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Abstract

Theories on pictorial representations are supported by psycho-
logical experiments as well as by computational experiments.

In this paper, we investigate the importance of theories on
pictorial representations for the symbolic/subsymbolic distinc-
tion. We draw the following conclusions: 1) Pictorial represen-
tations should be viewed as specialized subsymbolic repre-
sentations, because they share important properties with subsym-
bolic representations, e.g., local activation and inhibition opera-
tions. 2) Theories on pictorial representation lead to a hybrid
representational framework including subsymbolic and symbolic
parts.

Hence, the two extreme positions, a homogeneous subsymbolic
represention (Smolensky) vs. a homogeneous symbolic represen-
tation (Fodor/Pylyshyn) should be rejected, because we view it as
more important to find out which representation is best for which
range of tasks within a hybrid representational framework.

This paper also appears in: Proceedings of OGAI-1990:
"Konnektionismus in der Artificial Intelligence und Kognitions-
forschung”, G. Dorffner (Ed.), Springer Verlag 1990.



Zusammenfassung

Theorien Uber piktorielle Représenationen werden sowohl durch
psychologischer Experimente, als auch durch Computerexperimente
gestiutzt.

In diesem Beitrag wird untersucht, welche Bedeutung die Theorien
piktorieller Reprdsentationen fiir die Symbolismus/Subsymbolis-
mus Debatte haben. Dabei wird folgender Standpunkt vertreten: 1)
Piktorielle Représenationen sollten als spezialisierte subsym-
bolische Reprasentationen angesehen werden, da sie wesentliche
Eigenschaften mit subsymbolischer Reprédsentationen teilen, z.B.
lokale Aktivierungs- und Inhibitionsprozesse. 2) Die Annahme
piktorieller Reprasentationen legt ein hybrides Reprasen-
tationssystem nahe, welches sowohl symbolische als auch
subsymbolische Bestandteile hat.

Deshalb sollten die beiden extremen Positionen in der Debatte
zwischen Fodor/Pylyshyn und Smolensky, einerseits homogene
symbolische Représentationen und andererseits homogene sub-
symbolische Reprasentationen, aufgelést werden zugunsten der
Frage, welche Reprasentationsform besser geeignet ist fiir welche
Klasse von Aufgaben innerhalb eines hybriden Représentations-
system.

Dieser Beitrag erscheint ebenfalls in den Proceedings der OGAI-
Tagung 1990: "Konnektionismus in der Artificial Intelligence und
Kognitionsforschung”", G. Dorffner (Hrsg.), Springer Verlag 1990
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1 Introduction

This paper is concerned with representational aspects of cognition. [t is based
on the two assumptions: 1) that cognition is information processing and 2) that
mental representations and their manipulation are essential for cognitive processes.
Both assumptions are the basis of the cognitive science research program. Given
these assumptions there are mainly two different representational positions.

First, the symbolic position (e.g. [Fodur + Pylyshyn 88|) that favors the sym-
bol system hypothesis. Symbolic and structured expressions composed ol atomic
representing entities are favored as representations within this theory, and struc-
ture sensitive operations are essential to process these representations. Second,
the subsymbolic! position (e.g. [Smolensky 88]) that proposes the use of simple
neuron-like elements as atomic representing entities and local activation and inhibi-
tion operations as mode of processing to model cognition. The dominant advocates
of the symbolic camp claim that the mind/brain architecture is not connectionist
at the cognitive level. On the other hand, the radical advocates of the subsymbolic
camp completely reject symbolic accounts for cognition.

