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Zusammenfassung

Der Beitrag behandelt das Problem, auf den Inhalt von
Bildfolgen =zuzugreifen, insbesondere Aspekte der hoéheren
Bilddeutung und des natirlichsprachlichen Zugriffs auf
bewegte Vorgange. Es werden Verfahren vorgestellt, die im
System NAOS far TV-Bildfolgen von Verkehrsszenen
implementiert sind. Eine natdrlichsprachliche Anfrage {ber
eine Objektbewegung, z.B. einen [berholveorgang, wird in
eine Tiefenstruktur dberfihrt, in der die Tiefenkasus des
Verbs spezifiziert sind. Hieraus werden Pradikate
abgeleitet, die auf einer propositionalen Szenenbeschreibung
instantiiert werden mussen. Die auf diese Weise realisierte
Ereigniserkennung stellt einen ProzeB der hdheren Bildeutung
dar, der sich von bisher bekannten Verfahren insbesonders
aufgrund der Behandlung von Zeitintervallen unterscheidet.
Das domanenspezifische Wissen ist in transparenten
Datenstrukturen codiert und kann an andere

Aufgabenstéllungen angepalit werden.
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ABSTRACT

This paper addresses the problem of obtaining and accessing high-level
interpretations of temporal image sequences. It presents an approach which
has been implemented in the system NAOS for the domain of traffic scenes.
Natural language questions pertaining to object motions are transformed
into a deep case frame centered around the verb of locomotien. The deep
case structure 1is mapped into predicates involving ‘event models' which
capture the verb meaning. Event recognition is performed by a hierarchical
matching scheme (BARROW et al. 72) using constraint satisfaction for time
intervals. The methods can be applied to other tasks by adapting the
domain knowledge which is represented in terms of transparent data

structures.

1. TRODUCTION

As progress in computer vision paves the way for applications of increasing
complexity, the problem of accessing computer vision results becomes
important. This is not yet the case for most existing vision systems where
the output may be as simple as 'pass’' or ‘'fail’ or is given in terms of
recognized objects and their positions. In the last vyears, however,
problems of increasing complexity have been tackled where the results may
not be represented in such a simple manner. In this contribution we shall
consider the analysis of time-varying imagery which may be required for
various applications, e.g. determining cloud motion or environmentazal

changes, tracking moving objects and computing their 3D shape and 30



trajectories, classifying heart motion, etc. Time-varving imagery is
usually represented 1in terms of an image sequence with images taken at
regularly spaced time intervals. The results of motion analysis c¢ould in
priciple be given by shape and position measurements for each instance of
time. But this is clearly insufficient for most purposes because of two
reasons. First, it is difficult if not impossible for humans to extract
useful information from vision system output of this form, particularly if
the image sequence consists of hundreds of images, and second, the concepts
which one is really interested in - e.g. particular motion trajectories -
are not recognized by the vision system. Hence we have to solve two
problems: extend the scope of a vision system to high level concepts and

provide means to communicate results to human users.

This paper addresses both issues raised above. It presents methods for
recognizing certain high-level concepts called ‘events’' and explores a
particularly convenient way of accessing the vision system output: natural
language. Image sequences are viewed as data in a large database. Natural
language queries provide database access. Examples are taken from the

domain of street traffic. A typical retrieval question is

“Did a yellow VW overtake a truck in front of the FBI?".

It will be shown that the deep case structure of this gquestion «can bhe
mapped into predicates involving scene components which in turn can be
computed from the underlying image sequence. Question answering amounts to
instantiating such predicates. This contribution extends previous work on
natural language access to pictorial databases (HUSSMANN and SCHEFE 8¢,
WAHLSTER et al. 83) in several respects.

(i} High—levei concepts of interest are defined as transparent data

structures in an extendable knowledge base.

(ii) Effective techniques are provided for recognizing events which are

conjunctions of predicates extending over time.

(iii) The deep case structure of natural language questions can be used to

control event recognition and retrieve events.



The processes which will be discussed have been implemented in a system
called NAOS. On the vision side NAOS expects that object recognition has
been achieved and the 3D scene geometry is available, thus low-level vision
problems are by-passed. On the language side NAOS connects to a parser and

a generator developed for the project HAM-ANS (HOEPPNER et al. 83).

