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Wissensquellen zum Verstehen und Beschreiben

von Bildfolgen

Zusammenfassung

Das Verstehen von Bildfolgen wird als ein
Vorgang dargestellt, bei dem einzelne Pro-
zesse verschiedenartige Wissensquellen da-
zZu ausnutzen, um aus den Rohbildern Beschrei-
bungen mit zunehmendem Bedeutungsgehalt ab-
zuleiten. Der erste Teil dieser Mitteilung
handelt von niedrigen Bilddeutungsprozessen.
Es wird eine Ubersicht iliber neuere Arbeiten
gegeben, besonders im Hinblick auf die zu-
grundeliegenden Annahmen ilber die reale Welt
und den Bildentstehungsvorgang. Im zwelten
Teil wird Objekterkennung diskutiert. Vor-
wissen lber Objektformen mufl durch zusdtz-
liches Wissen ergdnzt werden, welches den
Erkennungsprozess unterstiitzt. AbschliefBend
werden Arbeiten zur Bewegungsanalyse be-
handelt. Hier geht es um Wissensquellen, die
zum Erkennen héherer Bewegungskonzepte er-
forderlich sind.
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Abstract

The task of understanding image sequences is viewed in terms of
processes which exploit various knowledge sources to derive
increasingly meaningful descriptions from raw image data. The
first part of the article deals with low-level vision. Recent
work is surveyed with respect to underlying assumptions about the
real world and the image formation process. In the second part
object recognition 1is discussed. Shape knowledge must be
augmented by special knowledge which supports the recognition
process. Finally, work on motion understanding is reviewed with
respect to the knowledge required for recognizing higher-level
concepts.

1. Introduction

Image sequence analysis is one of the major tasks of artificial
intelligence. It deals with time-varying visual data which 1s
visual information in its most general form. The typical 1input
of the human visual system is time-varying, be it due to observer
motion or scene changes. Hence image sequences should be also
considered the typical data for computer vision which is the
endeavour to do by computer what humans do by eyes and brain.
But the historical development of computer vision has led to a
single-image paradigm due to the many problems which occur
already in this restricted case. Single 1image analysis is
customarily understood to be the task of localizing, describing
and identifying objects in the 2D image of a 3D scene. While
object recognition is undoubtedly an essential prerequisite of
image wunderstanding, it is not the whole problem. This becomes

apparent immediately when turning to image sequences.
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Image sequences have much the same semantic potential as silent
movies. This means that computer analysis of image sequences
should ultimately be able to extract results comparable to human
understanding of silent movies. This 1is, of course, an ambitious
goal in view of the state of the art in computer vision. But it
1s the proper view to take when defining the competence of a

general vision system.

Silent movie wunderstanding in vision compares to story
understanding in natural language processing. In fact, it is
likely that the semantics derived from either input should be
represented in much the same way. Representational schemes for
both, story understanding and image sequence understanding,
are still in their infancy, however, 8o it is premature to decide
about commonalities. But the connection between language and

images is important for two other reasons.

First, the meaning of a natural language utterance may be
clarified by yisualization. This amounts to inverting the image
understanding process: (imaginary) images are generated from an
abstract representation. Waltz has studied this process in some
detail using examples like “The dachshund bit on the mailman’s
ear” (WALTZ 81). He is one of the few researchers active in both

vision and natural language.

Another important connection of vision and natural language
arises from verbalizing what one sees. Here the results of image
(sequence) analysis are taken as input for a process which maps
meanings into language. It is not at all clear, what the results
of image analysis should be, i.e. where image analysis ends and
verbalization begins. Vision researchers tend to consider
verbalization the front end of image analysis and natural
language researchers vice versa. On the surface this looks like
an academic question, but at its core lies the old controversy
about the origin of thought: whether thinking 1s in terms of
visual or verbal concepts. This question shall not be persued,

however, in this article. It has only been mentioned to
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illustrate the uncertainty about higher level vislon processes.

This article attempts to give an overview of vision which goes
beyond the traditional paradigm of object recognition. It
includes and emphasizes contributions which map visual data 1into
higher level concepts, in particular those concepts which support
natural language description. The latter part will be quite

sketchy and mostly based on motion research.

