowledge combined
with quantitative data has to be considered. Therefore, another approach is
required.

In order to adequately support decidable reasoning (i) about qualitative rela-
tions between spatial regions and (ii) about properties of quantitative data,
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Figure 1: City map and query example.

we extend the description logic ALC(D) [Baader and Hanschke 1991a]. The
main idea of our approach is to deal with spatial objects and their relations
using predicates over concrete domain objects (see below for a formal intro-
duction) and to deal with knowledge about abstract domain objects using
the well-known description logic theory. Although description logics in gen-
eral, andALC in particular, are known to be strongly related to propositional
modal logics [Schild 1991; De Giacomo and Lenzerini 1994], it is not clear how
Bennett’s modal logic can be extended to handle quantitative data. Because
Bennett’s modal logic formalization of RCC [Bennett 1995] uses the transi-
tivity axiom, decidability problems can be expected if, for instance, concrete
domains over the reals have to be treated by the satisfiability tester, too.
This is due to the fact that ALC(D) with transitive closure of roles is known
to be undecidable [Baader and Hanschke 1991b].

Extending the work on ALC(D), we have developed a new description logic
called ALCRP(D) [Lutz, Haarslev, and Möller 1997] in order to provide
a foundation for spatioterminological reasoning with description logics. The
part of our theory dealing with spatial relations is based on a set of topological
relations in analogy to Egenhofer [Egenhofer 1991] or RCC-8 [Randell, Cui,
and Cohn 1992]. The goal was to develop a description logic that provides
modeling constructs which can be used to represent topological relations as
defined roles. In a specific domain model, spatial areas can be represented
as concrete objects, which, in turn, are associated to individuals via specific
features. Then, roles representing topological relations can be defined that
are based on predicates over concrete objects. ALCRP(D) supports this
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modeling technique by providing role terms that refer to predicates over a
concrete domain. With these constructs ALCRP(D) extends the expressive
power of ALC(D) (for a comparison, see [Lutz, Haarslev, and Möller 1997]).
However, in order to ensure termination of the satisfiability algorithm, we
impose restrictions on the syntactic form of the set of terminological axioms.
Although modeling is harder, syntactic restrictions on terminologies ensure
decidability of the language.

In our earlier work presented in [Haarslev, Möller, and Schröder 1994] and
[Haarslev 1995], [Haarslev and Wessel 1996], as well as [Haarslev 1998], we
used topological relations as primitives in the sense of logic. However, these
relations were based on properties of concrete objects and we had to rely on
external mechanisms for synchronizing the actual properties of objects with
their logical counterparts. With the help of ALCRP(D) we can extend the
treatment of topological relations with respect to terminological reasoning.
Thus, the theory presented in this paper allows one to detect both incon-
sistencies and implicit information in formal conceptual models for spatial
domain objects.

In contrast to our earlier work presented in [Haarslev, Möller, and Schröder
1994], [Haarslev 1995], [Haarslev and Wessel 1996] and [Haarslev 1998], where
topological relations are used as primitives in the sense of logic, we extend the
treatment of topological relations with respect to terminological reasoning.
Thus, the theory presented in this paper allows one to detect both incon-
sistencies and implicit information in formal conceptual models for spatial
domain objects.

The next section outlines the formal foundations for spatioterminological rea-
soning. It is followed by a section introducing a concrete domain for polygonal
space that is used for integrating spatial and terminological reasoning. This
section also discusses an extended example. We conclude the report with a
summary and point out topics for ongoing work.

2 Foundations of Spatioterminological Reasoning with

Description Logic

The previous section motivated the formalization of space with the help of
terminological and spatial inference services. This section introduces the
formal tools necessary for spatioterminological reasoning. We define spatial
regions and their qualitative relationships and present the description logic
ALCRP(D) [Lutz, Haarslev, and Möller 1997] in terms of extensions to the
description logic ALC(D) [Baader and Hanschke 1991a].
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Figure 2: Subsumption hierarchy of spatial relations.

2.1 Qualitative Spatial Relationships

In the following we assume the usual concepts of point-set topology with
open and closed sets [Spanier 1966]. For a set λi we denote its interior as λo

i

and its boundary as ∂λi. In a similar way as [Grigni, Papadias, and Papadim-
itriou 1995] we define 13 binary topological relations that are organized in
a subsumption hierarchy (see Figure 2). The leaves of this hierarchy repre-
sent eight mutually exclusive relations. The eight relations are equivalent to
the set defined by Egenhofer [Egenhofer 1991] or RCC-8 [Randell, Cui, and
Cohn 1992]. We assume the usual restrictions for sets in analogy to [Egen-
hofer 1991]. The eight relations are also referred to as elementary relations.
Figure 3 illustrates five elementary relations.

• spatially related: Two objects have a spatial relationship between each
other iff they are either disjoint or connected.

spatially related(λ1, λ2) ≡ disjoint(λ1, λ2) ∨ connected(λ1, λ2)

• disjoint: Two objects are disjoint iff their intersection is empty; disjoint
is symmetric.

disjoint(λ1, λ2) ≡ λ1 ∩ λ2 = ∅

• connected: Two objects are connected iff their intersection is non-
empty; connected is symmetric.

connected(λ1, λ2) ≡ λ1 ∩ λ2 6= ∅

5



A B A B A B A

B

A

B

disjoint touching s overlapping t contains s contains

Figure 3: Elementary spatial relations between two regions A and B. The
inverses of t contains and s contains as well as the relation equal have been
omitted.