2. VENT RECOGNITION

In this section we shall show how to recognize interesting occurrences in
an image sequence. It is assumed that the image sequence has been analyzed
up to an intermediate level where the 3D locations of all objects of
interest are known for each instance of time. Also class membership, color
and shape features have been determined. The data are represented in a

relational format as shown below,

(CLASS VW1 VW)

{COLOR VW1 YELLOW]

(LOCATION VW1 (20 100 8) (4 1 0) 1)
{LOCATION VW1 (40 105 &) (4 1 0) 2}
(LOCATION VW1 (60 110 8) (1 0 0} 3)

etc.

Each relational tupel is a proposition about the scene, hence relations can
also be viewed as predicates. The arguments of the LOCATION predicate are
object ID, 3D position and orientation vector, and instance of time.
Because of the prevailing geometrical contents of the data this level of

representation 1is termed ‘geometrical scene description’ (GSD).

We are interested in recognizing specific patterns of motion, for example
one car overtaking another. In general, such a pattern - called an 'event’
- may be any subspace of four-dimensional space-time. Events can be
defined to meet a particular purpose. In TSOTSOS 80, for example, events
describe leftventricular heart motion. In NAOS events are occurrences in a

traffic scene which can be described by verbs of locomotion.

Events are organized into classes according to the verb which is associated



with the event. Event classes are defined by event models. An event model

is the conceptual entity which specifies what we are 1looking for in a

scene.

The notions of event models and events are analogous to object models and
objects or other established concepts in knowledge representation. Event
models are generic descriptions which are usually part of the knowledge
base. Events are instantiations thereof and refer to a particular scene,
In the following we shall present the event models used in NAOS din more

detail.

Event models consist of a head, which is a predicate about a scene, and a

body, which specifies how to verify the predicate. The following is the

model for 'overtake' events.

Head: (OVERTAKE 0BJ1 08J2 T1 T2}

Body: (MOVE 0BJ1 T1 T2)
(MOVE 08J2 T1 T2)
(APPROACH 0BJ1 0BJ2 T1 T3)
{BEHIND 0BJ1 08J2 T1 T3)
(BESIDE O0BJ1 0BJ2 T3 T4)
{IN-FRONT-OF 08J1 0BJ2 T3 T4}
(RECEDE 0BJ1 0BJ2 Té& T2)

Event model predicates are written in the same relational notation as the
input data, except that the arguments are usually variables which must be

instantiated by matching the event model to the data.

The variables T1 to T4 are time variables denoting interval boundaries,
Time intervals are different from other data in that they are represented
by constraints rather than fixed instances. Constraints arise from
durative predicates such as MOVE. Durativity means that a predicate, if

true for a certain interval, is also true for all subintervals:

(P ... T1 T2) => (P ... T1" T2') for T1 ¢ T1' ¢ T2' £ T2



If a durative predicate 1is matched against suitable data, the time
variables are constrained according to this ineguality rather than
instantiated to particular values. As time variables typically occur in
more than one predicate of an event model, constraints accumulate. Hence
the need to perform feasability tests and to compute solutions of the

resulting system of linear inequalities arises.

In MALIK and BINFORD 82 linear programming, in particular the SIMPLEX
method, is proposed to obtain the desired results for a similar problem.
In NAOS, a much simpler procedure is employed. It is based on an
inequality net which is maintained for all time variables. Each variable
has a current minimum and maximum value and is linked to other wvariables
according to the inequalities. If a new inequality is enccuntered, new
links are added, and the new constraints are propagated along the links,
lower bounds wupwards and upper bounds downwards. Whenever a minimum
surpasses a maximum, the inequalities are inconsistent. Otherwise minimum

and maximum are valid bounds and provide the desired solution.

For the following example we shall assume that all 'move' events have been

computed in an initialization step and entered into the database. (This is

the usual procedure in NAOS.) Consider the data

{MOVE CAR1 1 30)
(MOVE CARZ2 7 13)
{(MOVE CAR2 20 35)
(BEHIND CAR1 CAR2 15 27)

and the list of predicates (taken from the event model 'overtake'}
(MOVE 0BJ1 T1 T2)
(MOVE 0BJ2 Tt T2)
(BEHIND 0BJ1 0BJ2 T1 T3)

One possible instantiation would give rise to the inequalities:

1 ¢€T1 < T2 € 30
20 € T1 < T2 € 35



15 € T1 ¢ T3 € 27

The corresponding inequality net exhibits the resulting minimal and maximal

values as shown below.

