
Artificial Intelligence
in Manufacturing,
Assembly and Robotics
edited by

Prof. Dr. Horst 0. Bunke
Universität Bern

UN1VERSiTÄT 	-
FrAchbcr-,; ;

R. Oldenbourg Verlag München Wien 1988

dfdreetsw4

CIP-Titelaufnahme der Deutschen Bibliothek

Artificial intelligence in manufacturing, assembly and robotics
/ ed. by Horst 0. Bunke. — München ; Wien : Oldenbourg, 1988

ISBN 3-486-20920-5

NE: Bunke, Horst 0. [Hrsg.]

© 1988 R. Oldenbourg Verlag GmbH, München

Das Werk einschließlich aller Abbildungen ist urheberrechtlich geschützt. Jede Verwertung
außerhalb der Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzu-
lässig und strafbar. Das gilt insbesondere ftir Vervielfältigungen, Übersetzungen, Mikrover-
filmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen.

Umschlagentwurf: Mendell & Oberer, München
Gesamtherstellung: Rieder, Schrobenhausen

ISBN 3-486.20920-5

Table of Contents

Preface 	 VI

Acknowledgement 	 VII

Surveys and Tutorials

K. Kempf
Practical Applications of Artificial Intelligence in Manufacturing 	 1
B. Neumann
Configuration Expert Systems: a Case Study and Tutorial 	 27
1.-P. Müller
Planning for Artificial Intelligence Based Robots 	 69

Research Projects and Applications

'Autonomous Robots

K. Konolige
Integrating Perception, Action, and Intention: the ICA Project 	 95
1-P. Müller
MARS: Mobile Autonomous Robot Systems 	 103

Flexible Manufacturing

C. V. Rusca
The IRMA Project: Towards a Robust
Parallel Logic Programming Environment in Robotics 	 113
R. R. Bless / M. A. Müller
Automated Robotic Assembly 	 129
E. Gmür I H. Bunke
PHI-1: a Robot Vision System Based an CAD-Modells 	 145

Configuration Expert Systems
P. Rixhon 	■
Integrated Configuration Systems: the „Mehrstrom Experience" 	 165

Subject Index 	
Reference Index 	
Author's Addresses
About the Editor

177
181
183
185

Configuration Expert Systems:
a Case Study and Tutorial
Bernd Neumann

Summary

This contribution discusses the architecture of expert

systems for configuration tasks in technical domains with the

objective to develop application-specific tools for expert

system development. In the first part of the paper four

configuration systems (XCON, SICONFEX, MMC-Kon and ALL-

RISE) are analyzed with regard to their architectural features
and experiences gained during the development. From these

examples and similar evidence in several other systems one

can conclude that a knowledge-based architecture much
different from the conventional rule-based architecture is

adequate for configuration systems. The main components of

the configuration system architecture are described in the

second part. The particular design presented in this paper is
based an research in project TEX-K.

28
	

Bernd Neumann

1. Introduction

As expert systems are being developed for an increasing range

of applications, it becomes necessary to distinguish classes,

find commonalities and recognize domain-dependent features.

This is, of course, common practice in all fields where

progress depends an practical experience and experimentation.

As more and more examples can be studied, the conceptual
structure of the field becomes apparent. lt seems, however,

that this development is particularly slow in the field of

expert systems. While the number of systems being developed

is skyrocketing and the number of systems being put to use is

also increasing, though much more modestly, application-

dependent architectural distinctions remain quite coarse.

This is not to say that application categories are not being

distinguished in this field. Hayes-Roth et al. [15] suggest the
10 categories interpretation, prediction, diagnosis, design,

planning, monitoring, debugging, repair, instruction, and

control which henceforth have been cited abundantly. But

there are few specific architectural characteristics which

can be associated with each of these categories. The best one

can do is to distinguish two main categories among the 10,

diagnosis type and configuration type applications. In

diagnosis applications backward chaining prevails, while
most configuration applications employ forward chaining.

Also, one often needs uncertain reasoning for diagnosis but
rarely for configuration. Apart of these major distinctions the

notion of an expert system frame work supposedly common

for all applications is generally put forth. If distinctions in

architecture are discussed, they are usually related to varying

degrees of problem complexity rather than types of
applications. In [15] we find a decision tree relating

particular problem solving methods (and hence architectural

distinctions) to rather abstract domain characteristics. For

example, constraint propagation should be employed if
subproblems interact, belief revision employed if search
efficiency needs improving, etc.

Configuration Expert Systems
	 29

A similar picture is drawn in a recent 450 page tutorial an

expert systems [19]. Variations in system architecture are

described in terms of the relative importance of the five main

components of a system: inference engine, knowledge-base,

user-system interface, explanation facility, and knowledge

acquisition facility. Real-time process control systems, for

example, would have little need for a system-user interface;

if problem solving knowledge was still unfolding, one would

need a good knowledge acquisition facility, etc. This amounts

to saying that there is essentially one basic expert system

architecture for all applications.

A 'flat' view of expert system architectures is also taken by

most tool builders: Expert system development aids and Shells
are generally designed to cover 'all' applications. As the

requirements vary noticeable, hybrid tools are provided which

offer a selection of alternative components and methods to

choose from. But there are few tools specially designed for

particular application categories, diagnosis tools being the

prominent exception (see e.g. the excellent analysis in [28]).

As it turned out, even diagnosis tasks may not be treated

alike. For certain domains 'second generation expert systems'

[29,37,38] are being proposed and developed. Their
architecture may be quite different from conventional
systems, employing, for example, deep models of the

respective domain to support causal reasoning. Hence the

boundary lines of diagnosis application categories are quite

likely to be redrawn according to the need for such

architectural features.

This contribution discusses the architectural requirements of
another traditional application category, configuration expert

systems. We use the term 'configuration' here in a broad

sense:

A configuration system is an expert system which

helps to assemble components into an aggregate

according to some goal specification and using

expert knowledge.

30

Components may be physical objects or other entities (e.g.
actions or methods). They may be chosen from an infinite

repertoire (e.g. including objects with a continuous range of

attribute values). The process of assembling components into

a configuration may involve decisions concerning type and

properties of individual components as well as relations

between several components. The goal specification may

contain any information regarding the final aggregate

including constraints, optimality criteria, functional

requirements, etc. There may be any number of acceptable

solutions, including none at all.

We also assume that the configuration system does not

employ a ciosed-form solution procedure but a step-by-step

strategy. Each step typically involves a decision or

assumption concerning the solution aggregate. Hence one may

think of a configuration system as an Al problem solver and

the configuration steps as decisions in a search graph.

Much of what is known about control techniques in Al problem
solving also applies to the configuration task. Finding an

acceptable configuration may require judicious choices at

intermediate decision nodes, possibly based an heuristic

information. In general, control strategies ranging from

simple depth-first search to dependency-directed

backtracking may be called for.

lt should be clear by now that our definition of configuration

encompasses construction, design, planning and other rather

diverse activities. Here are some examples which are in

accord with our definition:

- selecting components for a power supply given performance

requirements
- designing the floor plan of a house
- planning a sequence of laboratory experiments

Bernd Neumann

Configuration Expert Systems
	

31

- configuring a computer system according to customer

wishes

- selecting and placing office furniture

- specifying work plans for a manufacturing process

- configuring a computer vision system for quality control

The paper is organized as follows. In Section 2, following this

introduction, we review the literature and discuss selected

systems in more detail. We focus an a major subcategory of
configuration systems, loosely called 'technical' configuration

systems. Their distinguishing feature is highly structured

domain knowledge, or more precisely, a solution space which

is decisively governed by well-documented technical

information. Most configuration tasks tackled by expert

systems so far and all of the examples given above fall into

this category.