• g overlapping: Two objects are generally overlapping iff they are either
touching or strictly overlapping; g overlapping is symmetric.

g overlapping(λ1, λ2) ≡ touching(λ1, λ2) ∨ s overlapping(λ1, λ2)

• touching: Two objects are touching iff only their boundaries are inter-
secting; touching is symmetric.

touching(λ1, λ2) ≡ (∂λ1 ∩ ∂λ2 6= ∅) ∧ (λo
1 ∩ λo

2 = ∅)

• s overlapping: Two objects are strictly overlapping iff their interiors
are intersecting and the intersection is not equal to either of them;
s overlapping is symmetric.

s overlapping(λ1, λ2) ≡ (λ1 ∩ λ2 6= λ1) ∧ (λ1 ∩ λ2 6= λ2) ∧ (λo
1 ∩ λo

2 6= ∅)

• g contains/g inside: An object λ1 generally contains an object λ2 iff
it either tangentially or strictly contains λ2 or it is equal to λ2; g inside
is the inverse of g contains; g contains and g inside are reflexive, anti-
symmetric and transitive.

g contains(λ1, λ2) ≡ t contains(λ1, λ2) ∨ s contains(λ1, λ2) ∨
equal(λ1, λ2)

g inside(λ1, λ2) ≡ g contains(λ2, λ1)

• equal: Two objects are equal iff they describe the same set of points.

equal(λ1, λ2) ≡ λ1 = λ2

• t contains/t inside: An object λ1 tangentially contains an object λ2 iff
their intersection is equal to λ2 and the intersection of their boundaries

6



is non-empty; the inverse of t contains is t inside; t contains and t inside
are asymmetric.

t contains(λ1, λ2) ≡ (λ1 ∩ λ2 = λ2) ∧ (λ1 ∩ λ−1
2 6= ∅) ∧ (∂λ1 ∩ ∂λ2 6= ∅)

t inside(λ1, λ2) ≡ t contains(λ2, λ1)

• s contains/s inside: An object λ1 strictly contains an object λ2 iff
their intersection is equal to λ2 and only the interiors of their regions
intersect; the inverse of s contains is s inside; s contains and s inside are
asymmetric and transitive.

s contains(λ1, λ2) ≡ (λ1 ∩ λ2 = λ2) ∧ (λ1 ∩ λ−1
2 6= ∅) ∧ (∂λ1 ∩ ∂λ2 = ∅)

s inside(λ1, λ2) ≡ s contains(λ2, λ1)

2.2 Description Logic

We represent terminological knowledge about spatial (e.g. GIS) domains us-
ing description logic (DL) theory that has been proven to be a useful formal-
ism for modeling in technical domains. The concept language ALCRP(D)
is shortly introduced in this report and is described in detail in our com-
panion report [Lutz, Haarslev, and Möller 1997]. ALCRP(D) is based on
ALC(D) as defined in [Baader and Hanschke 1991a]. It extends ALC(D) by
a role-forming operator that is based on concrete domain predicates. In the
following we define concrete domains and their admissibility in analogy to
[Baader and Hanschke 1991a].

Definition 1
A concrete domain D is a pair (∆D,ΦD), where ∆D is a set called the domain,
and ΦD is a set of predicate names. Each predicate name P from ΦD is
associated with an arity n, and an n-ary predicate PD ⊆ ∆n

D.

A concrete domain D is called admissible iff

1. the set of its predicate names is closed under negation and contains a
name for ∆D.

2. the satisfiability problem for finite conjunctions of predicates is decid-
able.

The next definitions present the syntax and model-theoretic semantics of
ALCRP(D) (see also our companion report [Lutz, Haarslev, and Möller
1997]).
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Definition 2
Let R and F be disjoint sets of role and feature names, respectively. Any
element of R and any element of F is an atomic role term. The elements
of F are also called features. A composition of features (written f 1f 2 · · · ) is
called a feature chain. A feature chain of length one is also a feature chain.
If P ∈ ΦD is a predicate name with arity n+m and u1, . . . ,un as well as v 1,
. . . ,vm are feature chains, then the expression ∃(u1, . . . , un)(v 1, . . . , vm).P
(role-forming predicate restriction) is a complex role term.1 Let S be a role
name and let T be a role term. Then S

.
= T is a terminological axiom.

The next definition introduces concept terms of ALCRP(D). As we will see
later, if decidable reasoning algorithms are needed for a certain terminology,
not all of these concept terms can be freely combined.

Definition 3
Let C be a set of concept names which is disjoint from R and F. Any element
of C is an atomic concept term. If C and D are concept terms, R is an
arbitrary role term (it may also be a feature), P ∈ ΦD is a predicate name
with arity n, and u1, . . . ,un are feature chains, then the following expressions
are also concept terms:

1. C u D (conjunction),

2. C t D (disjunction),

3. ¬C (negation),

4. ∃R.C (concept exists restriction) and

5. ∀R.C (concept value restriction), and

6. ∃u1, . . . , un.P (predicate exists restriction).

For all kinds of exists and value restrictions, the role term or list of feature
chains may be written in parentheses.
Let A be a concept name and let D be a concept term. Then A

.
= D is

a terminological axiom as well. A finite set of terminological axioms T is
called a terminology or TBox if no concept or role name in T appears more
than once on the left hand side of a definition and, furthermore, if no cyclic
definitions are present.

The semantics for the language is defined as usual for ALC languages with
concrete domains (cf. [Baader and Hanschke 1991a]). In the following, we
define only those interpretation function extensions concerning concept terms
and role terms that refer to the concrete domain.