21

We believe that this incremental constraint propagation method is a key
element for dealing with temporal concepts in scenes., It reflects the fact
that the basic building blocks of interesting concepts are scene properties
extending over some time interval, i.e. durative properties. Taken
together, they give rise to systems of inequalities as shown above, and ta
concepts which need not be durative, e.g. ‘overtake' or "stop', but whose

interval boundaries also obey constraints.

We now describe the event recognition strategy used in NAOS. It is assumed
that a certain set of predicates has to be instantiated, e.g. the body of

the event model 'overtake'.

The basic techniques for event recognition are hierarchical matching and
backtracking search. The scheme used in NAOS is particular in several ways
as will become apparent. The key process is EVENTEVAL which tries to
instantiate a set of predicates with the goal of making all predicates

conjunctively true.
EVENTEVAL set of predicates:

® SELECT predicate from set.
@ GENERATE all instances.
® Select instance and TEST for compatability,

® Backtrack if not compatible, else



® EVENTEVAL remaining predicates.

The following steps are carried out in the GENERATE component:

GENERATE all instances of a predicate:

® Generate all instances of non-instantiated arguments except

time variables, ‘ '

Each combination of such instances defines a predicate 'pattern’.
® Skip predicate pattern if generated before,

® EVENTEVAL body if predicate is composite, else EVAL body.

GENERATE cycles through all patterns of a predicate by substituting
possible instances for non-instantiated variables except for those denoting
time intervals. There are provisions for avoiding duplicate computations
by keeping a history of all patterns which have been tried before.
Evaluation is either carried out by a recursive call of EVENTEVAL or by
EVAL which deals with primitive predicates. Primitive predicates (as

opposed to composites) cannot be broken down into constituents, they are

defined as procedures. Each evaluation of a pattern generates all time
intervals for which the pattern is true. EVAL <can be characterized as
follows.

EVAL primitive predicate:

® Compute all maximal time intervals for which the predicate is true.

® Enter instances into database.

The computations of EVAL are carried out using data of the GSD or facts of
the knowledge base. In its simplest form the computation of a primitive
predicate i1s a direct retrieval from the GSD (e.g. CLASS or COLOR). From
the structure of EVENTEVAL and GENERATE one can see that event recognition
proceeds in a doubly recursive manner: by recursively instantiating a list

of predicates and by recursively decomposing predicates.



3. NATURAL LANGUAGE ACCESS

So far we have discussed processes and representations which can be
considered integral parts of a vision system. Data provided by a
fictitious vision front-end has been interpreted in terms of high-level
conceptual wunits called events. We now consider the task of accessing the
data by natural language queries. The idea of treating an image sequence
as a data-base and implementing natural language access has also been
pursued in the HAM-ANS project (HOEPPNER et al. 83). This contribution
presents processes which map from the deep case structure of a question
into predicates of the event recognition formalism developed in NAOS. The
parser and generator which connect deep case structures with surface

strings are borrowed from HAM-ANS. Consider the question:
“Did a yellow VW overtake a truck in front of the FBI?"

The parser produces a deep case structure which specifies the 1linguistic
representations for each of the verb's deep cases. For example, "a vellow
VW" is the agent, "a truck” is the objective, and "in front of the FBI" is
the locative. (FBI is the German abbreviation for Computer Science
Department). What does the deep case structure express about a scene in
terms of predicates computable from the GSD? What does it mean to be “"in

front of" some object while overtaking?

We call the relevant body of knowledge which connects linguistic case
fillers with the corresponding scene-oriented (i.e. geometrical) notions
‘deep case semantics'. This knowledge is_represented by case frame models

as illustrated below for the example 'overtake'.
Case frame model ‘overtake':

(VERB "overtake")
(OVERTAKE 0BJ1 0BJ2 T1 T2}

{AGENT AGT-EXP)
(REF AGT-EXP 0BJ1)



(OBJECTIVE O0BJ-EXP)
{(REF 0BJ-EXP 0BJ2)

(LOCATIVE LOC-EXP)
(LOC-REF LOC-EXP (LOC-PREP 0BJ1 LOC-0BJ T1 T21})

(TENSE TNS-EXP)
(TIME-REF TNS-EXP T1 T2)

Each case description of the case frame model consists of two parts: a
declaration of an identifier (or constant in case of the verb) for the case
expression on the language side, and a predicate (in general a 1list of
predicates) relating the case expression to the scene data. éor each case
expression occurring in a question the corresponding predicates have to be
verified in the scene. The heart of the deep case semantics are the

predicates REF and LOC-REF. They will now be described in more detail.