In Section 3 we describe the details of a knowledge-based

architecture adequate for configuration systems. The

architecture differs from the conventional expert system

architecture in several respects, particularly in its

deemphasis of rule-based knowledge representation. The
search for a solution is prestructured to a large extent by a
hierarchical representation of admissible configurations.

We also report about the configuration system tool PLAKON

which is being developed in a joint project in the FRG. Much of

the insights presented in this paper have resulted from

research for PLAKON. At this point I want to express my

gratitude and appreciation for contributions of R. Cunis, A.

Günter and I. Syska at the Universität Hamburg and of all other

project members.

32
	

Bernd Neumann

2. What Can We Learn from Experience: Four Examples

In this section we tap the considerable body of experience

concerning the design of configuration systems. Our goal is a

critical analysis of implemented systems with regard to their

architectural features. What can we learn from these

applications?

To this end we view each system as a problem solving system

whose behavior depends an three types of knowledge:

1. general domain knowledge

2. problem-specific domain knowledge

3. problem-solving knowledge

The first body of knowledge encompasses facts, properties

and relations of the application domain including the

underlying conceptual structures. Different from the second

type, domain knowledge is assumed to be valid for all

problems of an application domain, hence it is sometimes

called 'static'. 	For configuring power supplies, for example,

domain knowledge would include component descriptions,

relevant physical laws, cooling requirements, industrial

standards, etc. We do not want to distinguish from general,

domain-independent knowledge, e.g. laws for spatial and

temporal reasoning. Such knowledge is assumed to be part of
the domain knowledge base.

The second type of knowledge is specific for a particular

problem. lt includes the problem specification and all other

information pertaining to a specific solution. As more and

more problem-specific knowledge is accumulated in course of

the problem solving process, this knowledge base is often

called 'dynamic'. Note that both (1) and (2) can be viewed as

knowledge constraining the solution space. Both account for

admissible solutions but not for procedures to find them. This

is left for the third knowledge type.

Configuration Expert Systems
	 33

Problem-solving knowledge is defined here as knowledge

pertaining to the order in which configuration decisions

should be made. lt provides control for the problem solving

process in terms of strategies, methods, subtask

organizations, sequencing information, etc. We shall see that

problem-solving knowledge - although conceptually separable
- is mixed up with domain knowledge in most applications.

This is Iargely due to the use of situation-action rules which

encourage unstructured knowledge representation. We want to

elaborate this point a little further.

Control in a rule-based system tends to be diffuse by the very

nature of rule-based systems: Rules are essentially a way of

defining a process without defining control. Hence rule-based
systems are best suited for applications where a global flow

of control need not be specified. If one has to enforce a

certain order of problem-solving steps in a rule-based

system, one must provide control knowledge in terms of

appropriate firing conditions on the left-hand sides of the

rules. This is often accomplished by introducing 'contexts'

which are turned on and off to enable rules in the proper

sequence. A second form of control, of course, is given by the

conflict resolution strategy which provides arbitration when

more than one rule is ready to fire.

The three knowledge types have been introduced to permit a

structured inquiry into the use of knowledge in the
application examples which will be discussed. We shall

examine how the respective bodies of knowledge are

represented and put to use for the respective problem solving

tasks.

2.1 R1/XCON

As a first example of a configuration system we take a look

at R1/XCON, the expert system for configuring DEC computers

34 	 Bernd Neumann

[1,20,32,43]. Given a customer's purchase order, XCON

determines substitutions and additions to make the order

consistent and produces a number of diagrams showing the
spatial and logical relationships among the components. The

decisions to be made concern component types and properties,

placement of components into boxes and cabinets, electrical

connections among components, etc. XCON is a very large rule-

based system. lt currently contains more than 6200 rules

which draw on a database of approximately 20,000 parts.
Furthermore, each year about half of the rules are expected to

change. Hence XCON also presents a formidable software
maintenance task.

Static domain knowledge in XCON can be roughly subdivided

into component descriptions and knowledge about valid

(partial) configurations. Component descriptions are read in

from a component database. After reading them in they are

represented as simple OPS5 frame structures. We use the
knowledge representation features such as defaults,

inheritance, facets, or procedural attachment. Knowledge

about valid (partial) configurations, e.g. compatibility of

components or placement requirements, is expressed in terms

of OPS5 rules, so-called productions. A production consists of

an arbitrary number of condition elements on the left-hand

side, in XCON on the average about 6, and an arbitrary number

of actions, e.g. modifications of the current working data, on
the right-hand side.

ASSIGN-POWER-SUPPLY-1

I F : 	THE MOST CURRENT ACTIVE CONTEXT IS ASSIGNING A POWER SUPPLY
AND AN SBI MODULE OF ANY TYPE HAS BEEN PUT INA CABINET
AND THE POSITION IT OCCUPI ES IN THE CABINET IS KNOWN
AND THERE IS SPACE IN THE CABINET FOR A POWER SUPPLY
AND THERE IS NO AVAILABLE POWER SUPPLY
AND THE VOLTAGE AND FREQUENCY OF THE COMPONENTS IS KNOWN

THEN: FIND A POWER SUPPLY OF THAT VOLTAGE AND FREQUENCY
AND ADD IT TO THE ORDER

Figure 1: Sample rule of XCON (paraphrased)

Configuration Expert Systems
	

35

The example in Figure 1 illustrates how static domain

knowledge about valid configurations is coded in terms of

actions to be taken in a certain problem solving context. This

technique, although common practice in configuration

systems, leads to considerable unclarity as will be argued
further down.

The problem description of XCON - which is part of the second

body of knowledge to be examined - is a list of components.

XCON detects missing or wrong components and corrects the

list while performing the configuration task. Note that a

problem specification in terms of a component list is much

less problematic than an indirect specification, e.g. in terms

of functional requirements or constraints. The latter would

necessitate component selection as part of the configuration
task. For DEC computers this is done by the separate expert

system XSEL - discussed in [19] - which accepts customer

wishes as input and delivers a component list as output.

We now turn to problem-solving knowledge as represented and

used in XCON. lt is explicitly expressed by rules and implicitly
by the conflict resolution strategies of OPS5. The control thus

achieved is remarkable. The configuration task is organized

into contexts which in effect specify a hierarchical system of

tasks, subtasks, sub-subtasks, etc. Figure 2 shows a sequence

of contexts taken from a trace in [20]. The number preceding

each context is the cycle an which that context was entered.

Each leaf of the subtask hierarchy typically consists of about

10 configuration steps corresponding to as many cycles of the

inference component. At the end of a subtask an appropriate

rule fires to establish a new subtask. Thus the order of

configuration steps is well-defined and - as it turned out -

hardly ever leads to backtracking.