1Note that there have to be at least one u and one v .
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Definition 4
An interpretation I = (∆I , ·I) consists of a set ∆I (the abstract domain)
and an interpretation function ·I . The sets ∆D and ∆I must be disjoint.
The interpretation function maps each concept name C to a subset C I of
∆I , each role name R to a subset RI of ∆I × ∆I , and each feature name
f to a partial function f I from ∆I to ∆D ∪ ∆I , where f I(a) = x will be
written as (a , x) ∈ f I . If u = f 1 · · · f n is a feature chain, then uI denotes
the composition f I1 ◦ · · · ◦ f In of the partial functions f I1 , . . . , f

I
n. Be P ∈ ΦD a

predicate name with arity n + m, u1, . . . ,un feature chains, and f 1, . . . ,f m
feature names. Let R be an arbitrary role term (it may also be a feature).
Then the interpretation function is extended for the following constructs:

(∃u1, . . . , un.P)I := {a ∈ ∆I | ∃x 1, . . . , xn ∈ ∆D :

(a, x 1) ∈ uI1 , . . . , (a, xn) ∈ uIn, (x 1, . . . , xn) ∈ PD}
(∃(u1, . . . , un)(v 1, . . . , vm).P)I :=

{(a, b) ∈ ∆I ×∆I | ∃x 1, . . . , xn, y1, . . . , ym ∈ ∆D :

(a, x 1) ∈ uI1 , . . . , (a, xn) ∈ uIn,

(b, y1) ∈ vI1 , . . . , (b, ym) ∈ vIm,

(x 1, . . . , xn, y1, . . . , ym) ∈ PD}

It has been shown in [Lutz and Möller 1997] that, in general, the satisfia-
bility problem for ALCRP(D) is undecidable. However, in our companion
report [Lutz, Haarslev, and Möller 1997], we show the decidability of so-called
restricted terminologies of ALCRP(D) provided an admissible concrete do-
main is specified. The restrictedness criterion is defined as follows.

Definition 5
A terminology T is called restricted iff its unfolded negation normal form
(see [Lutz, Haarslev, and Möller 1997]) fulfills all of the following conditions:

1. For any (sub)concept term C in T that is of the form ∀R1.D where
R1 is a complex role term, D does not contain any terms of the form
∃R2.D where R2 is also a complex role term.

2. For any (sub)concept term C in T that is of the form ∃R1.D where
R1 is a complex role term, D does not contain any terms of the form
∀R2.D where R2 is also a complex role term.

3. For any (sub)concept term C in T that is of the form ∀R.D or ∃R.D
where R is a complex role term, D contains only predicate exists re-
strictions that quantify over attribute chains of length of 1 and, fur-
thermore, do not occur inside any value and exists restrictions that are
also contained in D .

9



The restrictedness criterion appears to be a rather severe modeling constraint
but the next section will demonstrate that ALCRP(D) with restricted ter-
minologies is still a very useful description logic for integrating conceptual
and spatial reasoning.

3 A Concrete Domain for Polygonal Space

This section introduces a concrete domain for modeling spatial objects and,
based on the spatial relations defined in the previous section, a language for
specifying predicates over this domain is given. We demonstrate that the
admissibility criterion can be fulfilled. Our concrete domain implements the
satisfiability test for a conjunction of spatial predicate terms.

Rather than dealing with arbitrary point sets in <2, we restrict the spatial
predicates to the description of polygons because efficient algorithms (e.g.
the simplex procedure) are known for the polygon inclusion and polygon
intersection problems. In accordance to Definition 1 we define the concrete
domain DP as consisting of a set ∆DP of polygons and a set ΦDP of predicate
names.

3.1 Polygons as Concrete Objects

We describe polygons as n-tuples of coordinates, i.e. a polygon represents a
single (connected) set of points from <2 without holes. The interior of the
polyline is assumed to be on the left hand side of the chain of edges. The
edges of a polygon must not intersect one another. If we syntactically de-
note polygons as lists of coordinates, a normalization function can transform
adjacent collinear edges into a single edge. We consider the description logic
ALCRP(DP) in the following subsections.

3.2 Predicates for Qualitative Spatial Relationships

We define SP as the set of names2 for the 13 spatial predicates implement-
ing the spatial relations defined in Section 2.1. Each predicate in SP has a
unique name. For each predicate, a negated counterpart can be easily de-
fined, i.e. the set of predicate names SP can be extended in a way that SP
is closed under negation (cf. the admissibility criterion for concrete domains
in Definition 1). The set SP contains the two disjoint sets EP and CP .
EP contains the eight elementary predicates, CP the five composite predi-
cates. The set of composite predicates is defined to facilitate modeling in our

2In the following we do not distinguish between predicates and their names. We also
use the terms relation and predicate interchangeably.
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spatial domain. A composite predicate can always be reduced to a disjunc-
tion of elementary predicates. The (transitive) composition of predicates is
defined by a composition table representing one-step inferences (for details
see [Egenhofer 1991]). For instance, touching(a, b) ∧ touching(b, c) yields
disjoint(a, c) ∨ touching(a, c) ∨ equal(a, c) ∨ s inside(a, c) ∨ s contains(a, c) ∨
s overlapping(a, c).

We define one-place predicates (denoted as srp) where sr is an elementary or
composite predicate and where p is a concrete object representing a constant
polygon. We also assume that the set SP is properly extended by a set of
one-place predicate names and their negated counterparts. The semantics of
one-place predicates is as follows.

srp
I := {x ∈ ∆DP | (x, p) ∈ srI} with srI ⊆ ∆DP ×∆DP

It is interesting to note that the spatial predicate g contains has the same
properties as the subsumption relation (i.e. it is reflexive, antisymmetric,
transitive). Therefore, a polygon p1 spatially subsumes another polygon p2

iff p1 g contains p2. This property will be utilized for modeling in our GIS
example domain (see Section 3.4).

3.3 Satisfiability of Conjunctions of Spatial Predicates

The admissibility criterion for DP concerns the satisfiability of finite conjunc-
tions of (possibly negated) predicate terms. Negated unary and binary terms
(possibly containing composite predicates) can be resolved into disjunctions
of elementary spatial predicates since the elementary predicates are mutually
exclusive and exhaustive. Therefore, we can restrict our analysis to conjunc-
tions of unnegated terms

∨ki
j=1 epj where 1 ≤ ki ≤ 8 and epj ∈ EP.