There is a third position besides the purely symbolic and the purely subsym-
bolic position: modeling cognitive processes by exploiting pictorial representa-
tions (see e.g. [Paivio 71|, [Kosslyn 80|, |Pinker | Kosslyn 83|, |Sterelny 86/,
[Rehkimper 87|, [Lindsay 88|). In general, the model of pictorial representa-
tions is supported by: 1) empirical evidence from experiments in psychology and

physiology, 2) computational experiments in artificial intelligence, and theoretical

'The term subsymbolic might be misleading because of the commitment to mental represen-
tations and therefore to symbuols (see also [Fodor + Pylyshyn 88]), although these symbols might
differ from symbols in 'classical’ approaches. But in this paper we use it fullowing Smolensky’s

definition.



insights, e.g., into complexity constraints and the usefulness of different repre-
sentations and different styles of processing.  Pictorial representations are ouly
proposed for modeling a subclass of cognitive phenomena. Additional and more
abstract propositional representations are necessarily assumed within these ap-
proaches. Typically, propositional representations complement pictorial represen-
tation to deal with high-level cognitive functions, e.g., for several aspects of lan-
guage processing and for recognition. In addition, propositional representations
are exploited as long-term memory.

Pictorial representations are mainly favored to model cognitive processes which
are based on spatial or spatiotemporal relations between objects and object parts.
Typical examples include the computation of spatiotemporal distances between
visual objects, e.g., to avoid collisions, the mental rotation of objects, comparing
the size of different objects, learning of typical object motion, the prediction of
spatiotemporal behavior of objects, or top-down control of visual processes (see
e.g. [Kosslyn 80|, |Pinker 88|, [Gardin + Meltzer 89), [Steels 90|, [Mohnhaupt +
Neumann 90a|, |Mohnhaupt + Neumann 90b|).

[n this paper, we focus on the importance of pictorial representations for the
symbolic/subsymbolic distinction. Because we see significant evidence for picto-
rial representations, we want to elaborate what these models contribute to the

symbolic/subsymbolic debate. We derive two main conclusions:

I. For two reasons, we view pictorial representations as specialized subsym-
bolic representations. First, local activation and local inhibition operations
are essential for these representations. Second, pictorial representations do
not have composed representing entities and structure sensitive operations.
The representing entities are typically cells, which mainly represent location
information and which are connected to its neighbors. These cells are in the
same sense subsymbolic as in classical subsymbolic representations, because

they slice represented entities into small atomic pieces (see | Rehkdmper 88)).

2. Following conclusion one, we reject both the purely subsymbolic and the
purely symbolic position. The reason is that using pictorial representations
leads automatically to a hybrid representational system including pictorial
subsymbolic and propositional symbolic parts. A hybrid model is neces-
sarily assumed within the different approaches on pictorial representations,

in psychological studies as well as in computational experiments. Pictorial



subsymbolic and propositional symbolic representations are used at different

levels of abstraction for ditferent cognitive tasks.

Therelore, the symbolic/subsymbolic debate changes from an "all or none’ ques-
tion into a "what is best for which tasks’ question. lustead of finding out about one
single “language of thought’, we view it as more important to identify subclasses
of coguitive tasks, which are based on the same underlying computational archi-
tectures and the same style of processing. [n addition, it has to be investigated
how the different subsystems interact.

[n Section 2 we review briefly the current discussion on symbol systems and
counectionism. In Section 3 we consider the main empirical and computational
arguments for favoring pictorial representations to model several cognitive tasks.
In addition, we elaborate why pictorial representations should be viewed as spe-
cialized subsymbolic representations, which are complemented by propositional

symbolic representations.

2 Symbol Systems and Connectionism

Recent discussions between the subsymbolic position (sce [Smolensky 88!) and
the symbolic position (see [Fodor | Pylyshyn 88]) offer very different models for
cognition at the representational level. The authors have opposite views about the
adequate description language for cognitive phenomena and about the appropriate
level of description for many relevant phenomena. Below, we briefly review the two
different positions. In addition, we add two general comments to the discussion,
one concerning the importance of the debate for cognitive science, and the other

concerning an assumption on which the debate is based.