36
	 Bernd Neumann

215 MAJOR-SUBTASK-TRANSITION
216 	DELETE-UNNEEDED-ELEMENTS-FROM-WORKING-MEMORY

235 	FILL-CPU-OR-CPU-EXTENSION-CABINET
240 	 ADD-UBAS
246 	 ASSIGN-POWER-SUPPLY
251 	 ADD-MBAS
252 	 DISTRIBUTE-MB-DEVICES
260 	 ASSIGN-SLAVES-TO-MASTERS
269 	 ASSIGN-POWER-SUPPLY
272 	 FILL-MEMORY-SLOTS
278 	 SHIFT-BOARDS
298 	 ADD-MEMORY-MODULE-SIMULATORS
305 	 ASSIGN-POWER-SUPPLY
312 	 FILL-CPU-SLOTS
318 	 ASSIGN-POWER-SUPPLY
322 	 ADD-NECESSARY-SIMULATORS
326 	 DELETE-TEMPLATES
340 	DELETE-UNNEEDED-ELEMENTS-FROM-WORKING-MEMORY
353 	FILL-CPU-OR-CPU-EXTENSION-CABINET
356 	 ADD-MBAS
359 	 ASSIGN-POWER-SUPPLY
362 	 ADD-UBAS
364 	 FILL-MEMORY-SLOTS
369 	 SHIFT-BOARDS
389 	 ADD-MEMORY-MODULE-SIMULATORS
396 	 ASSIGN-POWER-SUPPLY
399 	 TERMINATE-SBI
402 	 ADD-NECESSARY-SIMULATORS
406 	 DELETE-TEMPLATES
415 MAJOR-SUBTASK-TRANSITION

Figure 2: Sequence of contexts in XCON trace

As pointed out earlier, rule-based programming is best

matched to problems with a predominantly local control

structure. XCON is an atypical example as it uses rules to

establish a global flow of control. We want to learn from this

example, hence let us consider advantages and disadvantages

of the XCON architecture. Some interesting points are made in

a recent analysis [32] concerning the intelligibility of XCON's

written code. When modifying the rule set XCON's rule
developers find it increasingly difficult to insure rule firing

in the proper order. As one of the reasons they name the
inhomogeneity of the code: Diverse tricks have been used over

the years to force rules into a particular firing order. Also
having a rule for more than one situation turned out to

Configuration Expert Systems
	

37

decrease intelligibility. When changing a rule one could not be

sure about its original purpose.

As a partial remedy a new high-level language RIME has been

developed for recoding XCON. RIME provides several means of

expressing structure in a rule-set. First, rules of common

purpose can be assigned to a 'problem space' corresponding to

a subtask. Hence the XCON subtask structure can be better

supported. Second, problern solving methods can be defined

and assigned to a problem space. For example, many subtasks

can be solved by performing four conceptual steps (the

following is a highly simplified description):

1. PROPOSE: Suggest operators for current goal.
2. ELIMINATE: Evaluate appropriateness of operators prune.
3. APPLY: Activate and execute operators.

4. EVALUATE: Review goal, redo or exit problem space.

By assigning this method to a problem space, RIME provides

rules which reinforce the corresponding sequence of steps.

Third, rule templates are provided which establish

permissible categories of rules and prohibit inhomogeneous

coding.

In summary, we find that a system like XCON requires means

for defining control, both in terms of a context structure and

methods for subtasks. A rule language such as OPS5, however,

is not well suited for defining control. The disadvantages may

not be decisive in small systems, but they become significant

in systems as large as XCON. Certainly, good software

engineering also applies to the design of expert system: A

mismatch between problem structure and programming
language decreases software intelligibility and should be

avoided.

38 Bernd Neumann

2.2 SICONFEX

After having discussed XCON it is interesting to take a look at

the configuration system SICONFEX which provides a very

different solution for a similar task. SICONFEX has been

developed by Lehmann et al. at Siemens, Munich, in 1985

[14,17]. lt is an expert system for configuring the operating

system of SICOMP process control computers distributed by

Siemens. The input data consist of the hardware configuration

and application-specific customer requirements, e.g. with

respect to the intended use of system and user software.
Requirements may be graded according to various degrees of

desirability. All input data are obtained in a user-friendly

dialogue supported by graphical displays. The system expects

only a naive understanding of hardware and software

components. After the input phase the system performs the

partitioning of the main storage. This is the core of the

configuration task. The system generates output in terms of

configuration statements for a generator program.

There are four distinct main storage regions to be configured,

three for the operating system and one for user programs.

Human experts were able to supply some 200 rules concerning

the configuration of the first three regions. However, many

heuristics and guide-lines had to be added by the developers

of SICONFEX. The system encompasses 6 MByte of code
(including 4 MByte of INTERLISP-D/LOOPS code) which is

equivalent to a rule-based system of several thousand rules.

SICONFEX is not a rule-based system, however, as it employs

diverse methods of the LOOPS environment.

Let us examine the representation and use of the three

different types of knowledge again which we have introduced

earlier. Structuring static domain knowledge played a
significant part in the development of SICONFEX. As the

authors report in [14], they found this task much underrated in

popular expert system literature. The SICONFEX domain

Configuration Expert Systems 	 39

consists of at least three distinct areas with quite diverse

characteristics:

1. the world of physical objects which are the configuration
components

2. the abstract world of existing software modules
3. the artificial world of hypothetical memory partitionings

A variety of techniques have been used to represent such a

heterogeneous domain: frame-like object structures,

conceptual taxonomies, inheritance mechanisms, rules,

message passing, active values and LISP functions. The

authors stress that rules play only a subordinate rote. They
are used with logical interpretation:

IF <premisses> THEN <conclusion>

Production rules as in OPS5, an the other hand, have

procedural semantics:

IF <pattern> THEN DO <actions>

Such rules are deemed unfit for representing static domain
knowledge in SICONFEX - much in accord with our earlier
remarks concerning XCON.

Problem-specific knowledge enters the system via the
elaborate user-interface mentioned above. The need for

considerable programming efforts in this department has also

been reported by other authors [2,9], and it is worthwhile to

understand when and why this is so. Problem data are often

obtained from a user belonging to a category much different

from the knowledge engineers who structured the domain

knowledge. In the case of naive users (as with SICONFEX)

instant knowledge engineering has to be performed to

transiate user input into internal structures. The more

elaborate the system's knowledge representation and the more

40 	 Bernd Neumann

naive the user's, the wider is the gap which has to be bridged

by the user interface. Note that problem-specific domain
knowledge is structurally not much different from static

domain knowledge. Hence components for acquiring domain

knowledge during system development may be put to use for
user interfacing and vice versa.

There appears to be no extensive representation of problem
solving knowledge in SICONFEX (in the sense defined earlier).

As the authors state in [17], experts could not provide

consistent strategies for partitioning the main storage. The

solution adopted in SICONFEX has algorithmic character. lt

involves discrete optimisation but also incorporates

heuristics and hypothetical decisions lieble for backtracking.
Control is not expressed in terms of rules.

In summary, SICONFEX is a configuration system with an

architecture radically different from XCON. Its prominent

features are (1) a highly structured knowledge-base, (2) an
elaborate user interface for acquiring problem data, and (3)

hybrid problem-solving techniques including optimisation
algorithms.

2.3 MMC-Kon

Our next example is the system MMC-Kon which configures
distributed automation systems based an the SICOMP MMC 216

multi-microcomputer system. MMC-Kon has been developed by

Baginsky et al. at Siemens, Erlangen, as a first prototype for

testing general principles of configuration system design [2].

