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Configuration Expert Systems: 
a Case Study and Tutorial 
Bernd Neumann 

Summary 

This contribution discusses the architecture of expert 

systems for configuration tasks in technical domains with the 

objective to develop application-specific tools for expert 

system development. In the first part of the paper four 

configuration systems (XCON, SICONFEX, MMC-Kon and ALL-

RISE) are analyzed with regard to their architectural features 
and experiences gained during the development. From these 

examples and similar evidence in several other systems one 

can conclude that a knowledge-based architecture much 
different from the conventional rule-based architecture is 

adequate for configuration systems. The main components of 

the configuration system architecture are described in the 

second part. The particular design presented in this paper is 
based an research in project TEX-K. 
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1. Introduction  

As expert systems are being developed for an increasing range 

of applications, it becomes necessary to distinguish classes, 

find commonalities and recognize domain-dependent features. 

This is, of course, common practice in all fields where 

progress depends an practical experience and experimentation. 

As more and more examples can be studied, the conceptual 
structure of the field becomes apparent. lt seems, however, 

that this development is particularly slow in the field of 

expert systems. While the number of systems being developed 

is skyrocketing and the number of systems being put to use is 

also increasing, though much more modestly, application-

dependent architectural distinctions remain quite coarse. 

This is not to say that application categories are not being 

distinguished in this field. Hayes-Roth et al. [15] suggest the 
10 categories interpretation, prediction, diagnosis, design, 

planning, monitoring, debugging, repair, instruction, and 

control which henceforth have been cited abundantly. But 

there are few specific architectural characteristics which 

can be associated with each of these categories. The best one 

can do is to distinguish two main categories among the 10, 

diagnosis type and configuration type applications. In 

diagnosis applications backward chaining prevails, while 
most configuration applications employ forward chaining. 

Also, one often needs uncertain reasoning for diagnosis but 
rarely for configuration. Apart of these major distinctions the 

notion of an expert system frame work supposedly common 

for all applications is generally put forth. If distinctions in 

architecture are discussed, they are usually related to varying 

degrees of problem complexity rather than types of 
applications. In [15] we find a decision tree relating 

particular problem solving methods (and hence architectural 

distinctions) to rather abstract domain characteristics. For 

example, constraint propagation should be employed if 
subproblems interact, belief revision employed if search 
efficiency needs improving, etc. 
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A similar picture is drawn in a recent 450 page tutorial an 

expert systems [19]. Variations in system architecture are 

described in terms of the relative importance of the five main 

components of a system: inference engine, knowledge-base, 

user-system interface, explanation facility, and knowledge 

acquisition facility. Real-time process control systems, for 

example, would have little need for a system-user interface; 

if problem solving knowledge was still unfolding, one would 

need a good knowledge acquisition facility, etc. This amounts 

to saying that there is essentially one basic expert system 

architecture for all applications. 

A 'flat' view of expert system architectures is also taken by 

most tool builders: Expert system development aids and Shells 
are generally designed to cover 'all' applications. As the 

requirements vary noticeable, hybrid tools are provided which 

offer a selection of alternative components and methods to 

choose from. But there are few tools specially designed for 

particular application categories, diagnosis tools being the 

prominent exception (see e.g. the excellent analysis in [28]). 

As it turned out, even diagnosis tasks may not be treated 

alike. For certain domains 'second generation expert systems' 

[29,37,38] are being proposed and developed. Their 
architecture may be quite different from conventional 
systems, employing, for example, deep models of the 

respective domain to support causal reasoning. Hence the 

boundary lines of diagnosis application categories are quite 

likely to be redrawn according to the need for such 

architectural features. 

This contribution discusses the architectural requirements of 
another traditional application category, configuration expert 

systems. We use the term 'configuration' here in a broad 

sense: 

A configuration system is an expert system which 

helps to assemble components into an aggregate 

according to some goal specification and using 

expert knowledge. 
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Components may be physical objects or other entities (e.g. 
actions or methods). They may be chosen from an infinite 

repertoire (e.g. including objects with a continuous range of 

attribute values). The process of assembling components into 

a configuration may involve decisions concerning type and 

properties of individual components as well as relations 

between several components. The goal specification may 

contain any information regarding the final aggregate 

including constraints, optimality criteria, functional 

requirements, etc. There may be any number of acceptable 

solutions, including none at all. 

We also assume that the configuration system does not 

employ a ciosed-form solution procedure but a step-by-step 

strategy. Each step typically involves a decision or 

assumption concerning the solution aggregate. Hence one may 

think of a configuration system as an Al problem solver and 

the configuration steps as decisions in a search graph. 

Much of what is known about control techniques in Al problem 
solving also applies to the configuration task. Finding an 

acceptable configuration may require judicious choices at 

intermediate decision nodes, possibly based an heuristic 

information. In general, control strategies ranging from 

simple depth-first search to dependency-directed 

backtracking may be called for. 

lt should be clear by now that our definition of configuration 

encompasses construction, design, planning and other rather 

diverse activities. Here are some examples which are in 

accord with our definition: 

- selecting components for a power supply given performance 

requirements 
- designing the floor plan of a house 
- planning a sequence of laboratory experiments 

Bernd Neumann 
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- configuring a computer system according to customer 

wishes 

- selecting and placing office furniture 

- specifying work plans for a manufacturing process 

- configuring a computer vision system for quality control 

The paper is organized as follows. In Section 2, following this 

introduction, we review the literature and discuss selected 

systems in more detail. We focus an a major subcategory of 
configuration systems, loosely called 'technical' configuration 

systems. Their distinguishing feature is highly structured 

domain knowledge, or more precisely, a solution space which 

is decisively governed by well-documented technical 

information. Most configuration tasks tackled by expert 

systems so far and all of the examples given above fall into 

this category. 

In Section 3 we describe the details of a knowledge-based 

architecture adequate for configuration systems. The 

architecture differs from the conventional expert system 

architecture in several respects, particularly in its 

deemphasis of rule-based knowledge representation. The 
search for a solution is prestructured to a large extent by a 
hierarchical representation of admissible configurations. 