2.1 Symbol Systems

Fodor and Pylyshyn define symbol systems as having representational states with
combinatorial syatactic and semantic structure. They postulate one language of
thought” based on structurally atomic and structurally molecular representations.
The semantic content of molecular expressions depends on the semantic content
of its syntactic parts. In addition, there are processes operating on the represen-

tations which are sensitive to the structure of the representation.



[n Fodor and Pylyshyn's view several important aspects of cognition can be ap-
propriately described by symbol systems: First, the unbounded expressive power
of language (productivity of thoughts) can be explained only by non-atomic ex-
pressions. Second, the systematicity and the compositionality of thoughts shonld
be viewed as a result of applying syntactic rules. Denying syntactic aspects of lan-
guage would lead to an unnecessarily complex explanation. Third, the inferential
coherence of thoughts can also be explained by a syntactic analysis. By inferential
coherence the authors refer to several empirical facts, e.g. to the observation that
humans know that P can be logically deduced from P A Q if they know that
P can be logically deduced from P A Q A R . Composed syntactic structures
lead to a natural explanation of these empirical observations, because they would
result from intrinsic properties of the representation and its processes. Explain-
ing the same effects within a connectionist framework would require additional
assumptions in terms of extra explicit connections between different substeuctures
of a connectionist network.

Because composed syntactic expressions and structure sensitive operations can-
not be found in the current connectionist framework, following Fodor and Pylyshyn,
they draw the conclusion that connectionist theories are insufficient to explain cog-

nition. They view connectionism as an implementation theory at the neural level.

2.2 Connectionismn

On the contrary, Smolensky argues that counectionist? models can account for
many, possibly all cognitive phenomena. He admits that structured expressions
and structure sensitive operations are currently not completely understood or miss-
ing within connectionist framework, but he views these constructs as less impor-
tant; in addition he is convinced that they could be developed in future connec-
tionist work.

[n his view the adequate description of cognition should be at a subsymbolic
level, which is an intermediate level above the neural level but below a symbolic
level. It is well suited to describe the 'intuitive processor’, which Smolensky views
to be the most important cognitive level. The subsymbolic level is composed of

representations distributed over a large number of simple atomic neuron-like ele-

2By cm:mectionism we refe like Smolensky to PDP models (see [Rumelhart + McClelland

87]); localist models are viewed to be symbolic representations using a connectionist style of

processing.



ments and their dynamic behavior. It is characterized by differential equations:
the ’activation evolution equation’ describing the temporal evolution of activa-
tions within the network, and the *connection evolution equation’ describing the
evolution of the connection strength between elements. "Hard’ rules are replaced
by "soft’ constraints and logical inference is replaced by statistical inference. The
neuron-like style of processing includes local activation and inhibition operations
between neighboring elements. It is called subsymbolic or numeric.

Smolensky’s view does nol eliminate high-level entities like goals, intentions
and plans from cognitive theories, hut by using the connectionist framework, he

tries to explain these phenomena as emerging from the subsymbolic level.

2.3 Two comments

The symbolic/subsymbolic discussion received significant attention within the cog-
nitive science literature. Unfortunately, the debate often leads to the impression
that the symbolic/subsymbolic distinction is fundamental to any aspect of cogni-
tive science. The reason for this misinterpretation is that two important questions
often remain unanswered: 1) What is the domain of the debate, which aspects of
cognitive science are completely unaffected by the debate?, and 2) What are the
assumptions on which the discussion is based? Below, we comment on these two

questions.

L. According to [Marr 82| information processing tasks like cognition must be
understood at three different levels: at the level of the computational theory,
at the level of representation and algorithms, and at the implementation

level.

[t is important to note that symbolic and subsymbolic theories as described
above are mainly concerned with the representational and algorithmic level
of cognition.® Therefore, the computational theory is largely unaffected, al-
though the choice of an adequate representation can lead to additional insight
into the computational theory. But we cannot think of a situation where we
discuss a representational system without a computational theory in mind,
which is the core of any cognitive theory. Hence, discussing representational
theories in isolation is important (and the main focus of this paper), but it

does not address other significant questions concerning cognition.

