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Abstract. This paper explores high-level scene interpretation with logic-based 
conceptual models. The main interest is in aggregates which describe interesting 
co-occurrences of physical objects and their respective views in a scene. 
Interpretations consist of instantiations of aggregate concepts supported by 
evidence from a scene. It is shown that flexible interpretation strategies are 
possible which are important for cognitive vision, e.g. mixed bottom-up and top-
down interpretation, exploitation of context, recognition of intentions, task-driven 
focussing. The knowledge representation language is designed to easily map into 
a Description Logics (DL), however, current DL systems do not (yet) offer 
services which match high-level vision interpretation requirements. A table-laying 
scene is used as a guiding example. The work is part of the EU-project CogVis. 

1   Introduction 

This contribution presents a framework for high-level scene interpretation based 
on logic-based conceptual models. Model-based scene interpretation in general is a 
well-known methodology, and various kinds of models - notably relational, frame-
based, rule-based, neural and probabilistic models - have been investigated for their 
utility to capture and apply generic knowledge for Computer Vision systems.  In this 
paper, logic-based models are explored because (i) high-level vision needs an 
interface to general knowledge and thus to AI-type knowledge representation, (ii) 
there exist powerful logic-based theories for qualitative spatial and temporal 
reasoning [1], [2] which may be useful for vision, (iii) little is known about the 
usefulness of logic-based models for scene interpretation [3], [4], [5], [6], [7] and (iv) 
even less is known about the use of logic-based models for the particular 
requirements of a "cognitive vision system" which is understood to exploit context, 
recognise intentions, apply task-driven focussing, and exploit past experiences. 

The paper addresses high-level scene interpretations in the sense that the main 
interest is in interpretations above the level of single-object recognition. We consider 
indoor scenes, and a table-setting scene is used as a guiding example. Observed by 
stationary cameras, a human agent places covers onto a table. An interpretation 
summarising an evolving scene as "An agent is setting the table" is typical for high-
level scene interpretation and exemplifies several characteristics: 

- The interpretation describes the scene in qualitative terms, omitting details. 



- The interpretation may include inferred facts, unobservable in the scene. 
- The scene is composed of several occurrences 
- Occurrences are spatially and temporally related. 
One of the guiding ideas of this paper is to model constituents of a scene together 

with their perceptual correlates as "co-occurrence relations" which take the form of 
aggregates and parts in an object-oriented knowledge representation formalism. In 
our guiding example, placing a cover is such an aggregate. The approach is inspired 
by Barwise and Perry [8] who model coherent pieces of 3D scenes and their percepts 
by relations. The approach also allows to model intentions - mental states of agents 
in a scene - as parts of an aggregate.  

 The following section describes the structure of the knowledge base. In Section 3, 
interpretation strategies are presented for several different cognitive situations. 
Section 4 explores the usefulness of a DL system for representing the knowledge base 
and for providing interpretation services. Finally, Section 5 presents the conclusions. 

2   Conceptual structure 

high-level scene interpretations

geometrical scene description (GSD)

image sequences of dynamic scenes

scene models

memory templates

memory records

 
 

Fig. 1. Basic high-level vision architecture 
 
The basic building blocks for high-level scene interpretation are shown in Figure 

1. A dynamic scene is captured by several cameras and processed essentially bottom-
up to the level of geometric scene descriptions (GSD) [9]. It is assumed that at this 
level the scene is described by (partial) views of objects ("blobs"). Furthermore it is 
assumed that moving blobs can be tracked and grouped into blob motions. We are 
well aware of the problem of providing a perfect GSD. It will be shown further down 
that high-level processes can cope with degraded information at the GSD level and 
even support lower-level processes. 

Blobs and blob motions constitute the visual evidence which is used for high-
level interpretations. The conceptual framework for interpretations is provided in 
terms of scene models which range from single object models to complex occurrence 
models. Scene models are linked to the records of a vision memory and are 



considered the result of a learning process. However, this aspect will not be discussed 
in detail in this paper. 