Consistency of a conjunction of binary predicate terms is usually consid-
ered as a binary constraint satisfaction problem. In this view, a conjunction
is represented as a constraint network whose nodes are defined by variable
names and whose edges are labeled by relation sets representing disjunc-
tions of relation names valid between a pair of nodes. A standard technique
for deciding the satisfiability of such a network is the 3-consistency or path
consistency method that is based on the composition table. This table de-
fines the composition of spatial relations, for instance it has to hold that
s inside ◦ s inside = s inside (see above). In other words, a composition ta-
ble directly encodes so-called 3-consistent or path consistent spatial relations
between three regions, e.g. s inside(A,B) ∧ s inside(B ,C ) ⇒ s inside(A,C ).
In some cases, an additional step is required to ensure global consistency.

11



The network is unsatisfiable iff the relation set becomes empty for any edge,
i.e. the predicate term is inconsistent with the composition table. In case
of satisfiability, this step results in a network refining all relation sets with
respect to consistency.

Algorithms for solving these constraint problems are discussed in [Ladkin
and Reinefeld 1997] and [Nebel 1995; Renz and Nebel 1997]. According to
Nebel and Renz [Nebel 1995; Renz and Nebel 1997], the worst case complex-
ity depends on the relations (disjunctions of base relations) actually used
in a constraint network. To achieve global consistency, in the worst case,
exponential algorithms are required. However, Nebel and Renz [Nebel 1995;
Renz and Nebel 1997] showed that for certain subsets of EP global consis-
tency is equivalent to path consistency. These findings can be used to speed
up the verification of relational consistency (Ladkin and Reinefeld [Ladkin
and Reinefeld 1997] also discuss speedup techniques).

Grigni et al. [Grigni, Papadias, and Papadimitriou 1995] proposed two no-
tions of satisfiability, relational consistency and realizability, where relational
consistency is a necessary condition for realizability. They showed that both
notions may be the cause for the unsatisfiability of a conjunction of predicate
terms. First, a conjunction may violate the relational consistency criterion
which is identical to the global consistency of a (spatial) constraint network.
The full form of satisfiability is called realizability and is related to planarity .
A relationally consistent conjunction may violate realizability if planar re-
gions are declared to be disjoint from one another (e.g. see [Grigni, Papadias,
and Papadimitriou 1995]).

Our algorithm for the concrete domain satisfiability test is divided into four
steps. The first two steps implement the normalization phase, while the last
two steps verify the consistency of the resulting predicate terms. The last
two steps can fail at any time and thus prove unsatisfiability.

1. Negated predicate terms are replaced by the corresponding disjunction
of elementary predicate terms. Afterwards, every conjunct consists of
either a single term sr(x , y) or a disjunction

∨k
i=1 sri(x, y) with sr, sri ∈

ER, 1 ≤ k ≤ 8, and all sri(x, y) are involved with the same pair of
objects. For instance, ¬g inside(x , y) is replaced by t contains(x , y) ∨
s contains(x , y) ∨ s overlapping(x , y) ∨ touching(x , y) ∨ disjoint(x , y).

2. For every conjunct this step adds a new conjunct representing the in-
verted relation term. For example, for the term t contains(x , y) we add
t inside(y , x ).

3. This step verifies relational consistency with the help of path consis-
tency as outlined above. It is important to note that reasoning about
quantitative geometric data is also involved in the third step because
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Figure 4: Relationship between abstract and concrete domain

some predicates may have polygons instead of variable names as para-
meters. This is caused by the one-place predicates srip introduced above.
With the help of standard algorithms from computational geometry
(e.g. see [de Berg 1997]) we infer/verify every relation set labeling an
edge that connects two polygons. In accordance to our definition of the
spatial relations, this problem can be reduced to the intersection test
for two polygons. Corresponding algorithms have a time complexity of
at most O(n2) where n is the average number of edges of polygons.

4. If necessary, the last step verifies planarity by constructing a set of
simply connected planar regions, one for each node, any pair of regions
is related by a relation name that is element of the relation set labeling
the connecting edge between these nodes. Note that in the presence
of quantitative data there exist more predicate conjunctions that are
relationally consistent but fail the planarity test (see [Lutz and Möller
1997] for an example).

In summary, we showed that the concrete domain P is admissible with ref-
erence to Definition 1.

3.4 Examples for Spatioterminological Reasoning

How can predicates over the concrete domain of polygons be used to sup-
port spatioterminological inferences with the description logic ALCRP(D)?
First of all, as an ontological commitment, we assume that each abstract
domain object is associated with its spatial representation via the feature
(or attribute) has area (see Figure 4). Now, we can use the concept-forming
predicate operator in combination with one-place predicates for restricting
role fillers of has area to be specific spatial regions. For instance, subsumption
between concept terms such as ∃ has area . g insidepi

(with g insidepi
∈ SP) re-

sembles inclusion of regions because every concept term ∃ has area . g insidepi

13



p2 p3

p1
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p4

Figure 5: A sketch of the northern part of Germany with polygons for Ger-
many (p1), Northern Germany (p5), the federal states Schleswig-Holstein (p4)
and Hamburg (p2) as well as a small district of Hamburg (p3). Polygon p3 is
assumed to be inside p2 but p2 is not inside p4.

subsumes the term ∃ has area . g insidepj
iff pi g contains (i.e. spatially sub-

sumes) pj.