The particular domain of interest is rolling mill automation. A

typical task is defined in terms of several automation

functions to be performed by the system, e.g. thickness
control, position control, automatic slow-down. The user

specifies a task interactively making use of reference

systems and MMC-Kon's knowledge base which contains all
standard automation functions.

automatic
------- -speed

function . ------------------- control
processor • ----- ----

----- 	automatic
slow-down

BGT1
sub- 	------- BGT2
reck • ---------------- BGT3

-- --- VE216
processing 	 ---
unit 	 VE286

memory ._______---- MEM1

module 	 MEMO

process 	. ----- _ ------ AAPB
Interface AEPI3 module

------------------- • DEPB

ie
./

module -

Configuration Expert Systems
	 41

As a first configuration step MMC-Kon generates a function
plan containing the function processors for the automation
functions. Various criteria have to be taken into account, e.g.
process structure, functional integrity, volume of inter-
process communication, bus capacity. Next, each processor is
configured by selecting suitable components (memory and
peripheral units). Then all modules are placed into sub-racks
with consideration given to the number of siots, the available
power supply, preferred module locations and combination
options. The next configuration step is to assign parameter
settings to the modules according to the required operational
characteristics. Finally, the sub-racks are assigned to
cubicles considering placement constraints. The output is a
complete documentation of the automation system.

	 means 1s-a' relation
means "has-Parts" relation

Figure 3: Hierarchical structure of domain knowledge
in MMC-Kon

42
	

Bernd Neumann

The inherent characteristics of this application do not seem

much different from the preceding examples, yet there are

some novel features. As we examine the relevant domain

knowledge we find - as would be expected - conceptual
descriptions of all objects which can make up a configuration.

In addition, however, the object frames are related to each

other by is-a and has-parts relations. The resulting
hierarchical structure is shown in Figure 3 (taken from [2]).

Note that the individual modules (e.g. processing unit VE216

or memory unit MEM1) are represented from two perspectives:

as physical objects and as carriers of a function. The ability

to view objects from different perspectives, exposing certain

attributes and hiding others, is a valuable asset for

knowledge structuring and appears to play an important rote

in configuration system design.

Similar to SICONFEX the task definition is acquired

interactively. The system supports this phase using its

domain knowledge and the display capabilities of a modern
workstation. There is also the option of referring to library

configurations. In this case the current task is defined by

modifying the selected reference task.

Control does not seem to play a critical rote in MMC-Kon.

There is a natural order in following through the configuration

steps, but the system has been designed to permit free user

interaction and changes of the order of configuration steps at

virtually any time. MMC-Kon ensures that the resulting

configurations are consistent, whichever decisions the user
has made interactively. This desirable characteristic is in

distinct contrast to XCON where the order of configuration

steps is fixed and precludes user interaction. One may

attribute this to differences of the respective application

domains, but I am prepared to argue that MMC-Kon's pleasant

properties are mainly the result of better knowledge
representation.

Configuration Expert Systems
	

43

We now turn to a different field of application: design in

engineering. Design has been characterized in [22] as a

problem solving activity aimed at constructing artifacts and
meeting certain conditions. The artifact must

1. satisfy a given functional specification,
2. conform to limitations of resources, and

3. satisfy implicit and explicit criteria on its form.

From this definition design has enough in common with the

configuration examples encountered so far to be included in

our discussion. The main difference seems to be the emphasis

of form design rather than composition of components.

2.4 ALL-RISE

There is a rich set of literature on design aided by knowledge-

based systems. For an excellent analysis see [42], for

references see [8]. lt is not immediately clear which systems

fall into the category of configuration expert systems and

which do not. Most of the expert knowledge in engineering is

formalized and well documented to begin with, hence

automatising design is not really a matter of replacing or

simulating human experts. Consequently, much of the relevant

literature is oriented towards design automation and not

towards expert system development. But judged by

performance, knowledge representation techniques, and design

methods, several of these innocent-looking engineering tools

deserve the attention of expert system developers for
configuration and - following [26] - possibly also diagnosis

tasks.

We focus now on the design system ALL-RISE [33,34] which

supports the preliminary structural design of buildings. The

input to ALL-RISE is an architectural or spatial plan of a

building represented by a three-dimensional grid (see Figure

44 Bernd Neumann

4). The topology of the grid is defined by the number of

stories, bays and aisles. Also load and clearance constraints

are given.

120 psf

35 stories @ 10 ft

4 aisles @ 45 ft

Figure 4: Sample input of ALL-RISE

The output is a set of feasible alternative 'structural

systems' ranked according to their appropriateness for the
given building. Figure 5 shows a typical output. lt is a

preliminary design as only basic structural design categories
are distinguished, e.g. various types of steel or concrete
structures.

The design process is a depth first search through a hierarchy

of predefined structural systems, subsystems and

components. Constraints prune alternatives, ensure

compatibility of design decisions and rank competing
solutions. The system is implemented in SRL, the schema

language of the expert system development tool Knowledge
Craft.

Configurafion Expert Systems
	

45

Alternative 1;

3D-material: steel
3D System: orthogonal
2D Subsystems:

Lateral-load:
Outer (bay & aisle): 	rigid-frame (beam-column)
Inner (bay & aisle): 	rigid-frame (beam-column)

Gravity-load:
Floor-type: Reinforced slab
Floor-support in aisle direction: 2
bay: 	column-plate
aisle: 	simple-frame

NOTE: Lateral-load primarily resisted by rigid-frames

Figure 5: Partial output of ALL-RISE

ALL-RISE is interesting for our discussion of expert system

architectures because of two significant features. One is the

organization of static domain knowledge, the other is the

extensive use of constraints. We shall discuss these features
in order.

The static knowledge hierarchy of ALL-RISE is similar to

other knowledge bases with respect to its use of schemas

(frames) and the predominance of is-a and has-parts

relationships for describing and relating the entities of the

domain. lt is special, however, because of the interpretation

assigned to the top node of the hierarchy. The top represents
an acceptable structural system (a successful design) at its

most abstract level. Hence all solutions must be instances of
this node or its specializations. Subordinate nodes represent

either alternative specializations (e.g. steel or concrete) or

partial designs (e.g. lateral-load design and gravity-load

design). Leaves of the hierarchy represent design choices

which need not be further refined. A complete design is a

subtree with the top node as the root, exactly one successor

for is-a branchings and all successors for has-part
branchings. Note that this corresponds to a solution in a

conceptual AND-OR tree. Is-a branchings represent logical OR

relationships, has-part branchings represent logical AND

46
Bernd Neumann

relationships. Representing domain knowledge in this fashion

has the interesting property that decisions required for a

feasible design are explicitly represented. Furthermore,

conceptually related decisions are grouped together. Hence

making decisions in depth-first order beginning at the top

node is natural and conceptually justified. One can also argue
that this order tends to minimize backtracking. The

advantages of a control flow following the AND-OR structure

of a problem domain are well-known in Al problem solving

[25]. Similar schemes have also been used in several other
design and configuration systems [7,41].

The is-a and has-part hierarchy of ALL-RISE does not contain

complete domain knowledge as a large part is encoded by
constraints attached to the knowledge hierarchy. The authors

distinguish (1) synthesis constraints which affect the

generation of feasible solutions, (2) interaction constraints

which arise from the interaction of structural subsystems,

(3) causal constraints which represent equations of

equilibrium and other physical laws, (4) parametric

constraints which constrain component attributes, and (5)

evaluation constraints which are used to rank alternative

structural designs. The following is a synthesis constraint
represented by a SRL schema:

{{braced-frame-constraint
CHILD-NODES: "mat-steel" "stories-less-than-40"
CONNECTION-TYPE: and
STATUS:

}}

The constraint can be paraphrased as the rule:

1F 	the current alternative is a braced frame, AND
the material used is steel, AND
the number of stories is less than 40

THEN 	eliminate the current alternative.