Computer vision is often scolded for 1its lack of scilentific
rigour. Indeed, much of the early literature describes
algorithms for visual data manipulation which have a certain
adhoc flavour, e.g. algorithms for object recognition in a very
restricted environment. But the need for more theory and less
empiry has long been responded to. One major step forward
resulted from model-based vision concepts. Knowledge about what
one is looking for is made explicit wusing structural
representations, while recégnition is the <conceptually simple
process of comparing known descriptions with the unknown (BARROW
and POPPLESTONE T71). Other significant achievements resulted
from investigating the laws of image formation, i.e. the physics
which relate intensity and color of an image point to the
corresponding surface element in space (HORN 75). In the same
spirit projective geometry was studied to relate the shape of
image components to surface shape in space (e.g. GRIMSON 81).
All this is mentioned here to motivate a particular point of view
which will be taken in this article. Vision will be considered
at the kpowledge level. This means that processes will be
described in terms of knowledge which they exploit or assumptions
which they make about the world to attain certain goals. The
knowledge level abstracts from particular algorithms and exposes
the rationale, see NEWELL 82 for an illuminating discussion of
this notion. For example, an algorithm which extracts object
boundaries by greyvalue thresholding can be characterized at the
knowledge level as a process which assumes that the visual world
consists of flat cardboard pieces tossed randomly onto a plane.

The deficiencies and limitations are immediately apparent since
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we can judge the truth of the underlying assumptions.

The main body of this article is organized according to three
phases of a vision system:

() low-level vision

(ii) object recognition

(iii) high-level vision

Low-level vision deals with processes which map raw image data
into representations below the object level, e.§. pixels into
lines or regions into surfaces. From the early beginnings of
image processing up to now low-level processes have enjoyed
considerable attention, after all most image analysis tasks begin
with raw images. In spite of much work the results are still
unsatisfactory compared with human vision, and efforts to
implement general vision systems wusually suffer from poor
low-level processing. Recently a series of papers (published
jointly in Artificial Intelligence 17, 1981, and alsoc in BRADY
61) contributed significant novel ideas. The major part of

chapter 2 gives an account of this work.

The next phase - object recognition - encompasses processes which

localize and identify objects wusing the output of low-level
vision and a priori knowledge about object shapes. A priori
knowledge 1is represented in terms of models which capture
invariant properties of an object. Chapter 3 reviews the
requirements for useful object models from the knowledge point of

view.

As has been pointed out before, most vision research ends at
object recognition, and anything beyond is much less complete and
well-defined. Nevertheless chapter 4 discusses phase 3 of a
vision system which is tentatively called high-level vision.
Given the output of phase 2 in terms of identified objects and
object 1locations, how can one extract the meaning of a scene?
The discussion will mainly focus on motion interpretation. It is

shown that in general the meaning of motion cannot be computed by
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comparing object trajectories to models. Various other sources
of knowledge are required, e.g. domain-dependent standards,
models for "events”, measures of interestingness. A great deal
of affinity to «corresponding knowledge structures in natural

language reasearch becomes apparent.

2. Low-level vision

It is widely accepted that initial processing of raw images
should be general-purpose, i.e. independent of the contents of a
particular scene and of a priori knowledge which one might have
about it. In fact, low-level vision can be defined as processing
images on the grounds of general knowledge about the relationship
of images and real-world scenes. In this chapter, the kinds of
knowledge which are exploited are first outlined in toto. Then
several computational theories are reviewed which tap the

knowledge for image processing purposes.

The properties of images are determined by the imaging situation,

which can be decomposed into five constituents:

1) Real world. Object shapes and surfaces have certain typical

properties irrespective of a particular scene or domain.
2) ination. Although images may be taken under a wide
variety of 1lighting conditions, certain restrictions may be

expected to hold.

3) View point. Position and orientaticon of the imaging system

usually preclude atypical views.

4) Photometry. Given complete knowledge of 1) to 3), color and

brightness of a pixel may be determined from photometric laws.

5) Projective geometry. Similarly, pixel coordinates
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corresponding to a real-world point follow from the laws of

projective geometry.

The most important property of real-world objects 1s coherence.

Objects are not scattered about in small components but tend to
be a connected entity. Of course, there are exceptions or cases
of very loose connection, e.g. the branches of a tree in winter,
but in general it is valid to assume coherence. From this the

coherence principle of low-level vision can be derived:

A1: Assume that neighboring pixels belong to the same object, 1if

there is no evidence to the contrary.

Many segmentation algorithms incorporate this principle, e.g. by
merging isolated spots with surrounding regions, although

coherence is rarely stated as an underlying assumption.

An equally basic notion is persistence or - more precisely -

continuity of change. As a rule, objects do not appear or

disappear suddenly or instantaneously undergo drastic changes of
shape, color and position. This also applies to illumination and
view point properties. In consequence images change only
gradually along the time axis 1if taken at sufficiently small
intervals. From this follows an assumption about image

sequences:

A2: An object point which is visible in a certain image at a
certain location will be visible at approximately the same

location in the next image.