The main conceptual entities are aggregates. An aggregate consists of a set of parts 
tied together to form a concept and satisfying certain constraints. As an example, 
consider the conceptual model of a plate in a scene, where the physical plate and two 
views are combined as an aggregate. Figure 2 shows the concept in a frame-like 
notation: 

 
name:  scene-plate 
parents:  :is-a scene-object 
parts:  scpl-body :is-a plate with scpl-body-preds 
   scpl-view-A :is-a sc-view-A  
    with scpl-view-A-preds 
   scpl-view-B :is-a sc-view-B  
    with scpl-view-B-preds 
constraints: (scpl-view-constraints) 

 
Fig. 2. Conceptual model of a plate in a scene 

 
The concept "scene-plate" is a specialisation of the concept "scene-object" and 

consists of three parts: "scpl-body" describes the physical body, "scpl-view-A" and 
"scpl-view-B" describe two plate views by camera A and B, respectively. The parts 
are specialisations of their respective parent concepts and fulfill certain predicates, 
e.g. shape predicates required for plate views. The constraints section contains 
constraints which relate parts to each other, e.g. ensuring that the views are 
compatible with a 3D shape of the physical object (which is, of course, not trivial). 
Note that the aggregate and its parts are embedded in several specialisation 
hierarchies: scene-objects, physical bodies, and views. The interpretation process will 
be guided by these hierarchies. 

The next example, shown in Figure 3, specifies an occurrence model of the type 
"scene-place-cover". This is a crude conceptual description of a scene where a plate, a 
saucer and a cup are placed onto a table to form a cover. The scene-place-cover 
aggregate includes a table top, three transport occurrences and a cover configuration 
as parts. Furthermore, there are time marks which refer to the beginning and ending of 
the scene-place-cover occurrence. In the constraints section, there are identity 
constraints, such as pc-tp1.tp-ob = pc-cv.cv-pl, which relate constituents of different 
parts to each other (the plate of the transport suboccurrence is identical with the plate 
in the cover) and qualitative constraints on the time marks associated with sub-
occurrences. For example, pc-tp3.tp-te =  pc-tp2.tp-te denotes that the cup transport 
should end after the saucer transport. Aggregates involving mobile objects typically 
require that the objects fulfill certain temporal and spatial constraints. Hence 
temporal and spatial constraint solving will be an important part of the interpretation 
process. 

The transport occurrences of the scene-place-cover aggregate are examples of 
conceptual entities embedded in a hierarchy of motion concepts. This hierachy is 
built on top of primitive occurrences which are generated as parts of the GSD. A 
primitive occurrence extends over a time interval where a qualitative predicate is 
fulfilled [10]. 



 
name:  scene-place-cover 
parents:  :is-a scene-agent-activity 
parts:  pc-tt :is-a scene-table-top 
   pc-tp1 :is-a scene-transport  
    with (tp-obj :is-a scene-plate) 
   pc-tp2:is-a scene-transport  
    with (tp-obj :is-a scene-saucer) 
   pc-tp3 :is-a scene-transport  
    with (tp-obj :is-a scene-cup) 
   pc-cv :is-a scene-cover 
time marks: pc-tb, pc-te :is-a timepoint 
constraints: pc-tp1.tp-ob = pc-cv.cv-pl  
   ... 
   pc-tp3.tp-te =  pc-tp2.tp-te 
   pc-tb =  pc-tp3.tb 
   pc-te =  pc-cv.cv-tb 

 
Fig. 3. Conceptual model of a place-cover scene 

 
As stated above, aggregates describe entities which tend to co-occur in a scene, 
regardless of whether the entities are visible or not. In fact, they provide the means to 
hypothesise parts without evidence. Hence it is natural to use aggregates which 
include mental states of agents, in particular intentions, as parts along with 
occurrences in a scene. The aggregate in Figure 4 is a sketch of an "intended place-
cover", specifying an agent along with the place-cover occurrence and an intended 
cover configuration as the mental state of the agent. 

 
name:  scene-intended-place-cover 
parents:  :is-a scene-intended-action 
parts:  sipc-pc :is-a scene-place-cover 
   sipc-ag :is-a scene-agent  
   sipc-cv :is-a scene-cover 
constraints: sipc-ag.desire = sipc-cv 
   (and other constraints) 