In our GIS example we apply this technique to modeling the regions of the
German federal states, of Northern Germany, of a district of the city of Ham-
burg, etc. The restrictedness criterion for the following set of TBox axioms
(cf. Definition 5) is trivially fulfilled because they contain no nested exists or
universal quantifiers.

northern german region
.
= ∃ has area . g insidep5

district of hh
.
= ∃ has area . g insidep2

u ∃ has area .¬equalp2

The concept northern german region is defined by an existential restriction
for the attribute has area whose filler is constrained to be any polygon that
is g inside of p5 which defines the area of Northern Germany (see Figure
5). In other words: The concept denoted by ∃ has area . g insidep5

subsumes
every region of Northern Germany whose associated polygon is g inside of
p5. Therefore, district of hh is automatically classified as a subconcept of
northern german region.

german federal state
.
= federal state u

(∃ has area . equalp2
t ∃ has area . equalp4

t . . . )
federal state hh

.
= german federal state u ∃ has area . equalp2

federal state sh
.
= german federal state u ∃ has area . equalp4
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The concept definition of german federal state contains a disjunction of con-
cept terms that characterize the locations of all possible German federal
states. Due to the definition of equal, the predicate equalp does not subsume
arbitrary regions in Germany. As a consequence, the area of, for instance,
district of hh is not subsumed by the area of german federal state.

We also define the concepts for the federal states Hamburg and Schleswig-
Holstein. We would like to emphasize that both concepts are subsumed
by the concept northern german region. This is due to the definition of the
spatial relations in the previous section. For instance, the predicate equalp2

is
subsumed by g insidep2

and, in turn, this predicate is subsumed by g insidep5

because the region p5 g contains p2.

In many cases, restrictions about spatial relations have to be combined with
additional restrictions. For example, how can we define a concept that de-
scribes a district of Hamburg that touches the federal state Hamburg from
the inside? Note that it is not sufficient that the corresponding district poly-
gon (e.g. p3 in Figure 5) is inside any polygon that is equal to the state
polygon (e.g. p2). The domain object that refers to this polygon with the
role has area must also be subsumed by the concept federal state hh (see the
example presented in Figure 4). For modeling spatial relations we declare
corresponding roles as part of the TBox. The following TBox axioms fulfill
the restrictedness criterion because the nested concept terms employ only
the ∃ f .P constructor.

is t inside
.
= ∃ (has area)(has area) . t inside

hh border district
.
= district of hh u ∃ is t inside . federal state hh

The concept hh border district is discussed as an example for the use of the
role-forming predicate restriction introduced by is t inside. The associated
polygon of any individual that is subsumed by this concept has to be in the
t inside relationship with another polygon that, in turn, is referred to by an
instance that is subsumed by the concept federal state hh.

While the subsumption relationships discussed above are quite obvious, the
advantages of TBox reasoning with spatial relations become apparent if we
consider more complex cases, e.g. the following axiom is computed by other
(non-DL) components and added to our TBox (e.g. imagine a scenario em-
ploying machine learning techniques). The restrictedness criterion is fulfilled.

unknown
.
= district of hh u
∃ (∃ (has area)(has area) . spatially related) . federal state hh u
∃ (∃ (has area)(has area) . touching) . federal state sh

15



If the polygon of district of hh touches the polygon of federal state sh, then the
polygon of district of hh is also t inside the polygon of federal state hh. There-
fore, it can be proven that unknown is subsumed by hh border district (see
the next section). The spatial constellation defined by the concept unknown
could also be characterized as a “Hamburg border district to Schleswig-
Holstein.” Note however, if district of hh had only been defined by the term
∃ has area . g insidep2

(see above), unknown would not have been subsumed
by hh border district because an abstract individual whose associated poly-
gon had been equal to p2 would have been a member of unknown but not a
member of hh border district.

3.5 Verifying Satisfiability: An Extended Example

We illustrate the satisfiability problem for an ALCRP(DP) concept with
the example from the previous section. In order to prove that the concept
unknown is subsumed by hh border district, the tableau prover constructs an
initial ABox and derives that every ABox in the set of ABoxes obtained by
applying a set of rules will be “obviously contradictory,” i.e. it will contain a
clash. The rules are described in detail in [Lutz, Haarslev, and Möller 1997].
For the reader’s convenience they are repeated here in the appendix (see
Section A.1 and Section A.2). Please note that the rules can be applied in
arbitrary order but in the following we rely on an manually defined ordering.

We start with the ABox A1 and expand in ABox A2 the concept names from
ABox A1.

A1 :=
{

x : unknown u ¬hh border district
}

A2 :=


x : district of hh u ∃ is spatially related . federal state hh u
∃ is touching . federal state sh u
¬(district of hh u ∃ is t inside . federal state hh)


If we fully expand the concept terms, we get the following ABox.

A3 :=


x : ∃ has area . g insidep2

u ∃ has area .¬equalp2
u

∃ is spatially related . ∃ has area . equalp2
u

∃ is touching . ∃ has area . equalp4
u

¬(∃ has area . g insidep2
u ∃ has area .¬equalp2

u
∃ is t inside . ∃ has area . equalp2

)


Then, we transform this ABox in negation normal form.
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A4 :=


x : ∃ has area . g insidep2

u ∃ has area .¬equalp2
u

∃ is spatially related . ∃ has area . equalp2
u

∃ is touching . ∃ has area . equalp4
u

(∃ has area .¬g insidep2
t ∀ has area .>t ∃ has area . equalp2

t
∀ is t inside . (∃ has area .¬equalp2

t ∀ has area .>))


We already proved that the TBox containing the axioms introduced in Sec-
tion 3.2 complies to the restrictedness criterion. Therefore, the ABox A4

is based on a restricted terminology and we are allowed to apply the ABox
rules of the calculus for ALCRP(D) (see [Lutz, Haarslev, and Möller 1997]).
First, we apply the and rule (Ru) and get the ABox A6. For convenience
we use an auxiliary ABox A5.