This assumption plays an important part 1in several processes
proposed for motion analysis. For example, optical flow (which
is the field of pixel displacement vectors between successive
images) can be computed from local greyvalue changes given that
the displacement vectors are small and certain smoothness
assumptions hold (HORN and SCHUNCK B81). 1If applied to prominent

picture points, displacement computation amounts to determine the
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correspondence of points 1n successlve images. Proximity,
i.e. the assumption of change continuity, has been found to be an
essential criterion (BARNARD and THOMPSON 80, DRESCHLER 81}, also
on the grounds of psychological experiments (ULLMAN 79). It must
be noted, however, that A2 is invalid in all but idealized image
sequences due to the phenomenon of occlusion. If there 1is
motion, there are always parts of the scene which disappear and
others which are uncovered. Nevertheless A2 is employed by 2
reason which is typical for low-level vision strategies: The
number of pixels for which A2 is valid is generally larger than
the number of pixels for which it is not valid by one order of
magnitude, since the former is a function of object area while
the latter depends on contour length. Hence A2 is a good guess.
It is not surprising that the above mentioned procedures for
optical flow and correspondence computation have problems at
object boundaries.

ightness discontinuiti play a key part in low-level vision.
They may delineate object boundaries and thus provide a means for
segmenting the image into meaningful components. It is
worthwhile to consider the wunderlying physics in order to
understand the assumptions on which certain approaches are based.
The brightness of a pixel which depicts some surface element

depends on

® illumination: the light cast upon the surface element
reflectivity: physical properties of the surface

® geometry: surface orientation with respect to light sources
and observer

@ sensor: properties of the imaging device

Hence in principle brightness discontinuities may be due to

discontinuities of either of the four factors.

In a thoughtful essay BINFORD 81 elaborates how to exploit
brightness discontinuities. First, one should insure a

homogeneous Sensor response by Pproper calibration. gBinford
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conjectures that the microsaccades of human eyes serve this
purpose: By comparing the responses of neighboring cells, sensor
discontinuities may be evened out. Second, one should suppress
unwanted responses due to smooth brightness variations by means
of lateral inhibition, i.e. by subtracting from each pixel value
the weighted average of its neighborhood. (This operation 1is
known to be wused extensively in human perception). The

underlying assumption is simple:

A3: Object boundaries do not occur at places of smooth brightness

variations.

In view of the interplay of illumination, reflectivity and
geometry this 1is not necessarily true. For example, the effect
of an orientation discontinuity at an object boundary may very
well be undone by a coinciding illumination discontinuity. A3 is
based on a fundamental assumption which reflects the independence

of these three factors.

A4: The position of light sources and observer are general, if

there is no evidence to the contrary.

A4 has been put forth by several researchers as a guiding
principle for image interpretation, see the discussion of
STEVENS 81 below as an example. In BINFORD 81 one can even find

a more general version:

AS: Perception derives predictions from data wusing the most

general model.

In other words, those interpretations are preferred which impose
as few constraints on the wunknowns as possible. It would be
interesting to tie A4 and A5 to a probabilistic argument, but

this has not yet been carried out to the author’'s knowledge.

Returning to the processing of brightness discontinuities as

discussed i1n BINFORD B1, the next step would be the detection and
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localization of elongated step- or peak-like discontinuities - 1n
short: boundary elements - in the lateral inhibition signal. A
sense of direction is important for 1linking boundary elements
into boundary lines and for the interpretation of junctions which
will be described later. Binford proposes detection of step
boundaries by thresholding the gradient of the lateral inhibition
signal and localization by finding the zero crossings of 1ts
second directional derivative. Conversely, peak boundaries are
detected by thresholding the second derivative and localized by

zero crossings in the first derivative.

It is interesting to compare this approach with the theory of
edge detection developed in MARR and HILDRETH 80. They propose
to localize brightness discontinuities by taking the zero
crossings of the second derivative of the brightness function 1in
a bandpass filtered version of the raw image data. Filter and
derivative operation can be combined into the so-called “mexican
hat" operator which is essentially the same as lateral
inhibition. Thus Marr locates boundary elements along lines of
maximal brightness gradients, while Binford determines position
and direction of maximal change of brightness curvature - two
levels of differentiation below Marr. Almost all other -edge
finders which have been proposed for low-level vision are
brightness gradient operators of some kind, although only few

reflect an underlying theory of edge detection.