*This was also pointed out in a recent article by |Chandrasekaran + Goel + Allemang 88|
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2. The basic assumption underlying the symbolic/subsymbolic discussion in
the version described above is the following: All aspects of cognition are
based on one single computational architecture including one basic style of
processing? (see | Newell 80|, [ Fodor 81/, | Pylyshyn 84), | Pylyshyn 87|, | Fodor
+ Pylyshyn 88|, [Smolensky 88]). Following this view, the main research goal

is to investigate this basic "language of thought’.

There are other approaches which reject this strong hypothesis. Basically,
proponents of the alternative models postulate that different cognitive task
demands require differently adapted computational architectures including
different styles of processing. T'his is analogous to the concept of different
'virtual machines’ in computer science. The number of proposed cognitive
virtual machines ranges from a small number (see e.g. [Boden 88|, [Lindsay
88|, [Clark 89, [Zimmer + Engelkamp 88|) to a possibly very large number
(see | Minsky 85!).

As an example, consider the two tasks of predicting the path of a baseball
in order to catch it, and of predicting the stock market development. The path
of the ball is determined by universal physical laws (e.g. about gravity and air
friction), and the knowledge necessary to solve the problem is well defined. The
task can only be learnt through observation based on visual data and ongoing
motor reaction. Oue very important constraint is the time available for an analysis
(less than a second). Also, it seems advantageous to feed back the results of the
ongoing analysis to the visual system to constrain the visual processes, which are
generally very expensive.

On the other hand the behavior of the stock market is largely nondeterministic
and a prediction must be based on a large portion of world knowledge. The
knowledge can be acquired through different conscious processes, e.g., tutorial
instruction. Universal laws are unknown. There is no obvious low dimensional
and fixed parameter space by which the behavior can be modeled. A prediction is
not constrained by very fast interaction between sensors and effectors.

Although we cannot rule out that these two tasks (modeled by two very different
computational theories) are solved by the same kind of representation and the
same style of processing, it does seem unlikely. In general, it seems more likely

that the cognitive system consists of several (somewhat) specialized subsystems

*n [Clark 89| this assumption is called the uniformity assumption



that are dedicaled to certain classes of tasks. For example, subsystems might be
specialized to deal specifically with I) a collection of tasks all related to similar
objects, or 2) a collection of Lasks, the solutions to which are all well suited to a
certain mode of computation. [t is this latter type of specialization for which a
pictorial subsystem seems to be designed. It is natural to view cognitive tasks in
terms of the domain knowledge involved and the appropriate form of computation

so that efficient use of modular design can be made.

3 Pictorial representations

[uvestigating the nature and the causal role of pictorial representations for cogni-
tion is a well known research topic since Paivio’s work in the early seventies (see
(Paivio 71]). The most prominent opponents of the so called 'imagery’ debate are
Kosslyn ([Kosslyn 80|) and Pylyshyn ([Pylyshyn 84]). Support for pictorial rep-
resentation can be mainly based on two different kinds of arguments. First, they
can be based on empirical results in psychology (e.g., reaction-time experiments
and error analysis) and neurophysiology (e.g., experiments on brain damaged pa-
tieats). Second, support for pictorial representations can be derived from compu-
tational experiments in artificial intelligence, and from theoretical considerations,
e.g. about complexity constraints and the usefullness of different representations

and different styles of processing.

3.1 Experimental and computational evidence

From research in Psychology, there is significant evidence for a distinet pictorial
subsystem. Many empirical results can be explained by assuming an 2-dimensional
image-like representation in which spatiotemporal relations (e.g. spatiotemporal
neighborhood) of objects are explicitly available (see e.g. |Shepard 78|, |Kosslyn
80|, [Pinker + Kosslyn 83|, | Pinker 85, and |Pinker 88|). There is also evidence
that this representation is shared by perceptual and cognitive processes ([Finke
85]). Here, we do not review the experiments in detail, an excellent overview can
be found in [Finke + Shepard 86| and | Finke 89|. The main empirical phenomena
for which a pictorial subsystem leads to a natural explanation are the following: 1)
identification and comparison tasks for viewed and imagined objects, 2) constraints
on the resolution of non-visible objects, 3) judgement tasks for distances and angles

between objects, 4) spatial transformation tasks of objects, e.g. mental rotation,



9) results on the interference of perceptual and cognitive tasks, and 6) conditions
under which perception can be enhanced by cognition.