As a matter of fact, a rule representation has been used in
HI-RISE, a precursor of ALL-RISE.

Configuration Expert Systems
	 47

Constraints are instantiated, propagated and satisfied when

encountered in the knowledge hierarchy. Interesting control

issues arise as design decisions of one partial design may be

affected by constraints triggered by another partial design.

Constraints are related to each other through common

attributes and form a network. Different from other work an

constraint-based reasoning [11,12,13,36] the developers of

ALL-RISE did not implement an independent constraint

propagation machinery capable of satisfying multiple

constraints simultaneously. They preferred a step-by-step

procedure oriented at the domain knowledge hierarchy.

2.5 Planning

Another application area related to our topic is planning, at

first glance quite different from configuration and design. The

basic similarities become apparent, however, if one views a

plan as a configuration of operations or actions. Plan

formation means selecting operations from a repertoire to

meet certain boundary conditions and constraints, e.g. a

desired final state.

There is a vast body of literature concerning planning systems
as planning has been an Al research area long before the

advent of expert systems [10,30,31,39]. Today, several

different models are considered interesting, for a survey see

[18,35]. The most popular originated from the work of

Sacerdoti [30,31]. Each step in a plan is modeled as an

operator along with preconditions and a description of the

state change caused by that operator. Sacerdoti also

emphasized the need for hierarchical planning in tvvo
respects. First, he organized the repertoire of operators into a
hierarchy to allow planning at different levels of abstraction

(e.g. 'travel' vs. 'travel-by-train'). Second, he differentiated

the preconditions along a coarse-to-fine scale.

48

In modern application-oriented planning systems several

other features are also important [18], for example flexible

user interaction, display facilities, alternative plans, special

planning strategies, optimization methods, etc. The basic

structure of a planning system, however, including the

preference of a hierarchical approach, conforms well with the

basic structure of a configuration system. A more detailed

proposal for impiementing a planning system with

configuration system components has been worked out in [4].

3. The Kernet of a Technical Configuration System

The discussion of selected configuration systems in the
preceding section has revealed differences and

commonalities, convincing solutions and less convincing ones.

This should provide some background for the following

sections where we propose components and architectural

features for future configuration systems. The proposal is

largely based on research carried out in project TEX-K which

will be described later. But many ideas have also been put

forth in the literature in connection with application-oriented

work as evident from the examples in the preceding section.

We are guided by the following main insights concerning
configuration system architecture:

1. For a large class of configuration tasks, especially in
technical domains, the configuration process is governed by
highly structured knowledge about components and
aggregates. Expert rules play a subordinate rote.

2. Domain knowledge is naturally organized into two bodies:
an object-oriented knowledge hierarchy based on is-a and

has-parts relationships, and a constraint network relating
object properties to each other.

Bernd Neumann

Configuration Expert Systems
	

49

3. The order of configuration steps may vary considerably

depending on the particular problem, the availability of

library solutions, the amount of user interaction and the
strategy chosen.

4. An elaborate user interface is a major subtask of

configuration system development. Its main purpose is

interacting with the knowledge base.

The kernet which will be described in the following

constitutes an architectural framework in accord with the
above views.

3.1 Conceptual Knowledge

Conceptual knowledge is a structured description of

permissible configurations. As stated above we distinguish

between a hierarchical object-oriented representation and
constraints. In the following we focus on the hierarchical

representation and begin with the conceptual hierarchy.

3.1.1 Conceptual hierarchy

The conceptual hierarchy is a lattice of conceptual object

descriptions based on the is-a relationship. Its purpose is to

characterize the objects with which one has to deal in the

application domain. A flat collection of frames is clearly not

sufficient as different levels of abstraction play an important

rote in step-by-step configuration. The is-a relationship

supports well-known techniques of property inheritance [3].

The top-most part of the conceptual hierarchy is domain-

independent and predefined. Figure 6 (adapted from [6]) shows

a typical root section of the conceptual hierarchy.

complex
object

50 	 Bernd Neumann

Figure 6: Root section of conceptual hierarchy

An 'atom' is a predefined object dass of the representation

language, its is-a refinements are essentially data types and

templates. A 'complex object' is the most abstract dass of
objects of the application domain. Each object dass is

represented by a frame with attributes and values. Some
attributes are predefined, e.g. has-parts, has-instance and

their inverse. The range of attribute values is defined by

object descriptors which in turn are represented by

conceptual nodes in the hierarchy. The following expression

(in a hopefully self-explanatory syntax) defines the new
object dass 'body' for the domain of vehicies.

((a body) is 	(a aggregate)
(part-of 	(a car))
(has-parts 	(some (a door) 2 5)
(has-color (a color)))

Note that the set-type values of has-parts are associated
with a number restriction. For ordered sets one might also
want to have a sequence primitive.

ü.e.V.te

51 Configuration Expert Systems

All these techniques are well-known in Al knowledge
representation but unfortunately not always supported in
expert system tools. We shall not elaborate these techniques
but rather briefly discuss an additional, less well-developed
representation feature which is useful for configuration
systems: aspects of an object.

The need for aspects has been pointed out in the discussion of
MMC-Kon where a configuration was viewed as a system of
automation functions in the first phase and as a hardware
system in the second. The configuration as a whole
encompasses both, attributes and components of the
functional aspect and attributes and components of the
hardware aspect. To represent aspects in the conceptual
knowledge hierarchy we allow attributes to be bundled and
bundles to be given aspect names. For example, we define the
software and hardware aspects of a computer system as seen
below. With 'computer-system/SW' one can address the
software aspect of the concept 'computer-system' just like a
complete node. Also, is-a and has-parts successors can be
defined within any of the aspects. See [6] for a more detailed
presentation of the aspect feature.

(a computer-system) is
(a aggregate)
(:SW (a software-system)

(has-parts (Set (a operating-system)
(a user-program))))

(:HW (a device)
(has-parts (set (a processor)

(a memory)))))

The has-parts attribute, of course, is a key attribute for
representing aggregates. As the main idea is to represent
permissible configurations, the has-parts attribute is used
to build a compositional hierarchy with 'permissible-
configuration' as the top node. All possible alternatives for
partial configurations and components can be reached from

the top node via is-a and has-parts refinements. The graph
below 'permissible-configuration' can be interpreted as an

52 Bernd Neumann

AND-OR graph as pointed out earlier. The solution of the
configuration problem is a solution tree in this AND-OR graph.
The complete hierarchical knowledge base encompasses
additional nodes, however, as should be clear from Figure 6.

3.1.2 Constraints

Constraints are a common way to express conditions on, or
mutual dependencies between, objects and properties. For
discrete property values, a constraint can be viewed as a
relation in the mathematical sense. lt defines a restricted
subset of combinations of property values among the set of
all possible combinations, e.g. the subset of exhaust systems
compatible with car engine types and export destinations.
Constraints can be viewed as a general way of expressing N-
ary relationships, complementing the binary attribute
relationships in frames.