For further processing of boundary lines it is crucial to
distinguish between illumination, reflectivity and orientation
boundaries or combinations thereof. To date, no complete
solution of this problem is known, but certain evidence can be
exploited which may contribute to a disambiguation. For example,
if the brightness ratio across a boundary is approximately
constant while individual brightness values vary along the line,
then this line 18 an illumination boundary (BINFORD 81). The
reason is assumption A4 from which one can postulate constant
surface orientation and reflectivity across an illumination

boundary. One must also postulate constant illumination on
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either side along the boundary.

Let us assume that boundaries are correctly classified. What can
one tell about the surfaces in between the boundaries? This
question has enjoyed considerable attention in recent work on

low-level vision, and some remarkable progress has been achieved.

Given a single closed contour in terms of the zero crossings of
Marr's mexican hat operator and the absence of further zero
crossings, GRIMSON 81 investigates the problem of interpolating
the 3D surface orientation between the boundaries. Not all
surfaces are equally likely since radical surface inflections
tend to cause additional zero crossings which are known to be not
there. Grimson proposes to choose an interpolation surface which
minimizes the probability of such additional zero crossings. A
probability distribution can be derived by assuming a uniform
distribution for the reflectance normal which captures the effect
of unknown illumination, reflectivity and observer properties.
This assumption 1is basically a probabilistic version of A&4.
Grimson proves that the best surface approximation minimizes the

following measure of surface smoothness:
min [f (s2 v 288 o & ) dx dy
XX Xy Yy

(s'x. sxy and syv are the second derivatives of the surface
function in a viewer centered coordinate system). Thus an

assumption about “typical” surface shape has been derived:

A6: For the interpolation of surface shape minimize the quadratic

variation of the surface gradient.

BARROW and TENENBAUM 81 investigate the same problem and arrive
at similar results. They also report about experiments with
local operators which carry out the interpolation. For example,

a circular boundary was interpolated into a perfect sphere.

The problem of constructing 3D surfaces from boundary lines in an
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image is also addressed by STEVENS 81. He deals with surface
contours, i.e. reflectivity or illumination boundaries as opposed
to orientation boundaries (occluding contours). As the example
in Fig. 1 shows, humans are quite capable of inferring an unknown

3D surface from lines on flat paper.

_—\_/
’_\_—/—
v
\/

Figure 1: Inferring 3D shape from surface contours
Stevens analyzes the assumptions underlying such a process. As
it turns out, A4 is crucial for various inferences. One of the
rules which follow from A4 is
A7: Parallel curves in the image are also parallel in space.

If the additional assumption of general placement holds -

AB8: Parallel curves remain parallel if slightly displaced on the

surface.
- a strong constraint on surface shape ensues:
A9: Parallel image curves lie locally on a cylinder.
Hence low-level vision processes would interpret Fig. 1 in much
the same way as humans appear to do 1it, if the preceding

assumptions were adopted.

Surface contours may also occur as texture, i1.e. as statistically
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distributed surface markings. Texture gradients, 1i.e. the
distortion caused by viewing a textured surface from an oblique
angle, are known to provide humans with valuable information
about surface orientation even if the undistorted texture shape
is unknown,. WITKIN 81 proposes a computational approach on the

basis of the following assumption:

A10: Textures do not mimick projective effects.

In other words, texture is as irregular or unbiased as evidence
allows. If a distortion or directional bias can be explained by
projective effects, it is indeed caused by projective effects.
Of course, there exist texture patterns which do not conform with
A10 and will deceive this process, but human vision seems to be
just as fallible. It 1s interesting to note that A10 can be
considered a consequence of AS, underlining the fundamental role

of the latter.

In typical images objects occlude each other and object
boundaries are only partially visible. From the way boundary
pieces are aligned and meet at Jjunctions, constraints can be
inferred on their spatial interpretation. LOWE and BINFORD 81

point out several such rules, e.g.

A11: A straight line in the image 1s also a straight 1line 1in

space.
A curved line in space requires a special view point to appear
straight; hence A11 1is wvalid if the general view point
assumption A4 holds. Similarly:
A12: Collinear lines in the image are also collinear in space.

The following assumptions concern Jjunctions:

A13: An image curve which terminates at a continuous curve

(forming the stem of a T) cannot be closer to the viewer
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than the continuous curve.

Al4: If two or more image curves terminate at the same Junction
{forming an L or Y etc.), they also terminate at the same

point in space.

