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CHAPTER 5

Natural Language
Description of
Time-Varying Scenes

BERND NEUMANN
Fachbereich Informalik,
Universitdl Hamburg

OVERVIEW

This work explores the border area between vision and natural lan-
guage wilth respecl to a particular task: obtaining verbal descriptions
of scenes with motion. The task involves image understanding as we
assume that the time-varying scene to be described is represented by
an image sequence. Hence, part of the problem is image-sequence
analysis. We focus on high-level aspects: recognizing interesting oc-
currences that extend over time. Very litlle is said about lower level
processes that constitute the scope of vision in a narrow sense. The
concepts and representations proposed in this work can be viewed
as exlending the scope of a vision system beyond the level of object
recognilion. In this respect, our work is a contribution to the ques-
tion raised by Waltz (1979): What should the output of a (complete)
vision system be?

Another aspect of this work concerns the connection of vision and
natural language. Both disciplines have been studied rather inde-
pendenily from each other. Hence, little is known about how the
semanlics of a verbal scene description relate to a description de-
rived from visual input. This work shows that visual motion analysis
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168 NEUMANN

can lead to representations that easily map into deep case frames of
natural-language utterances. Apart from the technical aspects, this is
interesting because semantic categories developed in natural-lan-
guage research turn out to have clear physical (and visual) connota-
tions, computable from an image sequence.

The problem of generating a natural-language utterance from an
appropriate deep structure is not our concern. Our work does how-
ever, touch upon the problem of composing a coherent description
(i.e., selecting and ordering possible utterances). The general idea of
our approach is to use the anticipated visualization of the hearer for
speech planning.

These are, in brief, three major problem areas addressed by this
contribution. We now give an overview of the system NAOS that
implements our ideas.

The acronym stands for “NAtural language description ol Object
movements in a Street scene”. This indicates our domain of interest:
traffic scenes. In particular, we are concerned with the following
scenario. Person A (looking out of a window) observes a street scene
over a certain time span. Then A turns to some person B (who knows
the street but cannot see it} and describes what he has seen. NAOS
attempts to generate natural-language scene descriptions according
to this scenario.

The raw input data are black-and-white TV images laken from a
fixed viewpoint. Figure 5.1 shows 4 images out of a sequence of 64,
covering a time span of approximately 13 seconds. The events of
interest are pedestrians standing, walking, and crossing the street,
cars starting and stopping, turning right, and so on.

Scenes like this have been used for many years as experimental
data for image-understanding research al the Universitiat Hamburg,
primarily for low-level motion analysis, object tracking, and motion
stereo. In project NAOS we are interested in high-level interpreta-
tions. For this purpose, all low-level processing up to a complete
recovery of the scene geometry (including classified objects) is simu-
Jated by human interaction. The output of this first stage of process-
ing is called geometrical scene description (GSD). A precise defini-
tion of this intermediate-level scene representation is given in the
next section.

The core of NAOS is a program that recognizes events in a G5D.
An event is a subset of the scene that can be described by a certain
verb of locomotion (e.g., “overtake”). A priori knowledge about
event lypes is provided by event models. They consist of proposi-
tions about the scene that must be satisfied if an event can be said to
have occurred. Event recognition is very much like proving the exis-
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s
Figure 5.1. Images of a lralfic scene 1o be described by NAQS

tence of an event based on facts provided by the GSD and rules
provided by the event models. In implementing the proof procedure
(using the programming language FUZZY), several techniques have
been developed that may have relevance beyond this task. For exam-
ple, relational matching has been extended to deal with constraints
arising from time intervals. Event models are discussed in the third
section; event recognition is discussed in the fifth section.

Evenls are conceptual units that are designed to capture the se-
mantics of verbs of locomotion. The next step toward a natural-
language scene description is filling the “case frames" associated
with such verbs (Fillmore, 1968). For example, the agent case corre-
sponds to a cerlain object in the event. Similarly source, path, and
goal cases correspond to locations readily available from the event
description. For verbalization, these objects that fill case roles have
to be referenced according to certain rules of natural language use.
For example, locations are referenced using spatial prepositions and
nearby objects of reference (““at the traffic lights”). In our view, the
construction of such references is the critical step from a visual to a
verbal representation.