For several reasons constraints require special treatment.
First, they do not conform with the object-oriented style of
knowledge representation discussed so far. A typical
constraint involves more than one object and cannot be
assigned to any single object by a good reason. Second,
constraints tend to affect the order of configuration steps in
a way much different from the path lined out by the
hierarchical knowledge base. This is known from human
problem-solving where narrowly constrained choices are
typically considered first. There is also a growing body of
research concerning constraint-based problem-solving and
effective procedures for evaluating constraint knowledge
[4,13,21,36,40]. Third, humans frequently use constraints in
their own thinking and language when they want to
characterize a solution space. Hence it certainly facilitates
knowledge engineering if constraints can also be formally
expressed in a computer system. In summary, there is much
evidence that a tool box for configuration system development
should provide means for representing and exploiting

Configuration Expert Systems
	

53

constraints. In the following we outline an approach originally

proposed by Güsgen [13] and further developed in project
TEX-K [24].

Constraints are defined using constraint classes. A constraint

class is comparable to a procedure declaration with formal

parameters and a body specifying the restrictions or

functional dependencies between the parameters. Constraints

are tied to domain knowledge via so-called conceptual

constraints. A conceptual constraint consists of two parts,

one specifying the bindings of constraint variables to objects

of the knowledge base, the other specifying the bindings of

the parameters of a constraint class to attributes of the
selected objects. The following expression describes a

conceptual constraint which may be used to force the 'has-

weight' attribute of a car to take an the sum of the component
weights.

	

(constrain ((?C 	(a car))

	

(?B 	(a body 	(part-of ?C)))

	

(?F 	(a frame (part-of ?C))))

(add (?B has-weight) (?F has-weight) (?C has-weight)))

lt is assumed that a constraint class 'add' with three

parameters has been defined. Note that the formal Syntax is
just a way of entering constraints into the knowledge base.

The internal representation is a frame-like data structure

with links into the appropriate attribute slots of object
frames.

This short sketch of constraint classes and conceptual
constraints, of course, is not all there is to be said about

constraints. The theme will be taken up again in the following
sections.

3.2 Problem-Specific Domain Knowledge

In a configuration problem we deal with concrete instances of

components, aggregates and constraints. Für example, we may

54 	 Bernd Neumann

have to construct a configuration from a component list as in

XCON or from certain grid measures and load constraints as in

ALL-RISE. Given a conceptual knowledge base as discussed

above, such items are represented as instances linked

bidirectionally to the proper concept nodes via 'has-instance'

and 'instance-of' links. Instances inherit all attributes and

predefined values. To maintain strict inheritance, instance

properties may not 'overwrite' inherited properties. All this

corresponds to common practice in Al knowledge

representation and will not be elaborated further.

We focus now an the dynamic aspects of problem-specific

knowledge. In course of the configuration process many,

possibly tentative, decisions are male and partial, possibly

alternative, configurations are constructed. These partial

configurations will be called elaborations henceforth. In order

to realize various control strategies, including sophisticated

techniques like dependency directed backtracking, we must be
able to represent the history of elaborations. lt has the

structure of a lattice with each node representing an
elaboration and links connecting successive elaborations. Each

link also contains information about the configuration step
represented by that link. The problem with such a structure

is its size in terms of required storage. In order to avoid

multiple representations each instance should be represented

only once. The elaboration history can thus be reduced to a

history of changing attribute values. In some programming

environments (e.g. Knowledge Craft) a context mechanism is
provided which can be used for this purpose. Generally,

however, expert system tools do not supply effective

representation techniques for the elaboration history.

Another representation requirement is related to the dynamic

use of constraints. Constraint propagation is a dynamic

process which generates restrictions an attribute values. The

workings of constraint propagation will be discussed further

down, at this point it is important to note that attribute value

configuration Expert Systems
	

55

restrictions, changing over time, have to be represented as

part of the problem-specific knowledge. Furthermore, one may

want to distinguish between value restrictions arising from

different constraint sets, for instance 'soft' constraints and

'hard' constraints. All this requires an organization of

attributes into multiple facets, each facet corresponding to a
distinct value modality.

3.3 Problem-Solving Knowledge and Control

We have designed the domain knowledge base in such a way

that information about permissible configurations is made

explicit. Hence inferences concerning the properties of a
configuration can be based upon this knowledge and need not

resort to rules. What remains to be defined is the order of
such inferences and the mechanism which carries them out.

As we have departed from a rule-based approach we can

devise a control scheme which is Iargely independent of

domain knowledge and allows the explicit representation of
control knowledge.

3.3.1 	Elementary configuration steps

At any given time an elaboration consists of a set of object

instances linked to conceptual nodes at various levels of the

knowledge hierarchy. The following elementary configuration

steps can be carried out depending an the state of the
elaboration:

1. decomposition of an object along has-parts
2. specialization of an object along is-a-inverse
3. aggregation of components along part-of

(= has-parts-inverse)
4. merging of objects which can be replaced by a single one
5. value assignment or restriction
6. instantiation of a new object

56 Bernd Neumann

The first two kinds of operations are required for a top-down

refinement strategy. The third is for bottom-up composition.

The fourth covers situations where one object may be part of

several aggregates. The fifth kind of operation, often called

parameterization, decides upon object properties and will

usually be employed very often. The sixths operation, finally,

introduces a new object instance irrespective of the existing

structure.

•
seden

engine

trans-
mission

racing
engine

2..8

4..6

cyl inder

CI)
4._ 10

clutch 	(whe e I

2..4 •
inlection
brand C

injectIon
brand D

menuel
trensm

autametic
trensm.

racing
trensm.

4 gear
menue, t.

tire
brand A

tire
brand B

port-of IS-6

Figure 7: Configuring a racing car

Figure 7 shows an elaboration for a car configuration task to

illustrate the possible operation steps. For simplicity, only a

few conceptual nodes are shown. The links express is-a and

Configuration Expert Systems 	 57

part-of relationships. The numbers associated with some of

the part-of links indicate restrictions on the number of parts.

Nodes which are assumed to be instantiated are drawn in
heavy lines. Up to this stage it has been decided to configure a

racing car with manual transmission and a particular brand of
fuel injection. The following elementary configuration steps
can be carried out next:

- decompose 'racing car'

- specialize 'manual transmission'

- assign values to any of the instantiated objects
- instantiate a new object

This example also demonstrates the advantages of top-down
strategies regarding conflict avoidance. If 'manual

transmission' is specialized to '4 gear manual transmission'

instead of 'racing transmission', this would be in conflict

with the choice of a 'racing car'. A strict top-down strategy

does not produce incompatible decisions of this kind.

3.3.2 Representing control knowledge

The preceding section has shown that in general, one of
several configuration steps can be carried out at any time. We

now discuss ways to make use of this degree of freedom. The

main idea is to define explicit control strategies which

provide selection criteria and other useful control

information. In more detail, a strategy contains the following:

1. Operation focus: This criterion focuses on a subset of the
six elementary configuration operations.

2. Partial configuration focus: This criterion screens out all

operations except those which apply to a particular part of
the configuration.

3. Selection criterie : Predefined or user-defined procedures
which rank configuration steps on the agenda.

58 	 Bernd Neumann

4. Conflict rules: These rules are consulted in case of a
conflict. They typically provide backtracking information.

5. Value selection procedures: This criterion allows to specify
any of a number of possible procedures for assigning attribute

values, e.g. user interaction, optimisation techniques,
constraint net usage, heuristics, etc.

6. Constraint net activation: This information specifies
conditions on activating the constraint propagation
mechanism.

A strategy is associated with a phase and will be activated

upon entering that phase. A phase (or subtask) structure can

be defined for a configuration task as part of the control

knowledge. Such a structure has been found useful in many

applications (see e.g. the context hierarchy of XCON). One way

to define phases is by means of rules which are conditioned on
the elaboration lattice and the currently active phases. The

action part is restricted to phase activation and phase

deactivation. Thus control knowledge and domain knowledge

are clearly separated. As the rufe system controls the control

of the configuration process, it is often cailed meta-control.