 
Fig. 4. Conceptual model for an intended action 

 
As a summary of this section, Figure 5 gives on overview of the conceptual structure 
of the high-level vision system, restricted to static concepts for the sake of simplicity. 
The arrows denote is-a relationships. Dotted arrows indicate is-a relationships over 
several specialisation stages. Aggregates are shown as boxes with their parts as 
interior boxes. In general, parts represent concepts restricted by constraints specified 
by the enclosing aggregate (see the examples above). Hence parts are specialisations 
of the corresponding unconstrained concepts and linked accordingly. 

As stated eralier, there are different hierarchies for physical objects and scene 
objects. The former are concepts independent of a scene, whereas the latter are 
described by aggregates containing physical objects together with the views 



provided by sensors. Separate hierarchies are also provided for important descriptive 
entities such as 3D bodies and trajectories and their 2D counterparts, regions and 2D 
trajectories. Parts which constitute a region description, e.g. colour, shape, texture, 
are not shown explicitly. Concepts of these hierarchies provide indices for the 
interpretation process. As an example, "oval-region" is linked to "oval-view-B" which 
in turn is linked to the scene objects "scene-plate" and "scene-saucer" which may 
have an oval view (among others). Trajectories describe consecutive locations of a 
physical bodies, including constant locations for static bodies, and also form a 
separate hierarchy.  
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Fig. 5. Is-a hierarchies of concepts 
 
Note that higher-level aggregates may be expanded until they contain only scene 
objects by resursively replacing aggregate parts by their conceptual descriptions. The 
expanded form of an aggregate includes all view entities which may support the 
aggregate based on visual evidence. 



3   Model-based interpretation of a scene 

This section describes how scene interpretation can be guided by the conceptual 
structure presented above. In particular we want to demonstrate that different 
cognitive situations can be treated with interpretation strategies based on the same 
conceptual basis. This is an important feature which distinguishes our approach from 
rule-based or deduction-based approaches where interpretation strategies are much 
narrower defined. The following cognitive situations will be considered: 

-  Context-free interpretation 
-  Exploiting spatial context 
-  Exploiting temporal context 
-  Exploiting domain context 
-  Exploiting focus of attention 
-  Intention-guided interpretation 
Before dealing with these tasks, we present the framework of the incremental 

interpretation process. 

3.1 Framework of interpretation process 

An interpretation of a scene is a partial description in terms of instances of 
concepts of the knowledge base. It is partial because, in general, only parts of the 
scene and a subset of the concepts are interesting, depending on the cognitive 
situation. The interpretation process can be viewed as an incremental information 
gathering process with the goal to verify interesting instances. The increments are 
based on the internal structure of the concepts and the is-a structure in which they are 
embedded. Let I be an instance of a concept C, PC 1 ... PCN the parent concepts of C, 
IP1 .. IPK instances of its parts, and CE1 ... CEK the concept expressions associated 
with the parts. Then a verification of I with respect to C has the following logical 
structure: 

 
       Ver(I, C) =  Ver(I, PC1) & ... & Ver(I, PCN) & 
   Ver(IP1, CE1) & ... & Ver(IPK, CEK) & 
   Ver(I, constraints(C)) 
 
Note that the verification of I w.r.t. C is recursively defined in terms of the 

verification of I w.r.t. the parents of C, and in terms of the verification of its parts. A 
recursion terminates successfully either at the root of a taxonomy (which by 
definition contains the instance) or when instances of the concept are already known 
and can be merged with the instance in question. The latter case includes the 
important step when an expected view instance is merged with one of the views 
generated from the GSD. As the GSD will not be perfect, parts may be occluded, and 
models may be too crude etc., it is mandatory that verification provides graded 
results. The operator "&" will combine graded partial results. Details of the grading 
scheme are outside the scope of this paper. 