Although bottom-up scene description is the central goal of
NAOS, we also consider question answering involving top-down
processing. In this case, an inverse mapping is required: Natural-
language input is transformed into a deep-case structure from which
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a constrained evenlt recognition task can be derived. This process is
described in the third section. After event evaluation, a case [rame is
filled in a manner similar to bottom-up verbalization. Answer gener-
ation requires, however, several special processes (e.g., provisions
for generating cooperalive answers). This distinguishes the task from
unconstrained verbalization. All issues concerning the mapping be-
tween events and case frames are discussed in lhe seclion on
verbalization.

The core processes of natural-language understanding and genera-
tion were not developed as part of the NAOS-project. We make use
of components of the natural language dialogue system HAM-ANS
(Hoeppner et al., 1983, Hoeppner et al., 1984}, in particular of a
generator written by Busemann (1984). These components are not
discussed in detail in this contribution. We are concerned, however,
with another issue on the natural-language side: composing a co-
herent, natural description-from a set of possible utterances. This is
the theme of the fifth section. We assume that the computer is al-
ways trying to perform a single kind of “speech act’: to inform its
user of some situation or event. Many other “speech acts” (Searle,
1969) are possible: requesting, reminding, connecting, ordering,
promising, apologizing, or many others. In order to perform appro-
priately, the system must anticipate the effect of each utterance on
the hearer. We present a “standard plan” for scene description that
is a first approximation to speech-act planning based on the hearer’s
anticipated visualization.

The final section of this contribution presents a discussion of
related work and points out future directions planned for our
research.

REPRESENTING THE SCENE

In this section, we describe the data that are used as input for the
NAOS system. Eventually, we would like NAOS to generate verbal
descriptions from the output of some existing vision system whose
input would be raw images. This would clearly demonstrate the
intended scope of our work: to extend vision to higher levels of
representation that connect to concepts of natural language. Unfortu-
nately, there do not yet exist vision systems that can analyze real-
world image sequences with sufficient reliability and speed to pro-
vide the input for NAOS. Our group is indeed working on analyzing
image sequences of traffic scenes (Dreschler and Nagel, 1981).

An intermediate level of representation has been defined that by-
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passes the problems of low-level vision. This level represents the
output of a vision system in the narrow sense: it tells “what is
where’" (Marr, 1981). More specifically, this level provides a repre-
sentation of the 3D scene geometry, and pholometric scene proper-
ties, plus a classification of all objects of interest. This seems to be
also in agreement with the intended output of a vision system as
proposed in Ballard and Brown (1982): an explicit, meaningful de-
scription of physical objects. In NAOS, this representation is called
the geomeltrical scene description (GSD) to emphasize the preva-
lence of geometrical information and the absence of high-level
concepls.

Clearly, a vision system will hardly ever be able lo recover the
complete 3D geometry of a scene, as the shape of surfaces may re-
main guess-work, particularly if they are hidden. But as higher level
scene interpretations seem to be based on what one knows about a
scene rather than on what one does not know, it is appropriate to
choose a canonical representation containing all information which
could possibly be available. To really obtain such information re-
quires considerable perceptual inference facilities, including view-
point and light source geometry.

By similar reasoning, all photometric scene properties are as-
sumed to be known (e.g., light source characteristics and surface
reflectivity). Although these data are not essential for NAOS (except,
perhaps, of object colors), they guarantee completeness of the GSD in
the following sense: The data sufflice, in principle, to regenerate the
raw images. In other words, the scope of this representation does not
presuppose loss of information along the way from raw images to the
GSD.

In more delail, a GSD contains

—for each frame of the image sequence:

* instance of lime
« visible objects
* viewpoint

« illumination

—{or each object:

+ 3D shape

* surface characteristics (color)

= class (automobile, person, tree)

identily (VW1, Person1)

3D position and orientation in each frame
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By far the most important information for NAOS is the list of
positions and orientations attached to each object. Based on these
data, high-level motion concepts are recognized (e.g., one car over-
taking another). Position refers to some fixed reference point of an
object coordinate system (usually the centroid) and is given with
respect to a fixed world coordinate system. Similarly, orientation
refers to a distinguished direction in the object coordinate system
(usually the ‘front’).

Shape and surface information is provided by models based on
polyhedra and cones (Brooks, 1981). The repertoire of possible
shapes is in no way adequate for representing highly irregular
bodies. Also there are only very crude provisions for encoding pho-
tometric surface properties. More sophistication, however, is cur-
rently not required in NAOS where shape information will be main-
ly used for computing qualitative spatial relations.

How is a GSD obtained for a real-world traffic scene? NAOS deals
with traffic scenes observable from our laboratory window. The ma-
jor stationary components of such scenes are known lo the system: It
has access to a model of the environment as part of its knowledge
base.