Recent findings in ueurology also support the cognitive plausibility of a pic-
torial subsystem. These results suggest that: 1) mental images interact with
perceptions (see [Farah 85|, [Farah + Peronnet i Gonon - Ciard 88]), and 2) the
pictorial system itself is composed of distinguishable subsystems (see |Farah 85|,
|Kosslyn 87|, [Farah + Hammond + Levine + Calvanio 88|, [Farah + Hammond
88]). In particular, experiments on im paired patients show that a visual® pictorial
representation can be distinguished from a spatial® pictorial representation.

Additional evidence for the usefullness of pictorial representations results from
computational experiments and theoretical considerations. The main goals of these
investigations are: 1) to answer the question why a pictorial representation would
make sense for several information processing tasks from a computational point
of view, and 2) to develop criteria to evaluate and to compare different represen-
tational schemes. Computational experiments are also important to test different
representational frameworks, e.g. for consistency and temporal behavior. The
different computational models have different degrees of psychological plausibility.
The main tasks for which computational aspects of pictorial representations have

been investigated are:

o Understanding the behavior of physical objects and physical systems: There
are several approaches that model the behavior of physical objects using a
quantitalive spatial or quantitative spatiotemporal representation. [n Funt’s
([Funt 80]) approach, the interference of falling objects can be predicted using
a spatial array and local operations to simulate object motion. [Gardin +
Meltzer 89| also use a pictorial representation. They express the behavior of
non-rigid objects and liquids by local interaction rules within a 2-dimensional
representation. Inferences can be derived through simulation. [n |Larkin +
Simon 87| diagrammatic representations are exploited to understand the

behavior of physical systems, e.g. pulley problems.

o Path planning: Steels ([Steels 88]) proposes a model to compute a path
through obstacles based on a 2-dimensional array and a reaction-diffusion

model of local interaction rules. [Mohnhaupt + Neumann 90a| use an explicit

®for representing the appearence of objects

®for representing spatial relations between objects
P g sp



d-dimensional representation (two spatial and two velocity dimensions) and
local rules to model the behavior of observed objects. The model allows
to predict object motion in the presence of obstacles and to predict the

interference of moving ohjects.

o Understanding verbal descriptions: Other approaches are concerned with the
use of pictorial representations to understand spatiotemporal relations such
as the proposition in front of’, to understand abstract descriptions (e.g.
propusitional descriptions of geometric figures) and to understand language
in general. By visualizing the content of the description, that is filling rele-
vant information into a pictorial representation, inferences can be simplified,
previously implicit information is available, and consistency can be checked.
(see e.g. [Gelernter 63], [Waltz + Boggess 79|, [Kosslyn 80, [Adorni and Di
Manzo 83|, [Pribbenow 90]). There are also indications that a pictorial rep-
resentation is advantageons for an adequate hearer model in some domains

(see |Neumann t Novak 861).

o lligh-level control of perceptual processes: This topic has mainly been in-
vestigated in computational vision, e.g. in the areas of expectation-bhased
identification of objects or vhject motion (see |Binford 82|, | Tsotsos 87| for
overviews). Typically, object models can be used to compute the spatiotem-
poral appearence of objects from a certain viewpoint, which is then used
for matching against bottom-up data provided by perceptual processes. The
representation of a certain viewpoint is represented pictorially” to facilitate
the matching process. In the area of motion prediction, [Mohnhaupt +
Neumann 90b| use pictorial event models to predict the behavior of moving
objects. The predictions allow to focus the visual processes and thereby lead
to a sigunificant speed up.