A5 :=


x : ∃ has area . g insidep2

x : ∃ has area .¬equalp2

x : ∃ is spatially related . ∃ has area . equalp2

x : ∃ is touching . ∃ has area . equalp4



A6 := A5 ∪


x : (∃ has area .¬g insidep2

t ∀ has area .>t
∃ has area . equalp2

t
∀ is t inside . (∃ has area .¬equalp2

t ∀ has area .>))


Afterwards we obtain four alternative ABoxes (A7 -A10) by resolving the
disjunctions in ABox A6 and by applying the exists-in over predicates rule
(R∃P) and/or the all rule (R∀C).

A7 := A5 ∪
{

x : ∃ has area .¬g insidep2

(x, q2) : has area, q2 : g insidep2
, q2 : ¬g insidep2

}
The ABox A7 contains a concrete domain clash because the concrete indi-
vidual q2 can not satisfy the conjunction (g insidep2

∧ ¬g insidep2
).

A8 := A5 ∪
{

x : ∀ has area .>
(x, q2) : has area, q2 : g insidep2

, q2 : >

}
The ABox A8 contains an all domain clash because the concrete individual
q2 can not be a member of both the abstract (>) and the concrete (e.g.
g insidep2

) domain.
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equalequal

touchingspatially-related

p2 p4

has-
area

has-
area

has-
area

q1 q2 q3

x yz

g_inside,
¬ equal

Figure 6: Initial constraint network corresponding to ABox A12. For sym-
metric relations the arrows point in both directions. Inverse relations have
been omitted.

A9 := A5 ∪
{

x : ∃ has area . equalp2

(x, q2) : has area, q2 : ¬equalp2
, q2 : equalp2

}
The ABox A9 contains a concrete domain clash because the concrete indi-
vidual q2 can not satisfy the conjunction (equalp2

∧ ¬equalp2
).

A10 := A5 ∪
{

x : ∀ is t inside . (∃ has area .¬equalp2
t ∀ has area .>)

}
The ABox A10 is subject to further rule application. We apply the exists-in
over predicates rule (R∃P) and the role-forming exists-in over predicates rule
(Rr∃P) and create two abstract domain individuals y and z such that z is
a filler of the role is spatially related and y is a filler of is touching. We also
create three concrete domain individuals q2, q3, and q1 that are associated
with their corresponding abstract individuals via the attribute has area. The
rules also establish spatial relations that have to hold between concrete indi-
viduals. After firing all applicable rules except the choose rule (RChoose),
we get ABox A12 whose spatial constraints are illustrated in Figure 6. For
convenience we use an auxiliary ABox A11.

A11 := A5 ∪



(x, q2) : has area, q2 : g insidep2
, q2 : ¬equalp2

(x, y) : ∃ (has area)(has area) . touching
(q2, q3) : touching
(y, q3) : has area, q3 : equalp4

(x, z) : ∃ (has area)(has area) . spatially related
(q2, q1) : spatially related
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Figure 7: Final constraint network (most implicit constraints added) that
corresponds to ABox A13. For symmetric relations the arrows point in both
directions. Inverse relations have been omitted.

A12 := A11 ∪
{

x : ∀ is t inside . (∃ has area .¬equalp2
t ∀ has area .>)

(z, q1) : has area, q1 : equalp2

}
In the next step, the choose rule (RChoose) has to decide whether the re-
lation t inside or its negation holds between any two concrete individuals in
ABox A12. Without loss of generality we can assume that only the follow-
ing two alternative ABoxes (A13, A15) are created by selecting the concrete
individuals q1, q2.

A13 := A11 ∪


x : ∀ is t inside . (∃ has area .¬equalp2

t ∀ has area .>)
(z, q1) : has area, q1 : equalp2

(q2, q1) : t inside


The spatial constraints that have to hold in ABoxA13 are illustrated in Figure
7. This ABox assumes that t inside(q2, q1) holds and makes the implicit
spatial constraints from ABox A12 explicit (see also Figure 6). Due to the
last assertion in ABox A13, now the all rule(R∀C) is applicable to is t inside
and creates the ABox A14.

A14 := A11 ∪


x : ∀ is t inside . (∃ has area .¬equalp2

t ∀ has area .>)
(z, q1) : has area, q1 : equalp2

(q2, q1) : t inside
z : ∃ has area .¬equalp2

t ∀ has area .>


19



Caused by the disjunction in the last assertion, we get two descendants of
ABox A14. However, both descendants contain clashes for the concrete in-
dividual q1 (i.e. either an all domain clash or a concrete domain clash) and
eliminate this branch.

It remains the ABox A15 as the second alternative descendant of ABox A12.
The ABox A15 assumes that ¬t inside(q2, q1) holds. It has all spatial con-
straints expanded.

A15 := A5 ∪



(x, q2) : has area, q2 : g insidep2
, q2 : ¬equalp2

(x, y) : ∃ (has area)(has area) . touching
(q2, q3) : touching
(y, q3) : has area, q3 : equalp4

(x, z) : ∃ (has area)(has area) . spatially related
(q2, q1) : spatially related

x : ∀ is t inside . (∃ has area .¬equalp2
t ∀ has area .>)

(z, q1) : has area, q1 : equalp2

(q2, q1) : ¬t inside


ABox A15 contains a concrete domain clash. In order to check for concrete
domain clashes, the calculus for ALCRP(DP) invokes the satisfiability test
for DP with the conjunction C0 of spatial predicate terms. This conjunc-
tion represents all spatial relations that have to hold between the concrete
individuals in ABox A15.

C0 :=

{
g inside(q2, p2) ∧ ¬equal(q2, p2) ∧ touching(q2, q3) ∧ equal(q3, p4)∧

spatially related(q2, q1) ∧ equal(q1, p2) ∧ ¬t inside(q2, q1)

}
Some of the terms in the conjunction C0 contain references to the two concrete
polygons p2 and p4 that have known positions (see Figure 5). During the
satisfiability test the elementary spatial relation that holds between these
polygons is computed. This results in the conjunction C0 ∧ touching(p2, p4)
that is unsatisfiable in our spatial domain DP .