The first step in processing an image sequence is to determine the
viewpoint (camera position, orientation, and focus) with the help of
the street model. This is done by finding point correspondences
(currently by hand) and then employing a standard calibration tech-
nique (Yakimovsky & Cunningham, 1978). Using the viewpoint in-
formation one can identify those stationary objects of the streel
model that are visible in the scene. To obtain the 3D trajectories of
moving objects, automatic and human-aided change detection and
tracking procedures developed for other motion analysis tasks can
be employed (Nagel & Rekers, 1982). Figure 5.2 shows a synthetic
view of trajectories obtained manually for a scene involving 3 cars

Figure 5.2. Synlhelic view of a scene wilh 4 moving objects
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and a pedestrian. The intersection shown in Figure 5.1 is visible on
the right.

EVENTS

Given an intermediate-level representation of a scene in terms of
objects and their positions, it is not all clear where further process-
ing should lead. One might be interested, for example, in finding out
whether a certain object configuration is present or not (e.g., a
parked red Mercedes). Or else one might want the system to commu-
nicate its observations to humans. There are clearly as many tasks as
there are uses for visual data, and each task would suggest certain
abstractions—high-level “conceptual units”—to be computed from
the scene data. If one is finding a path for a robot, for example, it
might be useful to compute an explicit representation of free space.
As obvious guidelines for structuring high-level vision do not seem
to be around the corner, some motivation for the approach taken in
NAOS must be given.

We introduce conceptual units that are useful for talking aboul
scenes with motion. Clearly, an intermediate-level representation of
motion in terms of objects and their positions—the GSD introduced
in the preceding section—would be inappropriate for this purpose.
Natural language gives some indication of motion concepts that may
be generally interesting, namely concepts for which succinct expres-
sions are available.

In the remainder of this section, we discuss ‘events’ that are the
conceptual units for motion description in NAOS. First, event mod-
els are introduced, and then procedures for event recognilion are
described.

Event Models

Events are interesting subspaces of the four-dimensional space—time
continuum (much in accord with Webster’s definition). We consider
events that describe “changes of the kind people talk about™ (Miller
& Johnson-Laird, 1976). More specifically, an event is a subspace ofa
scene that can be described by a verb of change (in our domain:
locomotion).

Evenls are organized into classes according to the verb that is
associated with the event. Event classes are defined by event models.
An event model is a schema that specifies whal we are looking for in
a scene. Events are particular instantiations of event models.
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Event models consist of a head, which is a predicale about a
scene, and a body, which specifies how to verify the predicate. The
following is the model for ‘overtake’ events.

Head: (OVERTAKE OBJ1 OBJ2 T1 T2)

Body: (MOVE OBJ1 T1 T2)
(MOVE OBJ2 T1 T2)
(APPROACH OBJ1 OBJ2 T1 T3)
(BESIDE OBJ1 OBJ2 T3 T4)
(RECEDE OBJ1 OBJ2 T4 T2)

The semantics of ovERTAKE can be paraphrased as follows: “onj1
overlakes oBj2 during the time interval (r1 and 12) il

« both objects are in motion throughout the time interval (11 12),
» onj1 approaches opj2 during the time interval (11 13),
there follows a time interval (T3 T4) where onj1 is beside onj2,

« and finally osj1 recedes from onj2 throughout the remaining
interval (T4 12).”

It is not claimed that this definition captures the semantics of all
‘overtake' situations that one might think of (for example, an air-
plane passing overhead another). The point is to demonstrate that
the representational formalism is adequate for the street example.

Some comments on the syntax are in order. Predicates are writlen
in a relalional notation. The first element is a predicate identifier,
the other elements are arguments. Arguments are usually variables
which must be instantiated, but may also be constants, for example,
numbers. (All arguments in this example are variables.) If there can
be any doubt as to whether an identifier denotes a variable or a
constant, a ‘7" will be attached to the variable identifier.

The variables T1 {o 14 are time variables denoting inlerval bound-
aries. Events are taken to extend over a nonzero time interval in all
but degenerate cases in accord with the notion of a “four-dimension-
al subspace’ of a time-varying scene. Hence, the head of an event
model always involves a time interval. A predicate aboul one time
interval does not necessarily imply anything about another time in-
terval, even if the latter is a subinterval of the former. Nevertheless,
there are many predicates that do allow the subinterval implication
(e.g., MoVE, seinnD). They are called durative corresponding to the
linguistic notion. Durative predicates have also been introduced in
Allen (1981) by means of the HOLDS predicate. To be precise, a
predicate P is durative if
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(p...T1712) =>(p...T1"12") for 11 = T1"' < 72" = T2,

Similarly, there are inchoative and resullative predicates. The
event model ‘stop,’ for 'example, is resultative. It is defined as
follows:

Head: (STOP OBJ T1 T2)

Body: (MOVE OBJ T1 T2)
(STAND OBJ T2 T3)

For a resultative predicale ¢ the following implication holds:
(p...T1712)=>(P...T1'12) fOor T1 = T1' < T2.