3.3.3 The configuration cycle

A configuration cycle comprises selection and execution of a

configuration step. lt is roughly equivalent to the recognize-

act cycle of a rule-based system but quite distinct in detail.
A cycle consists of the following steps:

1. Meta-control determines phase and strategy.
2. Strategy determines focus, selection criteria, etc.
3. Possible configuration steps are determined and placed

onto an agenda.
4. A configuration step is selected according to the selection

criteria.

Configuration Expert Systems 	 59

5. The step is executed using a particular value selection
procedure.

6. The constraint net is activated optionally.
7. The new elaboration is checked for conflicts and

termination.

Note that in step 1 meta-control is not expected to fire at

each cycle. Also constraint propagation will typically not be

activated for each cycle. The constraint propagation

mechanism is a separate tool which will be briefly described
in the following section.

3.3.4 Constraint propagation

We have already discussed constraint classes and conceptual

constraints which constitute the first two levels of the
constraint system. The third level is comprised of constraint

instances which are created automatically as soon as the
objects are instantiated to which a conceptual constraint is

bound. Constraint instances form a network as several

constraints may pertain to a single variable.

The input of the network is provided by current attribute
values which are bound .to constraint variables. Typically,
some constraint variables are not yet bound and are free to

take an values or sets of values as the result of constraint

propagation. These values are fed into the 'admissible values'

(AV) facet which coexists with the 'current value' (CV) facet
of an attribute. lt takes a distinct configuration step of the

main configuration cycle to feed a value of the AV facet into

the CV facet. As a result of constraint propagation, a conflict

may be discovered, indicating that current attribute values

are incompatible and must be revised. Conflict indications are

taken care of in the main configuration cycle using the

conflict resolution rules of the active control strategy.

60
	 Bernd Neumann

car-1

instance-of car

AV:
has-parts

CV: (body- I , f rame- I)

AV: < 3000 kg
has-weight

CV:

body-1

Instance-of body

AV:
port-of

CV: car-1

has-weIght
AV:

CV: 	1820 kg

frame-1

instence-of from°

AV:
part-of

CV: car-1

AV:
has-vdeight

CV: 	1230 kg

conflict description

Figure 8: Evaluating a constraint

Figure 8 illustrates the flow of information for a constraint

net consisting of an 'add' constraint as introduced in an

earlier example.

3.4 The Expert System Tool PLAKON

The architectural components presented in the preceding

sections as well as several additional features are

implemented in the context of the joint project TEX-K

[5,6,12,24] which is supported by the German Ministry of

configuration Expert Systems 	 61

Research and Technology (BMFT). The objective of this project

is to develop a tool system - called PLAKON - for planning and

configuration tasks in technical domains. The project has

begun in 1986 and is scheduled until 1989. lt comprises 57

person-years of work shared between five project partners:
Battelle Institute (Frankfurt), Philips GmbH (Hamburg),

Siemens AG (Erlangen), URW (Hamburg) and the University of

Hamburg. PLAKON is designed to support diverse applications.

Six applications are implemented in the context of TEX-K:

- configuration of multi-microcomputer systems for

industrial automation (MMC-Kon, see 2.3)

- configuration of computer vision systems for quality

control in manufacturing [23,41]

- configuration of automatic systems for industrial x-ray
analysis [27]

- configuration of systems for laboratory experiments

- generating work plans for mechanical manufacturing

- configuration of electrical engineering aggregates using
standard components

The architecture of PLAKON is shown in Figure 9. The main

properties of the kerne) have been discussed in the preceding

sections leaving out a considerable amount of detail for the
sake of conciseness. The peripheral components of PLAKON

which can be seen in the diagram reflect some of the needs

which have become apparent from the discussion of the
examples, e.g. a component for library solutions. Details of

these components are still being worked out

Fleberntlon
Net

EloEenllen Control

Constraint Hei

1
Agende coroe.

Knowledge Acquisition

Sratic Knowledge Base

Conceptuel Illererchg

- Concept,
- Polettons
- Contepteel Conot•olnts

tottonttoll.

SIntic
Control Knowled

▪

 ge

- Str totrolc knowledge
- Conotriortl•nol K.
- Cunlel Proeletten K. I 	I

	> e

Solution
Library

Simulation

Central
Cgcle

C i 	 Ta

Exetollen 	l 	1 4

Elgnomto K nowledge Base (Blackboard

Results 	 Explanation racility

External
Programs
& Date

User
Inlerec (Ion

In

mi
c

rJ
Q

SE

01

CD

E

1

In11141

-

C•notraellono
- Tr•th

Holme 	

62 Bernd Neumann

Figure 9: The architecture of PLAKON

4. Conclusions

An efficient development and maintenance of an expert

system requires application oriented tools. In this

contribution we have discussed requirements for

configuration systems. !Ne have analyzed several examples

and found that in technical domains both configuration

systems (in the narrow sense) and design systems have many

features in common. Hence it is reasonable to consider them

part of the common application category of configuration
systems.

1. The configuration process obeys highly structured

knowledge about admissible configurations.

V:"44,44a. ,4111attellte

Configuration Expert Systems
	

63

2. This knowledge is naturally represented in terms of an is-a

and has-parts knowledge hierarchy with associated

constraints.

3. Configuration requires flexible control and an explicit

representation of control knowledge.

We have proposed a configuration system architecture in

accord with these requirements. Its distinguishing features

are (1) provisions for highly-structured knowledge

representation, (2) configuration steps specified by the

knowledge hierarchy, (3) an independent constraint

propagation system interacting with the knowledge hierarchy,

(4) provisions for a compact representation of the

configuration history, and (5) an explicit representation of

control strategies. Several other features could not be

discussed in detail but are also important, e.g. the

sophisticated use of library solutions [16] or special

techniques for dealing with spatial constraints [4].

A tool for building configuration systems with this

architecture is being developed in project TEX-K and applied

to several different tasks.

5. R f r nce

[1] Bachant, J., McDermott, J.: R1 Revisited: Four Years in the
Trenches. The Al Magazine, Vol.5, No.3, AAAI, Menlo Park,
California, 1984, 21-32.

[2] Baginsky, W., Endres, H., Geissing, G., Philipp, L.: Basic
Architectural Features of Configuration Expert Systems
for Automation Engineering. Proc. IEEE-Conference
"International Workshop an Artificial Intelligence for
Industrial Applications", Hitachi City, 1988. Also TEX-K
Report No.11, Energy and Automation Group, Siemens AG,
ESTE 12, Erlangen, FRG, 1988.

64 	 Bernd Neumann

[3] Brachman, R.J., Schmolze, J.G.: Overview of KL-ONE.
Cognitive Science Vol.9, No.2, 1985, 171-216.

[4] Baykan, C.A., Fox, M.S.: An Investigation of Opportunistic
Constraint Satisfaction In Space Planning. AAAI-87,
Morgan Kaufmann, Los Altos, California, 1987, 1035-
1038.

[5] Cunis, R., Günter, A., Syska, 1.: Planen mit Plakon. Proc.
Workshop Planen, GMD, St. Augustin, FRG, 1987. Also TEX-
K Report No.3, Fachbereich Informatik, Universität
Hamburg, FRG, 1987.