The examples in this section demonstrate that reasoning about consistency
and subsumption of TBox concepts is a nontrivial task. Sound and complete
inference algorithms are a necessity in these application domain. In the next
section we will extend the discussion to ABox reasoning and demonstrate the
usefulness of ALCRP(D) for environmental planning problems.

3.6 ABox Reasoning for GIS Applications Concerning Environ-
mental Planning

Environmental information systems can benefit from spatioterminological
reasoning in many ways. First, queries can be posed as concepts composed
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A

Can this area be used as a playground?

Figure 8: A clip from the Oejendorf map (see text).

with respect to an ontology underlying a certain TBox. The description logic
reasoner will answer the query by finding all instances that are subsumed by
the query concept. Second, the ability to test ABox instances for consistency
can be used to implement a planning system which is based on hypothesize
and test strategies. For instance, let us assume the following TBox frag-
ment is used to model domain objects shown in the map of Figure 1. The
restrictedness criterion for TBoxes is fulfilled.

is touching
.
= ∃ (has area)(has area) . touching

is connected
.
= ∃ (has area)(has area) . connected

dangerous object
.
= freeway t chemical plant t . . .

insecure object
.
= dangerous object t

(unfenced object u ∃ is connected . dangerous object)

secure playground
.
= playground u ∀ is touching .¬insecure object

We suppose that the objects depicted in Figure 8 are represented in an ABox
as instances of general concepts such as building, region, road etc. These con-
cepts directly model the information given in the underlying database. The
geometry is assumed to be represented by corresponding polygons as fillers for
the attribute has area as required by the ontology underlying our TBox do-
main model. In order to check whether, for instance, the region area 1 which
is indicated by an arrow in Figure 8 can be used as a secure playground, we
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simply add the ABox axiom area 1 : secure playground.3 If the description
logic reasoner computes that the ABox is consistent, all constraints imposed
by secure playground are satisfied. Hence, according to our (simple) domain
model, area 1 might be suitable for a playground. Note that these inferences
are correct only if the semantics of spatial relations is adequately considered
by the TBox reasoner as described before.

4 Conclusion

Based on the description logic language ALCRP(D), we have shown how
spatial and terminological reasoning can be combined in the TBox. Thus,
the fruitful research on description logics has been extended to cope with
qualitative spatial relations and quantitative spatial data. One of the main
ideas is to introduce constructors for roles whose definitions are based on
properties of concrete objects. The abstract domain is used to represent
terminological knowledge about spatial domains on an abstract logical level.
The concrete domain (space domain) extends the abstract domain and pro-
vides access to spatial reasoning algorithms. We have shown that the concrete
domain given by polygons and predicates about spatial relations is admis-
sible. Our approach for testing satisfiability of finite conjunctions relies on
current work in qualitative spatial reasoning theory [Renz and Nebel 1997].
If required, even quantitative data (concrete polygons) are considered by
applying algorithms known from computational geometry (e.g. see [de Berg
1997]). Techniques for spatial indexing can easily be integrated. Note that
although realizability makes reasoning much harder [Grigni, Papadias, and
Papadimitriou 1995], in some cases where quantitative information is avail-
able for polygons, inconsistencies caused by relational structures can be easily
detected by applying polynomial algorithms.

We admit that theALCRP(D) restrictedness criterion for terminologies does
impose tight constraints on modeling spatioterminological structures. How-
ever, in a specific application, many interesting concepts can be represented
in a TBox with the additional advantage of having a decidable satisfiability
algorithm. Using an example from a GIS domain, we have demonstrated
that, on the one hand, topological relations directly influence the kind of
conceptual or terminological knowledge that can (and must) be derived by
a formal inference engine. On the other hand, assertions about concepts
restrict the set of possible spatial relations between different individuals.

Considering the general mechanism for integrating concrete domains, it be-
comes clear that another instance of ALCRP(D) can deal with temporal

3ABox statements can be automatically generated by a graphical interface (see
[Haarslev and Wessel 1996]).
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relations. Corresponding constraint satisfaction algorithms known from the
literature (e.g. [Ladkin and Reinefeld 1997]) can be employed. Future work
will reveal the relationship between ALCRP(D) and, for instance, the tem-
poral description logic developed in [Artale and Franconi 1997]. Although
this approach does not impose restrictions on terminologies, it does not pro-
vide facilities for expressing value restrictions over complex relations. This
is not a problem in ALCRP(D) as long as the terminology fulfills the re-
strictedness criterion. Defined qualitative relations that are “grounded” in
quantitative data provide a bridge to conceptual knowledge and support more
extensive reasoning services to be exploited for solving practical problems.
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A The Calculus for ALCRP(D)

The following two sections are excerpts taken from [Lutz, Haarslev, and
Möller 1997]. They are repeated here for the convenience of the reader.