1t is important to observe that these rules are not just a bunch
of heuristics but all derive from A4. Hence one may very well
talk about an emerging theory of low-level vision, although it is
difficult to judge whether the rules which have been put forth so

far, are complete in any sense.

The remainder of this chapter deals with processes which exploit

photometric laws and laws of projective geometry.

Horn's work on shape from shading (HORN 75) has recently been
extended to incorporate orientation constraints at object
boundaries'(IKEUCHI and HORN 81). The surface shape within such
boundaries may be obtained from varying brightness values 1f the
reflectance map {(which gives the expected brightness for each
surface orientation) is known. While there are certain
applications which meet this requirement, reflectance properties
are usually unknown in low-level vision. It would be interesting
to attack the shape-from-shading problem in the same spirit as
GRIMSON 81 by searching for the "most likely" surface
interpretation compatible with the brightness variations but

without knowledge of the reflectance map.

A commonly known process which exploits projective geometry 1is
binocular stereo. It plays an important part in Marr’'s theory of
low-level vision, where depth information 1s derived from the
binocular disparity of the mexican-hat zero crossings (MARR and
POGGIO 79). BAKER and BINFORD 81 also propose an edge-based
scheme. Wwhile the underlying mathematics can be easily derived
{see e.g. DUDA and HART 73, p. 398) computer implementations pose
problems of accuracy and computational expense (for a survey see

NEUMANN 81). It is not yet clear whether binocular stereo may be
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expendable in computer vision systems.

Depth information may also be obtained from motion stereo. If an
object moves in space, the projected displacements of points on
its surface give a clue concerning the spatial configuration and
trajectory of these points. For a quantitative analysis one
assumes that the object 1is rigid. The mathematics are not
trivial and have only recently been clarified (TSAI and
HUANG 81), although they do not exploit anything else than the
millenium-old laws of perspective projection. For the purpose of

this discussion we only note the additional assumption:

A15: Objects are rigid if there is no evidence to the contrary.

It is not clear, how strong evidence to the contrary should be if
A15 1s to be abandoned. BARROW and TENENBAUM 81 point out a
remarkable phenomenon in human vision, where a rigid wire frame
cube appears to be bending and stretching when moved while viewed
in Necker reversal. The false interpretation 1is possibly
maintained on the grounds of change continuity (A2) which seems

to override A15.

This concludes the overview of low-level vision. Only a small
fraction of the pertinent work could be covered due to
limitations of space. A useful starting point for further study
is BRAODY 81. The main results presented in this chapter may be
summarized as follows. In low-level vision, object boundaries
and surface shape can be computed by exploiting general knowledge
about the real world and the imaging process. Various 1inherent
ambiguities concerning a correct spatial interpretation of image
features are resolved on the basis of sensible assumptions. A
large part of these assumptions can be considered the consequence
of the principle of generality (A5) which forms the basis of an

emerging theory of low-level vision.
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3. Object recognition

Image understanding requires that meaning 1s assigned to the
components of a scene, both individually and as a whole. Object
recognition assigns meaning in terms of class membership or
identity. In this chapter, the knowledge required for object
recognition is characterized by the abstractions which
distinguish object models from the object descriptions obtained
from low-level vision. It is shown that object models should
also «contain information tailored to support the recognition

process.

The term "recognition” very aptly describes that something in the
scene matches knowledge retained from prior encounters. This
knowledge is called a model, while the corresponding part of the
scene description is called an instantiation of this model. From
the discussion in the preceding chapter it 1is known that
low-level vision provides descriptions for coherent entities in

terms of

- visible surface shape

- perceived brightness and color
- position

- time of observation

- illumination

Since an object model must be compared with such a description,
it should contain information pertinent to these descriptors.
The knowledge captured herewith will be loosely referred to as
"shape” knowledge. {Shape 1is, strictly speaking, only a
geometric notion.) There are other kinds of knowledge which may
help recognition, e.g. context information from which the
position of an object could be inferred. Knowledge of this kind
will be discussed in the following chapter. In this chapter we

shall only deal with recognition based on visual properties.

There are two conflicting requirements for an object model.
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First, 1t must be an effliclent representation for a class of
objects. Hence 1t should abstract from properties which
distinguish objects of the same class. For example, objects are
typically not distinguished according to illumination or view
point. Consequently, models should not contain information which

15 illumination or view point dependent.

Second, an object model should support recognition. Hence it
should provide a description which can be easily compared with an
illumination and view point dependent low-level scene
description. We shall first discuss object models under the

former aspect.