We also report about the configuration system tool PLAKON 

which is being developed in a joint project in the FRG. Much of 

the insights presented in this paper have resulted from 

research for PLAKON. At this point I want to express my 

gratitude and appreciation for contributions of R. Cunis, A. 

Günter and I. Syska at the Universität Hamburg and of all other 

project members. 
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2. What Can We Learn from Experience: Four Examples 

In this section we tap the considerable body of experience 

concerning the design of configuration systems. Our goal is a 

critical analysis of implemented systems with regard to their 

architectural features. What can we learn from these 

applications? 

To this end we view each system as a problem solving system 

whose behavior depends an three types of knowledge: 

1. general domain knowledge 

2. problem-specific domain knowledge 

3. problem-solving knowledge 

The first body of knowledge encompasses facts, properties 

and relations of the application domain including the 

underlying conceptual structures. Different from the second 

type, domain knowledge is assumed to be valid for all 

problems of an application domain, hence it is sometimes 

called 'static'. 	For configuring power supplies, for example, 

domain knowledge would include component descriptions, 

relevant physical laws, cooling requirements, industrial 

standards, etc. We do not want to distinguish from general, 

domain-independent knowledge, e.g. laws for spatial and 

temporal reasoning. Such knowledge is assumed to be part of 
the domain knowledge base. 

The second type of knowledge is specific for a particular 

problem. lt includes the problem specification and all other 

information pertaining to a specific solution. As more and 

more problem-specific knowledge is accumulated in course of 

the problem solving process, this knowledge base is often 

called 'dynamic'. Note that both (1) and (2) can be viewed as 

knowledge constraining the solution space. Both account for 

admissible solutions but not for procedures to find them. This 

is left for the third knowledge type. 
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Problem-solving knowledge is defined here as knowledge 

pertaining to the order in which configuration decisions 

should be made. lt provides control for the problem solving 

process in terms of strategies, methods, subtask 

organizations, sequencing information, etc. We shall see that 

problem-solving knowledge - although conceptually separable 
- is mixed up with domain knowledge in most applications. 

This is Iargely due to the use of situation-action rules which 

encourage unstructured knowledge representation. We want to 

elaborate this point a little further. 

Control in a rule-based system tends to be diffuse by the very 

nature of rule-based systems: Rules are essentially a way of 

defining a process without defining control. Hence rule-based 
systems are best suited for applications where a global flow 

of control need not be specified. If one has to enforce a 

certain order of problem-solving steps in a rule-based 

system, one must provide control knowledge in terms of 

appropriate firing conditions on the left-hand sides of the 

rules. This is often accomplished by introducing 'contexts' 

which are turned on and off to enable rules in the proper 

sequence. A second form of control, of course, is given by the 

conflict resolution strategy which provides arbitration when 

more than one rule is ready to fire. 

The three knowledge types have been introduced to permit a 

structured inquiry into the use of knowledge in the 
application examples which will be discussed. We shall 

examine how the respective bodies of knowledge are 

represented and put to use for the respective problem solving 

tasks. 

2.1 R1/XCON 

As a first example of a configuration system we take a look 

at R1/XCON, the expert system for configuring DEC computers 
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[1,20,32,43]. Given a customer's purchase order, XCON 

determines substitutions and additions to make the order 

consistent and produces a number of diagrams showing the 
spatial and logical relationships among the components. The 

decisions to be made concern component types and properties, 

placement of components into boxes and cabinets, electrical 

connections among components, etc. XCON is a very large rule-

based system. lt currently contains more than 6200 rules 

which draw on a database of approximately 20,000 parts. 
Furthermore, each year about half of the rules are expected to 

change. Hence XCON also presents a formidable software 
maintenance task. 

Static domain knowledge in XCON can be roughly subdivided 

into component descriptions and knowledge about valid 

(partial) configurations. Component descriptions are read in 

from a component database. After reading them in they are 

represented as simple OPS5 frame structures. We use the 
knowledge representation features such as defaults, 

inheritance, facets, or procedural attachment. Knowledge 

about valid (partial) configurations, e.g. compatibility of 

components or placement requirements, is expressed in terms 

of OPS5 rules, so-called productions. A production consists of 

an arbitrary number of condition elements on the left-hand 

side, in XCON on the average about 6, and an arbitrary number 

of actions, e.g. modifications of the current working data, on 
the right-hand side. 

ASSIGN-POWER-SUPPLY-1 

I F : 	THE MOST CURRENT ACTIVE CONTEXT IS ASSIGNING A POWER SUPPLY 
AND AN SBI MODULE OF ANY TYPE HAS BEEN PUT INA CABINET 
AND THE POSITION IT OCCUPI ES IN THE CABINET IS KNOWN 
AND THERE IS SPACE IN THE CABINET FOR A POWER SUPPLY 
AND THERE IS NO AVAILABLE POWER SUPPLY 
AND THE VOLTAGE AND FREQUENCY OF THE COMPONENTS IS KNOWN 

THEN: FIND A POWER SUPPLY OF THAT VOLTAGE AND FREQUENCY 
AND ADD IT TO THE ORDER 

Figure 1: Sample rule of XCON (paraphrased) 
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The example in Figure 1 illustrates how static domain 

knowledge about valid configurations is coded in terms of 

actions to be taken in a certain problem solving context. This 

technique, although common practice in configuration 

systems, leads to considerable unclarity as will be argued 
further down. 

The problem description of XCON - which is part of the second 

body of knowledge to be examined - is a list of components. 

XCON detects missing or wrong components and corrects the 

list while performing the configuration task. Note that a 

problem specification in terms of a component list is much 

less problematic than an indirect specification, e.g. in terms 

of functional requirements or constraints. The latter would 

necessitate component selection as part of the configuration 
task. For DEC computers this is done by the separate expert 

system XSEL - discussed in [19] - which accepts customer 

wishes as input and delivers a component list as output. 

We now turn to problem-solving knowledge as represented and 

used in XCON. lt is explicitly expressed by rules and implicitly 
by the conflict resolution strategies of OPS5. The control thus 

achieved is remarkable. The configuration task is organized 

into contexts which in effect specify a hierarchical system of 

tasks, subtasks, sub-subtasks, etc. Figure 2 shows a sequence 

of contexts taken from a trace in [20]. The number preceding 

each context is the cycle an which that context was entered. 