The use of pictorial representations for top-down control of visual processes
is psychologically plausible: It is known (see [Rosch + Mervis + Gray +
Johnson + Boyes-Bream 76|, [Rosch 78)) that information about basic level
categories can facilitate perception, but priming with a superordinate cate-
gory does not lead to a significant speed up. Basic level categories are the

highest level of abstraction for which there is a clearly definable visual shape.

"There are also logic-based representations for high-level vision (see |Reiter + Mackworth 90),

and see [Provan 90| fuor counteraryuments
b



Rosch and coauthors conclude that top-down coutrol is performed by form-
ing mental images, which cannot be generated from superordinate calegories.
The results are consistent with a complexity level analysis of visual processes

(see [Tsotsos 90| and Mohahaupt + Neumann 90c)).

o Learnung: In |[Mohnhaupt ¢ Neumann 89| and [Mohnhaupt + Neumann
90a| several learning tasks with respect Lo object motion are considered us-
ing a pictorial representation. Starting with basic physical observables (lo-
cation and speed) for describing event instances, typical object motion can
be learned using local operations. There is a natural traunsition from single
instances to prototypes. To make experience applicable to new situations,
perceptual primitives like distances and relative orientations are computed.
They can be extracted within the pictorial representation by simple spread-
ing activation operations. This kind of representation as a starting point for
further learning is plausible, because it is closely related to and can there-
fore be directly filled from perceptual processes. By building the model from
observations within the pictorial representation, physical plausibility can be

maintained without extra computation.

3.2 Central features

[n this subsection we summarize important computational and representational
leatures of pictorial representations. The representational features are then ex-
ploited to relate theories on pictorial representations to the symbolic/subsymbolic

distinction.

The computational experiments on pictorial representations show that even if
two representations are equivalent in terms of information content, they can differ
drastically with respect to their temporal characteristics, e.g. the time needed to
access relevant information. There are theoretical results showing the limitations
with respect to tractability and efficiency of a general purely logic-based frame-
work (see e.g. [Levesque 86(). Choosing representations which are specialized as a
consequence of incorporated constraints of a particular domain is one way to over-
come the limitations. Aunother strategy is to make relevant information explicit
(see [Palmer 78|), that is, accessible at low costs. Of course, there is a trade-off

between explicitness of information and storage requirements. [n addition, several
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important physical constraints can be made intrinsic within pictorial representa-
tions. For example, the representation in Steels 90| automatically allows only
one object per position. Dynamic behavior, ¢.g. the behavior of moving objects,
can be coded by explicit representation of the temporal dimension or by local
interaction rules. [nferences can be derived through simulation. The inference
process is non-proofl-procedural (| Lindsay 88]). Physical plausibility can also be
maintained by building up the models from concrete observations and subsequent
local processing.

Pictorial representation allow for a natural integration of bottom-up percep-
tual data and top-down information computed from coguitive processes. This is
advantageous because many cognitive processes are either based on visual data, or

relate to visual data.

The symbolic/subsymbolic distinction is based on representational features (see
Section 2), that is characteristics of the representing entities and the mode of pro-
cessing. From this perspective two features are central to pictorial representations:
I) they are subsymbolie, and 2) they are short-term representations, which are
complemented by propositional symbolic long-term representations. [n the follow-
ing, we focuss on these two aspects in more detail.

The representing entities of pictorial representations are typically cells con-
nected to its local neighbors. They divide the spatial content and possibly other
dimeunsions of a represented entity into small pieces. For example, a house can
be represented by a rectangular set of connected cells, each representing a certain
location on the xy-plane, or a non-rigid moving bar can be represented by set of
connected cells each representing a certain piece of the bar. The cells as repre-
senting entities are in Smolensky’s sense subsymbolic. They slice the represented
entity into small entities (symbols) which are similar to entities in a distributed
representation within the connectionist framework. The entities do not have any
syntactic substructure.