Models must be distinguished according to their use for
identification ar classification. Identification denotes
recognition that object and model are physically the same,
whereas classification denotes recognition of class membership.
For example, an object can be identified as the dome at Cologne
or classified as a church. Classification establishes the
traditional ISA-relationship between a class model and a class

member, while the identity relation may be called IS.

It 1s possible to characterize the knowledge contained in the two
types of models by the abstractions they perform. Identification

usually abstracts from

- instance of time
- position and orientation in space
- view point

- illumination

Classification usually abstracts from all this and also, to some

degree, from

- surface properties

- shape
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But there are many examples which blur this characterization.
Identity may depend very little on appearance (e.g. a person in
different ages) while c¢lasses may be gquite nparrowly defined
fe.g. a 1 DM coin). In general, however, class membership 1is

less specific than identity.

Several representational schemes have been proposed which have
the desired abstraction properties (BINFORD 71, AGIN 72,
NEVATIA 74). Because of view point independence object shape 1s
always defined with respect to an object centered coordinate
system. One such example 1is the generalized cylinder. It
describes shape in terms of a planar cross section, a space curve
spine, and a sweeping rule. It represents the volume swept out
by the cross section as it is translated along the spine, held at
some constant angle to the spine, and transformed according to
the sweeping rule (Fig. 2). Complex objects may be composed of
several cylinder primitives by specifying the coordinate

transformations between the respective spines.

Figure 2: Generalized cylinder

MARR and NISHIHARA 78 point out stick figures as examples for
human use of spine-based representations. BROOKS 81 describes
the use of generalized cylinders for the vision system ACRONYM.
Models for <classes of objects with variable shape can be
specified by wusing variable parameters, possibly constrained

within certalin limits.
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Object centered representations are compact and efficient shape
descriptions, from which all projections can be readily computed.
Thus, in principle, we have answered the question as to the
knowledge required for object recognition. Unfortunately, it is
not conceivable that object recognition can be <carried out
efficiently solely on the basis of object centered models.
Consider recognition of a simple object, say a spoon. In order
to match an unknown object with the spoon model, projections have
to be computed for all possible view points. With an angular
separation of 10 degrees this amounts to roughly 15000
projections, If applied to all models which might be in
question, recognition takes on the form of a gigantic

trial-and-error process.

One might propose to use observer-centered models which represent
object shape in terms of view point dependent visible surface
descriptions. Observer-centered models can be readily matched
with scene data. However, each object would be represented by
15000 models according to the number of possible projections -

which 1s again inconceivable.

It does not seem possible to reconcile the requirements of
recognition efficiency and storage efficiency by means of
trade-offs between object centered and observer centered models.
Instead, shape knowledge must be augmented by a separate body of
knowledge which supports recognition. 1In particular, recognition
knowledge should provide clues or constraints on the possible

view points, given certain image features.

BROOKS 81 gives a detailed account of recognition in ACRONYM
based on generalized cylinder models. Recognition is supported
by a so-called prediction graph which contains image features
predicted from the object model. The prediction graph 1is
different from a tentative projection (which also predicts image
features) in one important aspect. It contains features which
are invariant or quasi-invariant with respect to a certain range

of projections, For example, collinear object features always
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project into collinear image features. Similarly, parallel
features remain parallel for a subset of projections. Also, the
ratio of contour width against length may be quasi-invariant for
a certain range of projections. Hence recognition knowledge in
ACRONYM specifies invariant image features for ranges of

projectiaons.

A complementary view is taken by WALTZ 79. He suggests to
specify shape in terms of differences or transformations with
respect to well-known prototypes. Applied to different views of
an object, this entails complete shape descriptions for a few
typical views augmented by recognition knowledge in terms of

differences encountered in other views.

IKEUCHI 81 proposes a completely different way of representing
shape and recognition knowledge. A surface is described by the
extended Gaussian image (EGI), which is the distribution of
surface normals normalized with respect to surface area. The
surface of a convex polygon can be wuniquely reconstructed from
its EGI, but in general, different surfaces may have the same
EGI, which is a disadvantage of this representation. The main
advantage is the use of surface normals which can be immediately
related to the visible surface normals supplied by low-level
vision. In order to match a visible surface EGI to a model EGI,
however, a 3 degree-of-freedom search for the best matching view
point would have to be carried out. At this point recognition
knowledge comes into play. Ikeuchi proposes to enrich the EGI by
two view point dependent features. First, the ratio of area
projected onto the image plane against the original surface area
can be precomputed for each viewer direction. For example, this
value will be large for an ellipsoid viewed from perpendicular to
the axis and small viewed along the axis. The same quantity
computed for the unknown surface removes one degree of freedom
for possible view poiﬁts. Second, the direction of the axis of
inertia of the projected surface area can be precomputed for each
viewer direction. The same quantity can be computed for the

unknown surface, which removes a second degree of freedom. Thus
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EGI matching can be performed in a vastly reduced search space.