Each leaf of the subtask hierarchy typically consists of about 

10 configuration steps corresponding to as many cycles of the 

inference component. At the end of a subtask an appropriate 

rule fires to establish a new subtask. Thus the order of 

configuration steps is well-defined and - as it turned out - 

hardly ever leads to backtracking. 
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215 MAJOR-SUBTASK-TRANSITION 
216 	DELETE-UNNEEDED-ELEMENTS-FROM-WORKING-MEMORY 

235 	FILL-CPU-OR-CPU-EXTENSION-CABINET 
240 	 ADD-UBAS 
246 	 ASSIGN-POWER-SUPPLY 
251 	 ADD-MBAS 
252 	 DISTRIBUTE-MB-DEVICES 
260 	 ASSIGN-SLAVES-TO-MASTERS 
269 	 ASSIGN-POWER-SUPPLY 
272 	 FILL-MEMORY-SLOTS 
278 	 SHIFT-BOARDS 
298 	 ADD-MEMORY-MODULE-SIMULATORS 
305 	 ASSIGN-POWER-SUPPLY 
312 	 FILL-CPU-SLOTS 
318 	 ASSIGN-POWER-SUPPLY 
322 	 ADD-NECESSARY-SIMULATORS 
326 	 DELETE-TEMPLATES 
340 	DELETE-UNNEEDED-ELEMENTS-FROM-WORKING-MEMORY 
353 	FILL-CPU-OR-CPU-EXTENSION-CABINET 
356 	 ADD-MBAS 
359 	 ASSIGN-POWER-SUPPLY 
362 	 ADD-UBAS 
364 	 FILL-MEMORY-SLOTS 
369 	 SHIFT-BOARDS 
389 	 ADD-MEMORY-MODULE-SIMULATORS 
396 	 ASSIGN-POWER-SUPPLY 
399 	 TERMINATE-SBI 
402 	 ADD-NECESSARY-SIMULATORS 
406 	 DELETE-TEMPLATES 
415 MAJOR-SUBTASK-TRANSITION 

Figure 2: Sequence of contexts in XCON trace 

As pointed out earlier, rule-based programming is best 

matched to problems with a predominantly local control 

structure. XCON is an atypical example as it uses rules to 

establish a global flow of control. We want to learn from this 

example, hence let us consider advantages and disadvantages 

of the XCON architecture. Some interesting points are made in 

a recent analysis [32] concerning the intelligibility of XCON's 

written code. When modifying the rule set XCON's rule 
developers find it increasingly difficult to insure rule firing 

in the proper order. As one of the reasons they name the 
inhomogeneity of the code: Diverse tricks have been used over 

the years to force rules into a particular firing order. Also 
having a rule for more than one situation turned out to 
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decrease intelligibility. When changing a rule one could not be 

sure about its original purpose. 

As a partial remedy a new high-level language RIME has been 

developed for recoding XCON. RIME provides several means of 

expressing structure in a rule-set. First, rules of common 

purpose can be assigned to a 'problem space' corresponding to 

a subtask. Hence the XCON subtask structure can be better 

supported. Second, problern solving methods can be defined 

and assigned to a problem space. For example, many subtasks 

can be solved by performing four conceptual steps (the 

following is a highly simplified description): 

1. PROPOSE: Suggest operators for current goal. 
2. ELIMINATE: Evaluate appropriateness of operators prune. 
3. APPLY: Activate and execute operators. 

4. EVALUATE: Review goal, redo or exit problem space. 

By assigning this method to a problem space, RIME provides 

rules which reinforce the corresponding sequence of steps. 

Third, rule templates are provided which establish 

permissible categories of rules and prohibit inhomogeneous 

coding. 

In summary, we find that a system like XCON requires means 

for defining control, both in terms of a context structure and 

methods for subtasks. A rule language such as OPS5, however, 

is not well suited for defining control. The disadvantages may 

not be decisive in small systems, but they become significant 

in systems as large as XCON. Certainly, good software 

engineering also applies to the design of expert system: A 

mismatch between problem structure and programming 
language decreases software intelligibility and should be 

avoided. 
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2.2 SICONFEX 

After having discussed XCON it is interesting to take a look at 

the configuration system SICONFEX which provides a very 

different solution for a similar task. SICONFEX has been 

developed by Lehmann et al. at Siemens, Munich, in 1985 

[14,17]. lt is an expert system for configuring the operating 

system of SICOMP process control computers distributed by 

Siemens. The input data consist of the hardware configuration 

and application-specific customer requirements, e.g. with 

respect to the intended use of system and user software. 
Requirements may be graded according to various degrees of 

desirability. All input data are obtained in a user-friendly 

dialogue supported by graphical displays. The system expects 

only a naive understanding of hardware and software 

components. After the input phase the system performs the 

partitioning of the main storage. This is the core of the 

configuration task. The system generates output in terms of 

configuration statements for a generator program. 

There are four distinct main storage regions to be configured, 

three for the operating system and one for user programs. 

Human experts were able to supply some 200 rules concerning 

the configuration of the first three regions. However, many 

heuristics and guide-lines had to be added by the developers 

of SICONFEX. The system encompasses 6 MByte of code 
(including 4 MByte of INTERLISP-D/LOOPS code) which is 

equivalent to a rule-based system of several thousand rules. 

SICONFEX is not a rule-based system, however, as it employs 

diverse methods of the LOOPS environment. 

Let us examine the representation and use of the three 

different types of knowledge again which we have introduced 

earlier. Structuring static domain knowledge played a 
significant part in the development of SICONFEX. As the 

authors report in [14], they found this task much underrated in 

popular expert system literature. The SICONFEX domain 
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consists of at least three distinct areas with quite diverse 

characteristics: 

1. the world of physical objects which are the configuration 
components 

2. the abstract world of existing software modules 
3. the artificial world of hypothetical memory partitionings 

A variety of techniques have been used to represent such a 

heterogeneous domain: frame-like object structures, 

conceptual taxonomies, inheritance mechanisms, rules, 

message passing, active values and LISP functions. The 

authors stress that rules play only a subordinate rote. They 
are used with logical interpretation: 

IF <premisses> THEN <conclusion> 

Production rules as in OPS5, an the other hand, have 

procedural semantics: 

IF <pattern> THEN DO <actions> 

Such rules are deemed unfit for representing static domain 
knowledge in SICONFEX - much in accord with our earlier 
remarks concerning XCON. 