A.1 Completion Rules

Before the completion rules can be defined, we introduce some technical
terms. Let A be an ABox, R be a role term, a and b be object names from
OA, γ be a symbol that is not element of OD, u be a feature chain f 1 . . . f k,
and let u1, . . . ,un and v 1, . . . ,vm (possibly with index) be arbitrary feature
chains. For convenience we define three functions as follows:

fillerA(a, u) :=


x where x ∈ OD such that
∃b1, . . . , bk−1 ∈ OA :

((a, b1) : f 1 ∈ A, . . . , (bk−1, x) : f k ∈ A)
γ if no such x exists.

createchainA(a , x , u) := {(a, c1) : f 1, . . . , (ck−1, x ) : f k}
where c1, . . . , ck−1 ∈ OA are not used in A.

relatedA(a, b,R) :=



true if (a, b) : R ∈ A
true if R is of the form ∃(u1, . . . , un)(v1, . . . , vm).P ,

and ∃x 1, . . . , xn, y1, . . . , ym ∈ OD such that
fillerA(a, u1) = x 1, . . . , fillerA(a, un) = xn,
fillerA(b, v 1) = y1, . . . , fillerA(b, vm) = ym,
(x 1, . . . , xn, y1, . . . , ym) : P ∈ A

false otherwise

Let A be an ABox, f be a feature name, a, b, c be object names from OA,
and x , y be object names from OD. If A contains the constraints (a, b) : f
and (a , c) : f (resp. (a, x ) : f and (a, y) : f ) then this pair of constraints is
called a fork in A. Since f is interpreted as a partial function, b and c (resp. x
and y) have to be interpreted as the same objects. Each ABox is checked for
forks immediately after a completion rule was applied. If a fork is detected,
all occurrences of c in A are replaced by b (resp. y by x ). Before any rule is
applied to the initial ABox A0, any forks in A0 have to be eliminated. It is
easy to prove that fork elimination preserves (in)consistency by showing that
a model I for an ABox A is also a model for an ABox A′ which is obtained
from A by fork elimination.

Definition 1
The following completion rules will replace an ABox A by an ABox A′ or
by two ABoxes A′ and A′′ (descendants of A). In the following C and D
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denote concept terms, R denotes a role term, and P denotes a predicate
name from ΦD. Let f 1, . . . ,f n as well as g1, . . . ,gn denote feature names,
and u1, . . . ,um denote feature chains. a and b denote object names from OA.

Ru The conjunction rule.
Premise: a : C u D ∈ A, a : C 6∈ A ∨ a : D 6∈ A
Consequence: A′ = A ∪ {a : C , a : D}

Rt The disjunction rule.
Premise: a : C t D ∈ A, a : C 6∈ A ∧ a : D 6∈ A
Consequence: A′ = A ∪ {a : C}, A′′ = A ∪ {a : D}

R∃C The concept exists restriction rule.
Premise: a : ∃R.C ∈ A, ¬∃b ∈ OA : (relatedA(a, b,R) ∧ b : C ∈ A)
Consequence: A′ = A ∪ {(a, b) : R , b : C} where b ∈ OA is not used in A.
This rule may create a fork if R is a feature.

R∀C The concept value restriction rule.
Premise: a : ∀R.C ∈ A, ∃b ∈ OA : (relatedA(a, b,R), ∧ b : C 6∈ A)
Consequence: A′ = A ∪ {b : C}

R∃P The predicate restriction rule.
Premise: a : ∃u1, . . . , un.P ∈ A,¬∃x 1, . . . , xn ∈ OD :

(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a , un) = xn ∧
(x 1, . . . , xn) : P ∈ A)

Consequence: A′ = A ∪ {(x 1, . . . , xn) : P} ∪
createchainA(a , x 1, u1) ∪ . . . ∪ createchainA(a, xn, un)
where the x i ∈ OD are not used in A.

This rule may create forks.

Rr∃P The role-forming predicates restriction rule.
Premise: (a, b) : ∃(u1, . . . , un)(v1, . . . , vm).P ∈ A,

¬∃x 1, . . . , xn, y1, . . . , ym ∈ OD :
(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a , un) = xn ∧

fillerA(b, v1) = y1 ∧ . . . ∧ fillerA(b, vm) = ym ∧
(x 1, . . . , xn, y1, . . . , ym) : P ∈ A)

Consequence: A′ = A ∪ {(x 1, . . . , xn, y1, . . . , ym) : P} ∪
createchainA(a , x 1, u1) ∪ . . . ∪ createchainA(a, xn, un) ∪
createchainA(b, y1, v 1) ∪ . . . ∪ createchainA(b, ym, vm)
where the x i ∈ OD and y i ∈ OD are not used in A.
This rule may create forks.

RChoose The choose rule.
Premise: a : ∀(∃(u1, . . . , un)(v 1, . . . , vm).P).C ∈ A,

∃b ∈ OA, x 1, . . . , xn, y1, . . . , ym ∈ OD :
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(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a , un) = xn ∧
fillerA(b, v1) = y1 ∧ . . . ∧ fillerA(b, vm) = ym ∧
(x 1, . . . , xn, y1, . . . , ym) : P 6∈ A ∧
(x 1, . . . , xn, y1, . . . , ym) : P 6∈ A)

Consequence: A′ = A ∪ {(x 1, . . . , xn, y1, . . . , ym) : P},
A′′ = A∪ {(x 1, . . . , xn, y1, . . . , ym) : P}

A.2 Clash Rules

Termination of the algorithm applying the completion rules is proved in [Lutz,
Haarslev, and Möller 1997]. The proof shows that after a finite number of
rule applications a tree Υ of ABoxes is obtained for which one of the following
conditions holds:

1. it contains an ABox A which is complete or

2. all leaf ABoxes in the tree contain a clash.

In both cases no more completion rules are applicable. In the following we
formalize the notion “to contain a clash.”

Definition 2
Let the same naming conventions be given as in Definition 1. Additionally,
let f be a feature. An ABox A contains a clash if any of the following clash
triggers are applicable:

Primitive Clash
a : C ∈ A, a : ¬C ∈ A

Feature Domain Clash
(a, x ) : f ∈ A, (a, b) : f ∈ A

All Domain Clash
(a, x ) : f ∈ A, a : ∀f .C ∈ A

Concrete Domain Clash
(x

(1)
1 , . . . , x

(1)
n1 ) : P1 ∈ A, . . . , (x

(k)
1 , . . . , x

(k)
nk ) : Pk ∈ A and the corre-

sponding conjunction
∧k
i=1 P i(x

(i)) is not satisfiable in D. This can be
decided because D is required to be admissible.
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