[6] Cunis, R., Bode, H., Günter, A., Peters, H., Syska, I.:
Wissensrepräsentation in PLAKON. TEX-K Report No.10,
Fachbereich Informatik, Universität Hamburg, FRG, 1988.

[7] De-Mello, L.S.H., Sanderson, A.C.: AND/OR Graph
Representations of Assembly Plans. Proc. AAAI-86,
Morgan Kaufmann, Los Altos, California, 1986, 1113-
1119 .

[8] Duffy, A.: Bibliography - Artificial Intelligence in Design.
Artificial Intelligence in Engineering, Vol.2, No.3, 1987,
173-179.

[9] Ervin, S.M., Gross, M.D.: RoadLab - A Constraint Based
Laboratory for Road Design. Artificial Intelligence in
Engineering, Vol.2, No.4, 1987, 224-234.

[10] Fikes, R.E., Nilsson, N.J.: STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving.
Artificial Intelligence 2, 1971, 189-208.

[11] Fox, M.S.: Constraint-Directed Search: A Case Study of
Job-Shop Scheduling. CMU-RI-TR-83-22, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 1983.

[12] Günter, A., Syska, 1., Cunis, R.: PLAKON
Anforderungskatalog. TEX-K Report No. 4, Fachbereich
Informatik, Universität Hamburg, FRG, 1987.

[13] Güsgen, H.W., Junker, U., Voss, A.: Constraints in a Hybrid
Knowledge Representation System. IJCAI-87, Morgan
Kaufmann, Los Altos, 1987, 30-33.

Configuration Expert Systems
	 65

[14] Haugeneder, H., Lehmann, E., Struss, P.: Knowledge-Based
Configuration of Operating Systems - Problems in
Modeling the Domain Knowledge. Proc. Wissensbasierte
Systeme, Springer, Berlin, 1985, 121-134.

[15] Hayes-Roth, T., Waterman, D., Lenat, D. (Eds.): Building
Expert Systems. Addison-Wesley, Reading, Massachusetts,
1983.

[16] Huhns, M.S., Ramon, D.A.: Argo: A System for Design by
Analogy. Fourth IEEE Conference an Al Applications,
Computer Society of the IEEE, Los Angeles, California,
1988, 146-151.

[17] Lehmann, E., Enders, R., Haugeneder, H., Hunze, R., Johnson,
C., Schmid, L., Struss, P.: SICONFEX - ein Expertensystem
für die betriebliche Konfigurierung eines
Betriebssystems. Proc. GI/OCG/ÖGI-Jahrestagung 1985,
Springer, Berlin, 1985, 792-805.

[18] Liebowitz, J., Lightfoot, P.: Expert Scheduling Systems:
Survey and Preliminary Design Concepts. Applied
Artificial Intelligence 1, 1987, 261-283.

[19] Martin, J., Oxman, S.: Building Expert Systems - A
Tutorial. Prentice Hall, Englewood Cliffs, New Jersey,
1988.

[20] McDermott, J.: R1: A Rule-Based Configurer of Computer
Systems. Artificial Intelligence 19, North-Holland, 1982,
39-88.

[21] Mittal, S., Fraymann, F.: Making Partial Choices in
Constraint Reasoning Problems. AAAI-87, Morgan
Kaufmann, Los Altos, California, 1987, 631-636.

[22] Mostow, J.: Towards Better Models of the Design Process.
The Al Magazine Vol.6, 1985, 44-56.

[23] Neumann, B.: Wissensbasierte Konfigurierung von
Bildverarbeitungssystemen. Proc. Mustererkennung 1986,
Springer, Berlin, 1986, 206-218.

66

[24] Neumann, B., Cunis, R., Günter, A., Syska, I.,
Wissensbasierte Planung und Konfigurierung. Proc.
Wissensbasierte Systeme 1987, Springer, Berlin, 1987,
347-357.

[25] Nilsson, N.J.: Problem Solving Methods in Artificial
Intelligence. McGraw-Hill. New York, 1971.

[26] Oxman, R., Gero, J.S.: Using an Expert System for Design
Diagnosis and Design Synthesis. Expert Systems, Vol.4,
No.1, 1987, 4-15.

[27] Pfitzner, K., Strecker, H.: XRAY - An Experimental
Configuration Expert System for Automatic X-Ray
Inspection. Proc. DAGM 1987, Springer, Berlin, 1987, 315-
319.

[28] Puppe, F.: Diagnostisches Problemlösen mit dem
Expertensystem-Shell MED2. Dissertation, FB Informatik,
Universität Kaiserslautern, FRG, 1986.

[29] Raulefs, P.: Knowledge Processing Expert Systems. In
Bernold, T., Albers, G. (Eds.): Artificial Intelligence:
Towards Practical Applications, North-Holland,
Amsterdam, 1985.

[30] Sacerdoti, E.D.: Planning in a Hierarchy of Abstraction
Spaces. Artificial Intelligence 5, 1974, 115-135.

[31] Sacerdoti, E.D.: A Structure of Plans and Behavior.
American Elsevier, 1977.

[32] Soloway, E., Bachant, J., Jensen, K.: Assessing the
Maintainability of XCON-in-RIME: Coping with the
Problems of a VERY Large Rule-Base. Proc. AAAI-87,
Morgan Kaufmann, Los Altos, California, 1987, 824-829.

[33] Sriram, D.: ALL-RISE: A Case Study in Constraint-Based
Design. Artificial Intelligence in Engineering, Vol.2, No.4,
1987, 186-203.

[34] Sriram, D., Maher, M.L.: The Representation and Use of
Constraints in Structural Design. Proc. Applications of
Artificial Intelligence in Engineering Problems, Springer,
Berlin, 1986, 355-368.

Bernd Neumann

Configuration Expert Systems
	

67

[35] Steel, S.: The Bread and Butter of Planning. Artificial
Intelligence Review 1, 1987, 159-181.

[36] Steele, G.L.: The Definition and Implementation of a
Computer Programming Language Based on Constraints.
Ph.D. Thesis, Al Laboratory, MIT, Cambridge,
Massachusetts, 1980.

[37] Steels, L.: The Deepening of Expert Systems. Artificial
Intelligence Communications 1, 1987, 9-16.

[38] Steels, L.: Second Generation Expert Systems. Proc.
Expertensysteme 87, Konzepte und Werkzeuge, Teubner,
1987, 475-483.

[39] Stefik, M.J.: Planning and Meta-Planning. Artificial
Intelligence 16, 1981, 141-170.

[40] Steinberg, L.I.: Design as Refinement Plus Constraint
Propagation: The VEXED Experience. AAAI-87, Morgan
Kaufmann, Los Altos, California, 1987, 830-835.

[41] Syska, 	Überlegungen zur automatischen Konfigurierung
von industriellen Bildverarbeitungs-systemen. Mitteilung
138, Fachbereich Informatik, Universität Hamburg, 1986.

[42] Tong, C.: Towards an Engineering Science of Knowledge-
Based Design. Artificial Intelligence in Engineering, Vol.2,
No.3, 1987, 133-166.

[43] van de Brug, A., Bachant, J., McDermott, J.: Doing R1 With
Style. Proc. Second IEEE Conference on Al Applications,
Computer Society of the IEEE, Los Angeles, California,
1985, 244-249.

	Page 1
	Page 2
	Page 3
	E-Mail HO G_2013-08-21_1319_0014_1.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41