Problem-specific knowledge enters the system via the 
elaborate user-interface mentioned above. The need for 

considerable programming efforts in this department has also 

been reported by other authors [2,9], and it is worthwhile to 

understand when and why this is so. Problem data are often 

obtained from a user belonging to a category much different 

from the knowledge engineers who structured the domain 

knowledge. In the case of naive users (as with SICONFEX) 

instant knowledge engineering has to be performed to 

transiate user input into internal structures. The more 

elaborate the system's knowledge representation and the more 
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naive the user's, the wider is the gap which has to be bridged 

by the user interface. Note that problem-specific domain 
knowledge is structurally not much different from static 

domain knowledge. Hence components for acquiring domain 

knowledge during system development may be put to use for 
user interfacing and vice versa. 

There appears to be no extensive representation of problem 
solving knowledge in SICONFEX (in the sense defined earlier). 

As the authors state in [17], experts could not provide 

consistent strategies for partitioning the main storage. The 

solution adopted in SICONFEX has algorithmic character. lt 

involves discrete optimisation but also incorporates 

heuristics and hypothetical decisions lieble for backtracking. 
Control is not expressed in terms of rules. 

In summary, SICONFEX is a configuration system with an 

architecture radically different from XCON. Its prominent 

features are (1) a highly structured knowledge-base, (2) an 
elaborate user interface for acquiring problem data, and (3) 

hybrid problem-solving techniques including optimisation 
algorithms. 

2.3 MMC-Kon 

Our next example is the system MMC-Kon which configures 
distributed automation systems based an the SICOMP MMC 216 

multi-microcomputer system. MMC-Kon has been developed by 

Baginsky et al. at Siemens, Erlangen, as a first prototype for 

testing general principles of configuration system design [2]. 

The particular domain of interest is rolling mill automation. A 

typical task is defined in terms of several automation 

functions to be performed by the system, e.g. thickness 
control, position control, automatic slow-down. The user 

specifies a task interactively making use of reference 

systems and MMC-Kon's knowledge base which contains all 
standard automation functions. 



automatic 
------- -speed 

function . ------------------- control 
processor • ----- ---- 

----- 	automatic 
slow-down 

BGT1 
sub- 	------- BGT2 
reck • ---------------- BGT3 

-------------- 

-- --- VE216 
processing 	 --- 
unit 	 VE286 

memory  ._______---- MEM1 

module 	  MEMO 

process 	. ----- _ ------ AAPB 
Interface   AEPI3 module 

------------------- • DEPB 

ie
./ 

 

module - 
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As a first configuration step MMC-Kon generates a function 
plan containing the function processors for the automation 
functions. Various criteria have to be taken into account, e.g. 
process structure, functional integrity, volume of inter-
process communication, bus capacity. Next, each processor is 
configured by selecting suitable components (memory and 
peripheral units). Then all modules are placed into sub-racks 
with consideration given to the number of siots, the available 
power supply, preferred module locations and combination 
options. The next configuration step is to assign parameter 
settings to the modules according to the required operational 
characteristics. Finally, the sub-racks are assigned to 
cubicles considering placement constraints. The output is a 
complete documentation of the automation system. 

	 means 1s-a' relation 
means "has-Parts" relation 

Figure 3: Hierarchical structure of domain knowledge 
in MMC-Kon 
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The inherent characteristics of this application do not seem 

much different from the preceding examples, yet there are 

some novel features. As we examine the relevant domain 

knowledge we find - as would be expected - conceptual 
descriptions of all objects which can make up a configuration. 

In addition, however, the object frames are related to each 

other by is-a and has-parts relations. The resulting 
hierarchical structure is shown in Figure 3 (taken from [2]). 

Note that the individual modules (e.g. processing unit VE216 

or memory unit MEM1) are represented from two perspectives: 

as physical objects and as carriers of a function. The ability 

to view objects from different perspectives, exposing certain 

attributes and hiding others, is a valuable asset for 

knowledge structuring and appears to play an important rote 

in configuration system design. 

Similar to SICONFEX the task definition is acquired 

interactively. The system supports this phase using its 

domain knowledge and the display capabilities of a modern 
workstation. There is also the option of referring to library 

configurations. In this case the current task is defined by 

modifying the selected reference task. 

Control does not seem to play a critical rote in MMC-Kon. 

There is a natural order in following through the configuration 

steps, but the system has been designed to permit free user 

interaction and changes of the order of configuration steps at 

virtually any time. MMC-Kon ensures that the resulting 

configurations are consistent, whichever decisions the user 
has made interactively. This desirable characteristic is in 

distinct contrast to XCON where the order of configuration 

steps is fixed and precludes user interaction. One may 

attribute this to differences of the respective application 

domains, but I am prepared to argue that MMC-Kon's pleasant 

properties are mainly the result of better knowledge 
representation. 
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We now turn to a different field of application: design in 

engineering. Design has been characterized in [22] as a 

problem solving activity aimed at constructing artifacts and 
meeting certain conditions. The artifact must 

1. satisfy a given functional specification, 
2. conform to limitations of resources, and 

3. satisfy implicit and explicit criteria on its form. 

From this definition design has enough in common with the 

configuration examples encountered so far to be included in 

our discussion. The main difference seems to be the emphasis 

of form design rather than composition of components. 

2.4 ALL-RISE 

There is a rich set of literature on design aided by knowledge-

based systems. For an excellent analysis see [42], for 

references see [8]. lt is not immediately clear which systems 

fall into the category of configuration expert systems and 

which do not. Most of the expert knowledge in engineering is 

formalized and well documented to begin with, hence 

automatising design is not really a matter of replacing or 

simulating human experts. Consequently, much of the relevant 

literature is oriented towards design automation and not 

towards expert system development. But judged by 

performance, knowledge representation techniques, and design 

methods, several of these innocent-looking engineering tools 

deserve the attention of expert system developers for 
configuration and - following [26] - possibly also diagnosis 

tasks. 