The actual interpretation procedure differs from the recursive structure in that (i) 
the execution order of the verification subtasks is subject to an independent control, 



and (ii) constraints are partially evaluated and used to restrict the selection of missing 
parts. The control will be based on a probabilistic rating scheme currently under 
development. The interpretation procedure is composed of 3 types of interpretation 
steps. The first is aggregate instantiation. This step transforms an interpretation as 
shown in Figure 6. 
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Fig. 6. Aggregate instantiation 

 
In the figure, thin arrows denote is-a links, bold arrows instance links. Similarly, 

thin boxes denote concepts and bold boxes instances. Aggregate instantiation can be 
carried out when an instance Q1 of a concept C exists which may be part of an 
aggregate A. Instantiation of an aggregate causes the aggregate with all additional 
parts to be instantiated. This step corresponds to part-whole reasoning where a part 
gives rise to a hypothetical larger structure.  

It may seem somewhat arbitrary that by this step aggregates are only instantiated if 
one part is already instantiated. However, this does not prevent aggregates to be 
instantiated as a whole via instance refinement (with no parts already instantiated) or 
as a part of a higher-level aggregate. 

A second type of interpretation step is instance refinement. With this step one 
tries to find a more special concept for some instance. In general, instances are parts 
of some aggregate, hence instance refinement can be illustrated as in Figure 7.  
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Fig. 7. Instance refinement 
 
The figure shows an instance P1 which is reclassified from C to C´. As indicated 

with the alternative concept C´´, there may be many possible refinements. A control 
scheme will be required to avoid arbitrary guesses. 

A third interpretation step is instance merging. As is evident from the aggregate 
instantiation step, new instances are generated as parts of a new aggregate 
irrespective of existing instances which could be used to build the aggregate bottom-
up. Hence merging may be necessary. Roughly, two instances P1 and Q1 may be 
merged, if they have the same class and their expansions are grounded in the same 



views. We indicate instance merging graphically by assigning a common name, see 
Figure 8. 
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Fig. 8. Instance merging 

3.2   Cognitive situations 

We now address the cognitive situations listed earlier and describe how the tasks 
can be realised by the repertoire of interpretation steps. 

By context-free interpretation we mean interpretation based initially solely on 
visual evidence and without other restricting information. Hence this situation 
essentially tests bottom-up interpretation facilities. We assume that blobs and blob 
motions are available from the GSD and automatically mapped into instances of 
views of the respective sensors, constituting the initial state of the interpretation.  

The next step may be to carry out an aggregate instantiation step and create a 
"scene-object" with views as parts. Alternatively, a region could be specialised - say 
to an "oval-region" - by an instance refinement step. An "oval-region" is known to be 
a part of an "oval-view", hence another aggregate instantiation step can be carried 
out. The same result can be achieved by specialising the corresponding view with an 
instance refinement step. An "oval-view" may be part of several scene-objects, 
including a plate and a saucer. Aggregate instantiation steps will generate the 
corresponding instances. Again,there may be alternate paths leading to the same 
instantiations, for example successive instance refinement steps in the scene-object 
hierarchy. In summary, context-free interpretation is achieved by classifying low-
level evidence via successive refinements and by instantiating scene-objects and 
aggregates based on the classified evidence. 

As a second cognitive situation we consider exploitation of spatial context. In our 
framework, context is understood as an instantiated aggregate which specifies 
constraints between entities, including scene objects. Hence, if a spatial context is 
given, this is equivalent to an instantiated aggregate which specifies spatial 
constraints. As an example, consider a given context in terms of a kitchen bordering 
the living room scene. In our framework, this context will be modelled by an 
instantiated aggregate specifying the spatial relationship of the two rooms and 
including typical occurrences. Thus aggregates such as "bring-plate-from-kitchen" 
may become possible as the kitchen context supports the corresponding part-whole-
reasoning. Note that within an aggregate, spatial constraints between parts may 
provide a dynamic spatial context provided by one part for another. 

Exploitation of temporal context is very similar to the exploitation of spatial 
context. Temporal constraints in aggregates relate parts, e.g. occurrences, temporally 
to each other. Temporal properties of instantiated parts, e.g. begin and end, can be 



propagated to restrict the temporal window of expected parts. An efficient temporal 
constraint mechanism for temporally related occurrences has been presented in [9]. 