Experiments with human vision also seem to indicate the wuse of
special recognition knowledge. Humans can recognize objects with
varying ease depending on several factors, including the
familiarity of an object, the markedness of typical viewling
directions and the amount and direction of rotation with respect
to typical views (if any). From experiments reported in ROCK 79
and SHEPARD 79 one can conclude that humans possess both, the
ability of wvisualizing, e.g. performing mental rotation and
projection to match model and object, and the ability to use
certain shortcuts, which might be called recognition knowledge.
One such example 1is the preference of interpretations which

derive from a typical view by a rotation about a vertical axis.

Image understanding as discussed up to this point may be

summarized shortly as follows:

(1) Extract useful image features
{ii) Interpret image features in terms of 30 surfaces

(iii) Recognize objects by shape

This is the traditional single-image paradigm of computer vision.
Some ten vyears ago a survey article on vision could have ended
here, perhaps hinting at context information which might
eventually be brought to bear, or pointing out the need of more

world knowledge to guide the recognition process.

Today, one can report about work from two sources which have
contributed to a changing paradigm of vision: motion analysis
and natural language processing. Before starting a discussion of
this work it is necessary to clarify the scope of what is called

high-level vision in this article.
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High-level vision begins where object recognition ends. For
simplicity, we shall ignore any interaction of high-level vision
with lower-level processes and assume that for each image of a
sequence, object recognition has been successfully completed.
Hence the input for high-level vision can be assumed to consist

of

- object names

- object shapes

- object positions
- view point

- illumination

- instance of time

for each image of a sequence, plus object identities between
images. This will be <called a geometrical scene description,
The output of high-level vision cannot be defined as precisely.
It should be an explicit representation of the meaning of an
image sequence. In order to gain some understanding of the scope

of “meaning”, it is helpful to consider several examples.

1) Trees waving in the wind

2) Landscape passing by the window of a moving train

3) Agquarium with fish swimming about

4) Bees performing their dance in front of a bee hive

5) Children playing in the street

6) A goal keeper's parade in a soccer game

7) A street scene showing garbage collection

8) A dachshund biting the mailman

9) Russian tanks crossing the Elbe from east to west
(DARPA's favourite example)

10) Buster Keaton's silent movie "The General”

The examples range from simple scenes to complex scenes, although
an ordering according to "meaningfulness" does not seem possible.
Consider example &4: Should a vision program be capable to give a

biologist's interpretation of the bee dance? Probably not. How
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about example 6: Should a vision program determine whether a
goal was scored? After all this is what humans would focus on.
Finally, should a vision program "laugh” at Buster Keaton? If it

didn't, one could not say that it understands the movie.

It does not seem possible to define the output of an image
understanding system other than with respect to typical human
image understanding. Furthermore, to achieve human performance a
vast amount of knowledge of various kinds is required. It ranges
from physical, biological and chemical foundations to social
rules and habits, from psychology to history and politics. 1In
this respect computer wvision is not different from natural
language understanding. More specifically, high-level vision
knowledge 1s to a large part identical with knowledge required
for natural language understanding. This explains why natural
language research has been mentioned earlier as one of the

sources for progress in high-level vision.

High-level vision output also poses a communication problem. How
can one verify whether an (abstract) interpretation has captured
the right meaning? For methodological reasons, lists, graphics,
print-outs of symbol structures, etc. are inadequate, since these
data require interpretation by human inspection. Natural
language communication 1is one important way of avoiding this
dilemma. (Observable actions are another.) Hence image sequence
description (in natural language) must be considered a valuable

tool for high-level vision research.

In the remainder of this chapter, work on motion interpretation
will be reviewed. Motion concepts are an important ingredient
for high-level image sequence understanding. They are also a
good subject for research since there are examples ranging from
simple to extremely complex motion. This will become apparent
when asking the notorious qQquestion: What knowledge is required
to determine instantiations of certain motion concepts 1in an

image sequence?
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There are several basic motion concepts which can be computed
from the geometrical scene description using'only geometrical
templates, i.e. models pertaining to the geometry of motion. In
BADLER 75 simple toy scenes are analyzed for “bouncing”,
“pushing”, “hiding", “swinging”, etc. Actually, Badler's
concepts should not be equated with verb meanings, for example

-

his definition of “bounce” would also apply to a bird landing on
the ground and starting again. Yet, his work exposes important
properties of such motion. First, complex concepts may be
decomposed into simpler concepts by temporal segmentation, e.g. a
swing into its back and forth parts. Second, concepts can be
organized in a specialization hierarchy, e.g. a horizontal motion

may be a roll or a slide.