We focus now on the design system ALL-RISE [33,34] which 

supports the preliminary structural design of buildings. The 

input to ALL-RISE is an architectural or spatial plan of a 

building represented by a three-dimensional grid (see Figure 
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4). The topology of the grid is defined by the number of 

stories, bays and aisles. Also load and clearance constraints 

are given. 

120 psf 

   

   

   

   

   

   

   

   

35 stories @ 10 ft 

4 aisles @ 45 ft 

Figure 4: Sample input of ALL-RISE 

The output is a set of feasible alternative 'structural 

systems' ranked according to their appropriateness for the 
given building. Figure 5 shows a typical output. lt is a 

preliminary design as only basic structural design categories 
are distinguished, e.g. various types of steel or concrete 
structures. 

The design process is a depth first search through a hierarchy 

of predefined structural systems, subsystems and 

components. Constraints prune alternatives, ensure 

compatibility of design decisions and rank competing 
solutions. The system is implemented in SRL, the schema 

language of the expert system development tool Knowledge 
Craft. 



Configurafion Expert Systems 
	

45 

Alternative 1; 

3D-material: steel 
3D System: orthogonal 
2D Subsystems: 

Lateral-load: 
Outer (bay & aisle): 	rigid-frame (beam-column) 
Inner (bay & aisle): 	rigid-frame (beam-column) 

Gravity-load: 
Floor-type: Reinforced slab 
Floor-support in aisle direction: 2 
bay: 	column-plate 
aisle: 	simple-frame 

NOTE: Lateral-load primarily resisted by rigid-frames 

Figure 5: Partial output of ALL-RISE 

ALL-RISE is interesting for our discussion of expert system 

architectures because of two significant features. One is the 

organization of static domain knowledge, the other is the 

extensive use of constraints. We shall discuss these features 
in order. 

The static knowledge hierarchy of ALL-RISE is similar to 

other knowledge bases with respect to its use of schemas 

(frames) and the predominance of is-a and has-parts 

relationships for describing and relating the entities of the 

domain. lt is special, however, because of the interpretation 

assigned to the top node of the hierarchy. The top represents 
an acceptable structural system (a successful design) at its 

most abstract level. Hence all solutions must be instances of 
this node or its specializations. Subordinate nodes represent 

either alternative specializations (e.g. steel or concrete) or 

partial designs (e.g. lateral-load design and gravity-load 

design). Leaves of the hierarchy represent design choices 

which need not be further refined. A complete design is a 

subtree with the top node as the root, exactly one successor 

for is-a branchings and all successors for has-part 
branchings. Note that this corresponds to a solution in a 

conceptual AND-OR tree. Is-a branchings represent logical OR 

relationships, has-part branchings represent logical AND 
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relationships. Representing domain knowledge in this fashion 

has the interesting property that decisions required for a 

feasible design are explicitly represented. Furthermore, 

conceptually related decisions are grouped together. Hence 

making decisions in depth-first order beginning at the top 

node is natural and conceptually justified. One can also argue 
that this order tends to minimize backtracking. The 

advantages of a control flow following the AND-OR structure 

of a problem domain are well-known in Al problem solving 

[25]. Similar schemes have also been used in several other 
design and configuration systems [7,41]. 

The is-a and has-part hierarchy of ALL-RISE does not contain 

complete domain knowledge as a large part is encoded by 
constraints attached to the knowledge hierarchy. The authors 

distinguish (1) synthesis constraints which affect the 

generation of feasible solutions, (2) interaction constraints 

which arise from the interaction of structural subsystems, 

(3) causal constraints which represent equations of 

equilibrium and other physical laws, (4) parametric 

constraints which constrain component attributes, and (5) 

evaluation constraints which are used to rank alternative 

structural designs. The following is a synthesis constraint 
represented by a SRL schema: 

{{braced-frame-constraint 
CHILD-NODES: "mat-steel" "stories-less-than-40" 
CONNECTION-TYPE: and 
STATUS: 

}} 

The constraint can be paraphrased as the rule: 

1F 	the current alternative is a braced frame, AND 
the material used is steel, AND 
the number of stories is less than 40 

THEN 	eliminate the current alternative. 

As a matter of fact, a rule representation has been used in 
HI-RISE, a precursor of ALL-RISE. 
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Constraints are instantiated, propagated and satisfied when 

encountered in the knowledge hierarchy. Interesting control 

issues arise as design decisions of one partial design may be 

affected by constraints triggered by another partial design. 

Constraints are related to each other through common 

attributes and form a network. Different from other work an 

constraint-based reasoning [11,12,13,36] the developers of 

ALL-RISE did not implement an independent constraint 

propagation machinery capable of satisfying multiple 

constraints simultaneously. They preferred a step-by-step 

procedure oriented at the domain knowledge hierarchy. 

2.5 Planning 

Another application area related to our topic is planning, at 

first glance quite different from configuration and design. The 

basic similarities become apparent, however, if one views a 

plan as a configuration of operations or actions. Plan 

formation means selecting operations from a repertoire to 

meet certain boundary conditions and constraints, e.g. a 

desired final state. 

There is a vast body of literature concerning planning systems 
as planning has been an Al research area long before the 

advent of expert systems [10,30,31,39]. Today, several 

different models are considered interesting, for a survey see 

[18,35]. The most popular originated from the work of 

Sacerdoti [30,31]. Each step in a plan is modeled as an 

operator along with preconditions and a description of the 

state change caused by that operator. Sacerdoti also 

emphasized the need for hierarchical planning in tvvo 
respects. First, he organized the repertoire of operators into a 
hierarchy to allow planning at different levels of abstraction 

(e.g. 'travel' vs. 'travel-by-train'). Second, he differentiated 

the preconditions along a coarse-to-fine scale. 



48 

In modern application-oriented planning systems several 

other features are also important [18], for example flexible 

user interaction, display facilities, alternative plans, special 

planning strategies, optimization methods, etc. The basic 

structure of a planning system, however, including the 

preference of a hierarchical approach, conforms well with the 

basic structure of a configuration system. A more detailed 

proposal for impiementing a planning system with 

configuration system components has been worked out in [4]. 