Inchoalive predicates are discussed in the second part of this
section. '

The ‘overtake’ event is hierarchical (i.e., the body is composed of
predicates that must be verified if the head predicate is to be true).
The predicates of the body may be events (e.g., apPrOAcH) or other
predicates (e.g., Besipe). Predicates are called ‘primitive’ if they can-
not be decomposed further. The body of each primitive predicate is a
procedure to be evaluated with the GSD as data. The event model
movE, for example, is primitive. So is the predicate BESIDE.

Some molion concepts are like events except that there is no verb
available for describing such motion. For example, it proved useful
to define the primilive predicate sym-approacH (“symmelrical
approach”):

Head: (SYM-APPROACH OBJ1 OBJ2 T1 T2)

Body: <ltest whether the distance between
OBJ1 and OBJ2 decreases™>

Using this predicale, aApproact may be defined as follows:

Head: (APPROACH OBJ1 OBJ2 T1T2)
Body: (SYM-APPROACH OBJ1 OBJ2 T1 T2)
(MOVE OBJ1 T1 T2)
(IN-FRONT-OF OBJ2 OBJ1 T1 T2)

arproact is an event model that closely corresponds to the mean-
ing of the natural-language verb ‘approach.’ Not only must the dis-
tance decrease, but opj1 is also required to move toward oB)2. The
predicate inv-rFronT-OF tests whether o2 is located within a certain
sector relative to the ‘front” of opjl.
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Similarly, rRecepE is deflined in terms of syM-RECEDE (increasing
distance) and BEHIND.

Event models have clear logical interpretation. They specify that
the head is logically equivalent to the body:

(head) <=> (body)

All variables are existentially quantified. The body is given by a
conjunction of predicates or by a procedure that is equivalent to a
single predicate. Event recognition can be viewed as inferring cer-
tain predicates about the scene using the GSD for facts and the event
models for inference rules. For event recognition the implication

(body) => (head)

will be extensively exploited.?

Event models form an implication hierarchy. As customary, gen-
eral events are considered “higher” than special events. Hence, the
top of the hierarchy corresponds to ‘happen’ which is implied by all
other events. The structure of the hierarchy is determined by the
implications that follow from

{head) => (body)

when decomposing the body into the individual conjuncts. For ex-
ample, we get

1The event models presented so far do not use the full power of predicate calculus
notation. In particular, there are neither explicil disjunctions nor explicil universal
quantifications. As it turns out, none of the other 50 verbs currently considered in
NAOS (see Appendix A) requires an extension of the notation in this respect (there
will be other extensions). Hence, one may wonder whether this must be so. The first
thing to observe is that the body of predicates may be procedural, hence unrestricted.
Thus, no limitations are imposed in principle. Second, universal quantifications are
in fact part of the formalism as far as time intervals are concerned. Whenever a
predicate is marked “durative,” it implies a predication of all subintervals of the
given interval. Regarding disjunctions, it is quite conceivable to define an event
model in terms of alternatives. For example, ‘turn off’ could be broken down into
“turn off right’ or ‘turn off left’. As there are other intuitive predicates to express the
alternative (e.g.. ‘change of direction’), there is no need to employ a disjunction.
Ambiguity of verb meaning also gives rise to alternatives. These can (and should) be
handled, however, outside event models, as these alternatives do not conslitule a
single conceptual unit. In summary, there are no deep reasons for choosing this
representational formalism. It just happens lo be adequate.
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(OVERTAKE OBJ1 OBJ2 T1 T2) => (MOVE OBJ1 T1 T2)
(OVERTAKE OBJ1 OBJ2 T1 T2) => (APPROACH OBJ1 OBJ2 T1 T2)
(etc.)