By domain context we mean thematic knowledge restricting the possible contents 
of a scene, for example, knowledge that the scene will show a living-room or a 
dinner-table. Domain context is brought to bear by instantiating a corresponding 
aggregate. In this case, aggregates typically express co-occurrence relationships at a 
high abstraction level with potentially many alternative choices for parts. 

We examine now how the interpretation process can be controlled by a focus of 
attention. One obvious way to express a thematic focus of attention is by 
instantiating concepts of interest and using the interpretation steps to elaborate these 
instances. This is similar to providing a domain context. To provide a temporal or 
spatial focus, a concept for temporally or spatially restricted interpretations may be 
instantiated.  

Finally, we consider the role of recognised intentions for predicting the 
development of a scene. As shown in Section 2, the intention of an agent is modelled 
as a mental state which may be ascribed to an agent, given certain occurrences. Our 
interpretation process can instantiate intentions by part-whole reasoning (aggregate 
instantiation) and thus provide information about the goal state intended by the 
agent. 

It is outside the scope of this paper to deal with other aspects of the interpretation 
process, in particular uncertainty management and preference ranking of hypotheses. 
We are developing a ranking system based on the statistics of recorded experiences 
which guides the possible choices for interpretation steps. 

4   Translating into a Description Logic (DL) 

In this section we sketch how the frame-like modelling formalism introduced 
above and the interpretation steps can be translated into the formal language of the 
highly expressive description logic SHIQ [11] implemented by the system RACER 
[12]. The purpose is to investigate to which extent inference mechanisms available in 
DL systems may be used to support the interpretation process. SHIQ is the basic logic 
ALC augmented with qualifying number restrictions, role hierarchies, inverse roles, 
and transitive roles. In addition to these basic features, RACER also provides 
concrete domains for dealing with min/max restrictions over the integers and linear 
polynomial (in-)equalities over the reals. 

The aggregate structure as shown in Figures 2 - 4 maps into the RACER concept 
language roughly as follows. 
? the name of an aggregate is a RACER concept name 
? the parents of an aggregate are concept names defining unary predicates  
? part names are roles defining binary predicates 
? with-expressions are role qualifications 
? constraints map into concrete domain predicates 

Currently, only inequality constraints can be handled by RACER´s concrete-
domain facilities. This is sufficient, for example, to implement a qualitative temporal 
constraint system for a time point algebra. Other constraint schemes, e.g. for 
qualitative spatial contraints, would require extensions.  



Assuming that these extensions can be provided, we will examine the 
interpretation process now. It should be clear that automatic instance classification 
cannot be employed since concrete views do not provide logically sufficient 
conditions for hgher-level classification. As shown by [3] and further elaborated in 
[5], image interpretation can be formally described as partial model construction 
("model" in the logical sense). In fact, RACER offers an ABox consistency check 
which amounts to model construction. Given an ABox with concrete views as 
individuals, model construction generates an interpretation including all additional 
individuals which are required to satisfy the conceptual framework.  

Unfortunately, model construction in RACER (and other reasoning systems) is 
conceived as an open-world consistency check where any model means success and 
additional individuals are hypothesised liberally without consideration of missing 
visual evidence. Hence this process cannot be employed without severe changes. For 
example, partial evidence for a cover in terms of a plate should only be extended to a 
full cover if the possible views of missing objects are compatible with the actual 
scene. Furthermore, as in general many models are possible, a ranking is required so 
that "preferred interpretations" can be delivered. 

RACER can be used, however, in support of one of the more modest interpretation 
steps outlined in Section 3: Instance refinement is available in RACER as individual 
classification. Also general services such as a TBox consistency checking may be 
used. 

5   Conclusions 

A conceptual framework for high-level vision has been presented using a 
representational formalism which easily maps into an expressive description logic. 
The main conceptual units are aggregates which represent co-occurring physical 
bodies and their percepts. Guided by the need to deal with various cognitive 
situations, interpretation steps have been proposed which support flexible 
interpretation strategies. As it turns out, current DL reasoning systems do not (yet) 
provide the services which would optimally support high-level vision. In particular, a 
ranking scheme should guide possible choices. 
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