3. The Kernet of a Technical Configuration System  

The discussion of selected configuration systems in the 
preceding section has revealed differences and 

commonalities, convincing solutions and less convincing ones. 

This should provide some background for the following 

sections where we propose components and architectural 

features for future configuration systems. The proposal is 

largely based on research carried out in project TEX-K which 

will be described later. But many ideas have also been put 

forth in the literature in connection with application-oriented 

work as evident from the examples in the preceding section. 

We are guided by the following main insights concerning 
configuration system architecture: 

1. For a large class of configuration tasks, especially in 
technical domains, the configuration process is governed by 
highly structured knowledge about components and 
aggregates. Expert rules play a subordinate rote. 

2. Domain knowledge is naturally organized into two bodies: 
an object-oriented knowledge hierarchy based on is-a and 

has-parts relationships, and a constraint network relating 
object properties to each other. 

Bernd Neumann 
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3. The order of configuration steps may vary considerably 

depending on the particular problem, the availability of 

library solutions, the amount of user interaction and the 
strategy chosen. 

4. An elaborate user interface is a major subtask of 

configuration system development. Its main purpose is 

interacting with the knowledge base. 

The kernet which will be described in the following 

constitutes an architectural framework in accord with the 
above views. 

3.1 Conceptual Knowledge 

Conceptual knowledge is a structured description of 

permissible configurations. As stated above we distinguish 

between a hierarchical object-oriented representation and 
constraints. In the following we focus on the hierarchical 

representation and begin with the conceptual hierarchy. 

3.1.1 Conceptual hierarchy 

The conceptual hierarchy is a lattice of conceptual object 

descriptions based on the is-a relationship. Its purpose is to 

characterize the objects with which one has to deal in the 

application domain. A flat collection of frames is clearly not 

sufficient as different levels of abstraction play an important 

rote in step-by-step configuration. The is-a relationship 

supports well-known techniques of property inheritance [3]. 

The top-most part of the conceptual hierarchy is domain-

independent and predefined. Figure 6 (adapted from [6]) shows 

a typical root section of the conceptual hierarchy. 
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Figure 6: Root section of conceptual hierarchy 

An 'atom' is a predefined object dass of the representation 

language, its is-a refinements are essentially data types and 

templates. A 'complex object' is the most abstract dass of 
objects of the application domain. Each object dass is 

represented by a frame with attributes and values. Some 
attributes are predefined, e.g. has-parts, has-instance and 

their inverse. The range of attribute values is defined by 

object descriptors which in turn are represented by 

conceptual nodes in the hierarchy. The following expression 

(in a hopefully self-explanatory syntax) defines the new 
object dass 'body' for the domain of vehicies. 

((a body) is 	(a aggregate) 
(part-of 	(a car)) 
(has-parts 	(some (a door) 2 5) 
(has-color (a color))) 

Note that the set-type values of has-parts are associated 
with a number restriction. For ordered sets one might also 
want to have a sequence primitive. 
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All these techniques are well-known in Al knowledge 
representation but unfortunately not always supported in 
expert system tools. We shall not elaborate these techniques 
but rather briefly discuss an additional, less well-developed 
representation feature which is useful for configuration 
systems: aspects of an object. 

The need for aspects has been pointed out in the discussion of 
MMC-Kon where a configuration was viewed as a system of 
automation functions in the first phase and as a hardware 
system in the second. The configuration as a whole 
encompasses both, attributes and components of the 
functional aspect and attributes and components of the 
hardware aspect. To represent aspects in the conceptual 
knowledge hierarchy we allow attributes to be bundled and 
bundles to be given aspect names. For example, we define the 
software and hardware aspects of a computer system as seen 
below. With 'computer-system/SW' one can address the 
software aspect of the concept 'computer-system' just like a 
complete node. Also, is-a and has-parts successors can be 
defined within any of the aspects. See [6] for a more detailed 
presentation of the aspect feature. 

(a computer-system) is 
(a aggregate) 
(:SW (a software-system) 

(has-parts (Set (a operating-system) 
(a user-program)))) 

(:HW (a device) 
(has-parts (set (a processor) 

(a memory))))) 

The has-parts attribute, of course, is a key attribute for 
representing aggregates. As the main idea is to represent 
permissible configurations, the has-parts attribute is used 
to build a compositional hierarchy with 'permissible-
configuration' as the top node. All possible alternatives for 
partial configurations and components can be reached from 

the top node via is-a and has-parts refinements. The graph 
below 'permissible-configuration' can be interpreted as an 
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AND-OR graph as pointed out earlier. The solution of the 
configuration problem is a solution tree in this AND-OR graph. 
The complete hierarchical knowledge base encompasses 
additional nodes, however, as should be clear from Figure 6. 

3.1.2 Constraints 

Constraints are a common way to express conditions on, or 
mutual dependencies between, objects and properties. For 
discrete property values, a constraint can be viewed as a 
relation in the mathematical sense. lt defines a restricted 
subset of combinations of property values among the set of 
all possible combinations, e.g. the subset of exhaust systems 
compatible with car engine types and export destinations. 
Constraints can be viewed as a general way of expressing N-
ary relationships, complementing the binary attribute 
relationships in frames. 

For several reasons constraints require special treatment. 
First, they do not conform with the object-oriented style of 
knowledge representation discussed so far. A typical 
constraint involves more than one object and cannot be 
assigned to any single object by a good reason. Second, 
constraints tend to affect the order of configuration steps in 
a way much different from the path lined out by the 
hierarchical knowledge base. This is known from human 
problem-solving where narrowly constrained choices are 
typically considered first. There is also a growing body of 
research concerning constraint-based problem-solving and 
effective procedures for evaluating constraint knowledge 
[4,13,21,36,40]. Third, humans frequently use constraints in 
their own thinking and language when they want to 
characterize a solution space. Hence it certainly facilitates 
knowledge engineering if constraints can also be formally 
expressed in a computer system. In summary, there is much 
evidence that a tool box for configuration system development 
should provide means for representing and exploiting 
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constraints. In the following we outline an approach originally 

proposed by Güsgen [13] and further developed in project 
TEX-K [24]. 