The mode of processing includes the use of simple, local and parallel opera-
tions. The operations are either activation and inhibition operations or local search
operations. They are used for different tasks, e.g. to compute spatial relations,
or to compute a path through obstacles. There is no dependence on structural
properties of the cell or its connected neighbors, the local search operations only

depend on scalar values of the neighbors. Hence, the operations share important



properties with operations in connectionist networks.

Pictorial representatious are short-term representations complemented by sym-
bolic long-term representations. The different approaches agree on the need for
additional, more abstract, symbolic representations, e.g. to support long-term
memory, for recognition, and for natural language communication. There is psy-
chological evidence that pictorial representations do not serve as long-term memory
(e.g. |Phillips 83|, | Marschark 881), but that they are instantiated on demand from
long-term memory (see |Kosslyn 80, [Pinker 88, [Kosslyn + Cave + Provost +
Gierke 88|).

From a computational point of view, efficiency supplies strong reasons Lo as-
sume representations in long-term memory, which are more abstract and more
compact than pictorial representations.  Several computational models exploit
propositional symbolic long-term representations for high-level tasks. For exam-
ple, object recognition and event recognition is mainly treated within propositional
frameworks (see e.g. [Tsotsvs 87| [Neumann + Novak 83|, |[Andre + Bosch + Her-
zog + Rist 86]). [t is interesting to note that a more fine-grained recognition
might require an interplay between a propositional representation and a pictorial
representation (see [Mohnhaupt + Neumann 90al).

The work on event recognition also shows that propositional descriptions are
well suited as a starting point for natural language communication. [n |Neumann +
Novak 86| propositional event models are used to fill a case-frame deep structure for
natural language generation. The arguments for using ’classical’ symbolic models

in this domain are similar to the arguments by Fodor and Pylyshyn (see Section .

4 Summary

Within cognitive science several different representational theories are under in-
vestigation. Two extreme positions include those that favor a symbol system
hypothesis and those that favor a subsymbolic account for cognition. We argue
in favor of a theory which consists of both, symbolic and subsymbolic parts. Our
argumentation is based on the importance of theories on pictorial representations
for the symbolic/subsymbolic distinction. It consists of three steps:

First, there is empirical and computational evidence supporting Fodor’s and
Pylyshyn's arguments, that there are some tasks which can ouly be modeled by

a symbolic representation, mainly in the area of language understanding. But
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this does not exclude different representations for other tasks., [n fact, Lhere is
empirical and computational evidence that pictorial representations are used for
several important tasks, e.g. for the computation of spatiotemporal relations be-
tween objects, mental rotation, path planning, and several prediction tasks with
respect to object motion. For efficiency reasons and empirical evidence, pictorial
representations are short-term representations instantiated under certain definable
condition as a 'cognitive virtual machine’.

Second, we view pictorial representations as subsymbolic representations be-
cause local activation and local inhibition operations are essential for these repre-
sentations. In addition, there are no composed representing entities and no struc-
ture sensilive operations within these approaches. The representing entities are in
the same sense subsymbolic as in classical subsymbolic representations, because
they slice a represented entity into small atomic pieces.

Third, modeling some cognitive processes with pictorial short-term representa-
Lions necessarily results in rejecting the purely subsymbolic and the purely sym-
bolic model. The reason is that additional symbolic long-term representations
which complement pictorial subsymbolic short-term representation are viewed to
be necessary. This leads Lo a hybrid model which includes subsymbolic and sym-
bolic parts at different levels of abstraction for different tasks.

Following our view, the symbolic/subsymbolic debate changes from an ’all or
none’ question into a ’what is best for which tasks’ question. Therefore, instead of
finding out about the language of thought’, it is more important to identify sub-
classes of cognitive tasks, which are based on the same underlying computational
architectures and the same style of processing, and to investigate how different

subsystems interact.
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