TSOTSOS 80 presents geometrical motion concepts in a systematical
framework and without false semantics. His primitive concepts
are area change, location change, length change, and shape
change. Higher-level concepts like translate, rotate, contract,
etc. are defined in terms of these primitives. Tsotsos' domain
of application 1is left ventricular heart motion. This involves
special motion concepts which are only meaningful in this domain.
The knowledge required for interpreting “scenes” in terms of
these concepts is defined by composition of geometric motion
concepts and by specialization using constraints. [t does not
seem possible, however, to apply this representational scheme to

richly structured real world domains as will be seen later.

Many motion concepts correspond to verbs in natural language,
thus research on the representation of verb meanings is relevant
for high-level vision, One must take care, however, to separate
linguistic 1ssues from language-independent concepts. Only the
latter are interesting for image wunderstanding. MILLER 72
identified 12 semantic components for English motion verbs. They
describe geometrical and physical aspects {(change-of-location,
change-of-motion-state, change-of-physical-properties,
change-of-location-in-some-medium, velocity, direction) as well

as intentional and linguistic aspects (causative, permissive,



Page 24

propellant, instrumental, deictic, reflexive). While the first
group of components is similar to the geometrical motion concepts
of Tsotsos (which are based on Miller's work), the second group
includes features which cannot be computed from a geometrical
scene description. Several of these require high-level knowledge
about intentional actions. For example, the concept of "avoid”
(a car avoiding an obstacle) can only be recognized if knowledge
about a typical car-driver’'s intention to steer clear of
obstacles is available. Of course, one may try to recognize
avoid-situations solely from geometrical data, but this would be
an overinterpretation similar to Badler's bounce. Two  of
Miller's components describe linguistic features (deictic and

reflexive verbs) which do not concern vision.

OKADA 80 pertains to both, motion verbs classification and scene
description. Okada uses 20 semantic features, e.g.
"displacement’, 'deformation’', 'change-in-quality’', ‘start and
stop' to decide which of a set of about 1200 primitive japanese
verb concepts applies to a given scene. In his experiments he
employs sequences of line-drawings as image data and an extremely
simple knowledge base. He does not show how higher-level wvision
knowledge should be organized to recognize more meaningful verb

concepts.

From the preceding one can conlude that the recognition of motion
concepts and, by the same token, motion description becomes
problematic as soon as non-geometric knowledge is involved. This
has also been the experience of project NAOS which deals with
natural language description of traffic scenes (NEUMANN 82).
While motion concepts such as 'start’, 'stop’', "accelerate’, turn
off' may be recognized by comparing geometrical models with the
geometrical scene description (MARBURGER et al. 81), the majority
of verbs relevant for traffic scenes requires knowledge which
cannot be as easily provided, e.g. ‘'rasen’'. NOVAK 82 points out
context knowledge (i.e. the spatial and temporal surroundings],
standard properties ({i.e. typical velocities) and pragmatic

knowledge as three such knowledge categories. It 1s not possible
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to represent this knowledge centered around motion frames as in
TSOTS0S' work. Instead representational units similar to MOPs
(SCHANK 80), EMOPs (KOLODNER 81) or subscripts (WALTZ 81) may be
useful which are designed to bring together all constituents of

an event or episode.

This concludes the discussion of high-level vision. It has been
restricted to motion understanding since this 1s the only major
body of vision research which goes beyond object recognition.
Strong connections to natural language research have been pointed
out but have not been followed up. This area diserves much

further research before presentation in a survey.

5. Conglusions

The task of understanding and describing image sequences has been
discussed from the knowledge point of view. For each of the
major phases - low-level wvision, object recognition and
high-level vision - knowledge required to derive certain
descriptions has been characterized. Low-level vision processes
exploit general physical knowledge and a small number of
fundamental principles. Object recognition 1s mainly based on a
priori knowledge about object shapes and features which support
recognition. Higher-level vision bridges the gaps between object
recognition and silent movie wunderstanding. Work on motion
understanding has been reviewed to point out the open problems

rather than solutions of recognizing high-level concepts.
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