Constraints are defined using constraint classes. A constraint 

class is comparable to a procedure declaration with formal 

parameters and a body specifying the restrictions or 

functional dependencies between the parameters. Constraints 

are tied to domain knowledge via so-called conceptual 

constraints. A conceptual constraint consists of two parts, 

one specifying the bindings of constraint variables to objects 

of the knowledge base, the other specifying the bindings of 

the parameters of a constraint class to attributes of the 
selected objects. The following expression describes a 

conceptual constraint which may be used to force the 'has-

weight' attribute of a car to take an the sum of the component 
weights. 

	

(constrain ( (?C 	(a car)) 

	

( ?B 	(a body 	(part-of ?C))) 

	

(?F 	(a frame (part-of ?C)))) 

(add (?B has-weight) (?F has-weight) (?C has-weight))) 

lt is assumed that a constraint class 'add' with three 

parameters has been defined. Note that the formal Syntax is 
just a way of entering constraints into the knowledge base. 

The internal representation is a frame-like data structure 

with links into the appropriate attribute slots of object 
frames. 

This short sketch of constraint classes and conceptual 
constraints, of course, is not all there is to be said about 

constraints. The theme will be taken up again in the following 
sections. 

3.2 Problem-Specific Domain Knowledge 

In a configuration problem we deal with concrete instances of 

components, aggregates and constraints. Für example, we may 
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have to construct a configuration from a component list as in 

XCON or from certain grid measures and load constraints as in 

ALL-RISE. Given a conceptual knowledge base as discussed 

above, such items are represented as instances linked 

bidirectionally to the proper concept nodes via 'has-instance' 

and 'instance-of' links. Instances inherit all attributes and 

predefined values. To maintain strict inheritance, instance 

properties may not 'overwrite' inherited properties. All this 

corresponds to common practice in Al knowledge 

representation and will not be elaborated further. 

We focus now an the dynamic aspects of problem-specific 

knowledge. In course of the configuration process many, 

possibly tentative, decisions are male and partial, possibly 

alternative, configurations are constructed. These partial 

configurations will be called elaborations henceforth. In order 

to realize various control strategies, including sophisticated 

techniques like dependency directed backtracking, we must be 
able to represent the history of elaborations. lt has the 

structure of a lattice with each node representing an 
elaboration and links connecting successive elaborations. Each 

link also contains information about the configuration step 
represented by that link. The problem with such a structure 

is its size in terms of required storage. In order to avoid 

multiple representations each instance should be represented 

only once. The elaboration history can thus be reduced to a 

history of changing attribute values. In some programming 

environments (e.g. Knowledge Craft) a context mechanism is 
provided which can be used for this purpose. Generally, 

however, expert system tools do not supply effective 

representation techniques for the elaboration history. 

Another representation requirement is related to the dynamic 

use of constraints. Constraint propagation is a dynamic 

process which generates restrictions an attribute values. The 

workings of constraint propagation will be discussed further 

down, at this point it is important to note that attribute value 
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restrictions, changing over time, have to be represented as 

part of the problem-specific knowledge. Furthermore, one may 

want to distinguish between value restrictions arising from 

different constraint sets, for instance 'soft' constraints and 

'hard' constraints. All this requires an organization of 

attributes into multiple facets, each facet corresponding to a 
distinct value modality. 

3.3 Problem-Solving Knowledge and Control 

We have designed the domain knowledge base in such a way 

that information about permissible configurations is made 

explicit. Hence inferences concerning the properties of a 
configuration can be based upon this knowledge and need not 

resort to rules. What remains to be defined is the order of 
such inferences and the mechanism which carries them out. 

As we have departed from a rule-based approach we can 

devise a control scheme which is Iargely independent of 

domain knowledge and allows the explicit representation of 
control knowledge. 

3.3.1 	Elementary configuration steps 

At any given time an elaboration consists of a set of object 

instances linked to conceptual nodes at various levels of the 

knowledge hierarchy. The following elementary configuration 

steps can be carried out depending an the state of the 
elaboration: 

1. decomposition of an object along has-parts 
2. specialization of an object along is-a-inverse 
3. aggregation of components along part-of 

(= has-parts-inverse) 
4. merging of objects which can be replaced by a single one 
5. value assignment or restriction 
6. instantiation of a new object 
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The first two kinds of operations are required for a top-down 

refinement strategy. The third is for bottom-up composition. 

The fourth covers situations where one object may be part of 

several aggregates. The fifth kind of operation, often called 

parameterization, decides upon object properties and will 

usually be employed very often. The sixths operation, finally, 

introduces a new object instance irrespective of the existing 

structure. 

• 
seden 

engine 

trans- 
mission 

racing 
engine 

2..8 

4..6 

cyl inder 

CI) 
4._ 10 

clutch 	( whe e I 

2..4 • 
inlection 
brand C 

injectIon 
brand D 

menuel 
trensm 

autametic 
trensm.  

   

racing 
trensm. 

4 gear 
menue, t. 

tire 
brand A 

tire 
brand B 

port-of IS-6 

    

Figure 7: Configuring a racing car 

Figure 7 shows an elaboration for a car configuration task to 

illustrate the possible operation steps. For simplicity, only a 

few conceptual nodes are shown. The links express is-a and 
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part-of relationships. The numbers associated with some of 

the part-of links indicate restrictions on the number of parts. 

Nodes which are assumed to be instantiated are drawn in 
heavy lines. Up to this stage it has been decided to configure a 

racing car with manual transmission and a particular brand of 
fuel injection. The following elementary configuration steps 
can be carried out next: 

- decompose 'racing car' 

- specialize 'manual transmission' 

- assign values to any of the instantiated objects 
- instantiate a new object 

This example also demonstrates the advantages of top-down 
strategies regarding conflict avoidance. If 'manual 

transmission' is specialized to '4 gear manual transmission' 

instead of 'racing transmission', this would be in conflict 

with the choice of a 'racing car'. A strict top-down strategy 

does not produce incompatible decisions of this kind. 