REF relates a natural language expression for a noun phrase or pronoun (in
the format wunderstood by the surface string generator or delivered by the
parser) to possible candidates 1in the scene. This step is called
dereferentiation. For example, a set of yellow VWs {VW1, VW3, ... } may be
determined as the range of O08J1 (referring to the case frame model
‘overtake’ and a fictitious scene with more than one yellow VW). If no
such objects exist, an answer such as "There is no yellow VW in the scene”
will be generated. In general, the second step is a quantization test on

referents. Consider the question
"Did the BMW overtake two trucks?”.

If the B8MW has not been previously mentioned, the definite article implies
that there 1is exactly one BMW in the scene. Also, there must be at least
two trucks. If the quantization test fails, an appropriate answer will be

generated.

LOC-REF is analogous to REF with the difference that an abstract location
instead of an object is to be related to a NL expression. The lobcative

case and other spatial deep cases such as source, path and goal are often



misconstrued as referring to names of places or chbjects. With scene data
as a referential data base the spatial deep cases can be defined concisely
as follows. The locative case is the union of all positions of the agent
during the event, i.e. the volume swept out by the agent's trajectory.
Similarly, source and goal are spatial volumes corresponding to the

object’'s initial and final location.

While dereferentiation of objects is performed before event recognition,
all other constraints of a question are evaluated in connection with the
event model corresponding to the verb of the question. This is now shown
for the first of the two examples above. The deep case semantics of the
verb, of course, are given by (OVERTAKE O0BJ1 08J2 T1 T2) and the
corresponding event model. From the locative expression "in front of the
FBI" the appropriate scene constraint (IN-FRONT-OF 0BJ1 LOC-0BJ T1 T2) 1is
generated by calling LOC-REF, while BUILDING! (which is the F8I} is bound
to LOC-0BJ. TIME-REF generates constraints for the interval boundaries.

From the past tense of the question one gets
T-PAST-BEG € T1 ¢ T2 € T-PAST-END

where the boundary values are fixed time marks. This initializes the
temporal <constraint satisfaction scheme described earlier. Hence, 1in

summary, the following gquery predicates are obtained:

(OYERTAKE 0BJ1 0BJ2 T1 T2)
(IN-FRONT-OF 0BJ1 LOC-0BJ T1 T2)

with suitable ranges attached to the variables.

Event recognition now takes place using EVENTEVAL. The result is a list of
all possible instantiations of the query predicates. Time variables are
constrained to certain ranges, all other variables are instantiated with

fixed tokens,

The next step is another quantization test, in this case om the number of

events. NAOS can handle quantizations of considerable complexity, e.g.

10



"Did three pedestrians cross at least two strests?”

This is evaluated by counting the number of pedestrians and crossed streets
in the crossing events returned by EVENTEVAL. Each pedestrian must cross

at least two streets.

For answer generation, the instantiated events are wused to fill a case
frame using the deep case semantics and the case fillers available from the
question. A surface string is generated by passing the deep case frame to
a generator written by BUSEMANN 84&. In the current state of

implementation, only simple answers can be given, e.g.

"Yes, a yellow VW overtook a truck in front of the FBI.”

More advanced techniques, e.g. cooperative answer generation (WAHLSTER et

al. 83) can be added using the same framework.

L. NCLUSIONS

This contribution has addressed the problem of information retrieval from
temporal image sequences. It has been assumed that images have been
processed up to the level of recognized objects. This is the intended
scope of many vision systems currently under development. In general, this
level of representation is inadequate for describing the contents of
time-varying scenes as it is neither suitable for human interpretation nor
complete in the sense that interesting temporal concepts are recognized.
The system NAOS which has been described offers both: recognition of
high-level concepts and user access via natural language queries. The
system has been applied to data describing a traffic scene. The events
which can be retrieved are object motions corresponding to natural language
questions involving verbs of locomotion. About 50 verbs are currently
considered in NAOS. Not all of them can be implemented in the way
described in this paper, as there are some which refer to more than the
scene geometry, for example 'yield' or 'wait’'. To recognize such events,
it is necessary to generate expectations about the development of the scene

in a larger context. NAOS is currently extended accordingly.

(A
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