3.3.2 Representing control knowledge 

The preceding section has shown that in general, one of 
several configuration steps can be carried out at any time. We 

now discuss ways to make use of this degree of freedom. The 

main idea is to define explicit control strategies which 

provide selection criteria and other useful control 

information. In more detail, a strategy contains the following: 

1. Operation focus: This criterion focuses on a subset of the 
six elementary configuration operations. 

2. Partial configuration focus: This criterion screens out all 

operations except those which apply to a particular part of 
the configuration. 

3. Selection criterie : Predefined or user-defined procedures 
which rank configuration steps on the agenda. 
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4. Conflict rules: These rules are consulted in case of a 
conflict. They typically provide backtracking information. 

5. Value selection procedures: This criterion allows to specify 
any of a number of possible procedures for assigning attribute 

values, e.g. user interaction, optimisation techniques, 
constraint net usage, heuristics, etc. 

6. Constraint net activation: This information specifies 
conditions on activating the constraint propagation 
mechanism. 

A strategy is associated with a phase and will be activated 

upon entering that phase. A phase (or subtask) structure can 

be defined for a configuration task as part of the control 

knowledge. Such a structure has been found useful in many 

applications (see e.g. the context hierarchy of XCON). One way 

to define phases is by means of rules which are conditioned on 
the elaboration lattice and the currently active phases. The 

action part is restricted to phase activation and phase 

deactivation. Thus control knowledge and domain knowledge 

are clearly separated. As the rufe system controls the control 

of the configuration process, it is often cailed meta-control. 

3.3.3 The configuration cycle 

A configuration cycle comprises selection and execution of a 

configuration step. lt is roughly equivalent to the recognize-

act cycle of a rule-based system but quite distinct in detail. 
A cycle consists of the following steps: 

1. Meta-control determines phase and strategy. 
2. Strategy determines focus, selection criteria, etc. 
3. Possible configuration steps are determined and placed 

onto an agenda. 
4. A configuration step is selected according to the selection 

criteria. 
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5. The step is executed using a particular value selection 
procedure. 

6. The constraint net is activated optionally. 
7. The new elaboration is checked for conflicts and 

termination. 

Note that in step 1 meta-control is not expected to fire at 

each cycle. Also constraint propagation will typically not be 

activated for each cycle. The constraint propagation 

mechanism is a separate tool which will be briefly described 
in the following section. 

3.3.4 Constraint propagation 

We have already discussed constraint classes and conceptual 

constraints which constitute the first two levels of the 
constraint system. The third level is comprised of constraint 

instances which are created automatically as soon as the 
objects are instantiated to which a conceptual constraint is 

bound. Constraint instances form a network as several 

constraints may pertain to a single variable. 

The input of the network is provided by current attribute 
values which are bound .to constraint variables. Typically, 
some constraint variables are not yet bound and are free to 

take an values or sets of values as the result of constraint 

propagation. These values are fed into the 'admissible values' 

(AV) facet which coexists with the 'current value' (CV) facet 
of an attribute. lt takes a distinct configuration step of the 

main configuration cycle to feed a value of the AV facet into 

the CV facet. As a result of constraint propagation, a conflict 

may be discovered, indicating that current attribute values 

are incompatible and must be revised. Conflict indications are 

taken care of in the main configuration cycle using the 

conflict resolution rules of the active control strategy. 
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Figure 8: Evaluating a constraint 

Figure 8 illustrates the flow of information for a constraint 

net consisting of an 'add' constraint as introduced in an 

earlier example. 

3.4 The Expert System Tool PLAKON 

The architectural components presented in the preceding 

sections as well as several additional features are 

implemented in the context of the joint project TEX-K 

[5,6,12,24] which is supported by the German Ministry of 
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Research and Technology (BMFT). The objective of this project 

is to develop a tool system - called PLAKON - for planning and 

configuration tasks in technical domains. The project has 

begun in 1986 and is scheduled until 1989. lt comprises 57 

person-years of work shared between five project partners: 
Battelle Institute (Frankfurt), Philips GmbH (Hamburg), 

Siemens AG (Erlangen), URW (Hamburg) and the University of 

Hamburg. PLAKON is designed to support diverse applications. 

Six applications are implemented in the context of TEX-K: 

- configuration of multi-microcomputer systems for 

industrial automation (MMC-Kon, see 2.3) 

- configuration of computer vision systems for quality 

control in manufacturing [23,41] 

- configuration of automatic systems for industrial x-ray 
analysis [27] 

- configuration of systems for laboratory experiments 

- generating work plans for mechanical manufacturing 

- configuration of electrical engineering aggregates using 
standard components 

The architecture of PLAKON is shown in Figure 9. The main 

properties of the kerne) have been discussed in the preceding 

sections leaving out a considerable amount of detail for the 
sake of conciseness. The peripheral components of PLAKON 

which can be seen in the diagram reflect some of the needs 

which have become apparent from the discussion of the 
examples, e.g. a component for library solutions. Details of 

these components are still being worked out 
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Figure 9: The architecture of PLAKON 

4. Conclusions 

An efficient development and maintenance of an expert 

system requires application oriented tools. In this 

contribution we have discussed requirements for 

configuration systems. !Ne have analyzed several examples 

and found that in technical domains both configuration 

systems (in the narrow sense) and design systems have many 

features in common. Hence it is reasonable to consider them 

part of the common application category of configuration 
systems. 

1. The configuration process obeys highly structured 

knowledge about admissible configurations. 



V:"44,44a. ,4111attellte 

Configuration Expert Systems 
	

63 

2. This knowledge is naturally represented in terms of an is-a 

and has-parts knowledge hierarchy with associated 

constraints. 

3. Configuration requires flexible control and an explicit 

representation of control knowledge. 

We have proposed a configuration system architecture in 

accord with these requirements. Its distinguishing features 

are (1) provisions for highly-structured knowledge 

representation, (2) configuration steps specified by the 

knowledge hierarchy, (3) an independent constraint 

propagation system interacting with the knowledge hierarchy, 

(4) provisions for a compact representation of the 

configuration history, and (5) an explicit representation of 

control strategies. Several other features could not be 

discussed in detail but are also important, e.g. the 

sophisticated use of library solutions [16] or special 

techniques for dealing with spatial constraints [4]. 

A tool for building configuration systems with this 

architecture is being developed in project TEX-K and applied 

to several different tasks. 
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