As all arguments are existentially quantified, the rules can also be
wrilten in the weaker form:

OVERTAKE =) MOVE

This means: if there is an overtake event in the scene, there must
be also a ‘move’ event. The hierarchy presented in Appendix A is
based on such rules. It is useful for event recognition in the free
verbalization task (as opposed to question answering). Events are
recognized in their order of decreasing generality (i.e., from the top
of the hierarchy to the bottom). If at any point in the hierarchy an
event model cannot be instantiated, all descendents can also not be
instantiated by virture of the implication chains. For example, if
nothing moves, no overlake may take place:

NOT (MOVE) => NOT (OVERTAKE)

VERBALIZATION

We are interested now in clarifying the connection between events
and natural language. We first consider bottom-up verbalization (i.e.,
the task of obtaining a verbal scene description from a GSD). In this
section, we restrict our discussion to single utterances.

The main contribution of this section is to describe how case
frames can be filled by events and other scene data, and how event
recognition is triggered by a filled case frame in the context of ques-
lion answering. The remaining problem of generating surface strings
from deep case frames and vice versa is handled by processes that
have been developed for the natural language system nam-ans. They
are not discussed further here.

Figure 5.3 gives an overview of the major processing steps.

Filling Case Frames

The target structures into which the GSD and the events will be

transformed for verbalization, are deep case frames for verbs of
locomotion.

Given a GSD and an ‘overtake’ event recognized in the scene, how
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utterances
syntax,
# .
lexicon

deep case frames

1 deep case
e R :
semantics
events
event
-*-
models

geometrical scene

description (GSD)

Figure 5.3. Overview ol connection between vision and natural language syslem

can one obtain the deep case structure for a natural-language utler-
ance that describes that event? Consider, for example,

“A yellow VW overtook a truck in front of the FBL"

(FBI is the German abbreviation of the Department of Computer Sci-
ence.) The sentence is composed of the verb overtake, two noun
phrases for the agent and objective cases, and a prepositional phrase
for the locative case that also involves a noun phrase. In addition,
there is temporal information expressed by the past lense. The refer-
ents of the deep cases can be easily expressed in terms of scene data.
The verb refers to an ‘overtake' event, the agent and objective cases
to the two participating objects, the locative case to the locations
taken up by the agent during the event, and finally the past lense to
the temporal relation of the event interval to a reference time. Thus,
filling a case frame for verbalization amounts to constructing refer-
ences to the constituents of an event so that all constraints are
satisfied.

Knowledge that governs this process is called deep case seman-
tics. It is represented by case frame models as illustrated here for the
example ‘overtake.’

The case frame model for ‘overtake’ is as follows:

(VERB "overlake")

(OVERTAKE OBJ1 OBJ2 T1 T2)
(AGENT AGT-EXP)

(REF AGT-EXP OBJ1)
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(OBJECTIVE OBJ-EXP)

(REF OBJ-EXP OBJ2)

(LOCATIVE LOC-EXP)

(LOC-REF LOC-EXP (LOC-PREP OBJ1 LOGC-OBJ T1 T2))
(TENSE TNS-EXP)

(TIME-REF TNS-EXP T1 T2)

Each case description of the case-frame model consists of two
parts: a declaration of an identifier (or constant in case of the verb)
for the case expression on the language side, and a predicate (in
general a list of predicates) relating the case expression to the scene
data. The heart of the deep case semantics are the predicates rer and
Loc-reF. They are now described in more detail.

Rizr relates a natural-language expression (in the format under-
stood by the surface string generator or delivered by the parser) to a
symbolic object identifier of the GSD. It works in two ways. Bottom-
up, it generates suitable NL expressions for a scene object. This
process is called referencing. Top-down, an NL expression is given
and possible scene objects are generated. This is dereferencing. Ref-
erencing and dereferencing are well understood in NL research. We
have adapted techniques developed in Ham-ANs. For example,

(REF AGT-EXP BUILDING1)

(where pun.oiNGg1 is a cerlain scene object) will be evaluated as fol-
lows. First, the hearer model will be searched; the hearer model
records all abjects that are known to both speaker and hearer (e.g., by
previous mention). If BUILDING] is found and it has a name, for exam-
ple “the FBI", its name can be used for reference. 1f BulLDINGT s
found, but it has no name, then the definite article is used and
referentiation is accomplished by retrieving class membership and
possibly discriminating properties from the GSD. If BulLDINGT is not
found in the hearer model, it must be newly introduced using the
indefinite article, class membership, and discriminating properties
similar to the definite case. For example, “a yellow VW" may be
returned for a scene object VW1 which is a VW that has not been
mentioned before. There are several other issues connected to refer-
encing which are, however, outside the scope of this presentation
(e.g., quantization, use of pronouns, and ellipses). The reverse pro-
cess of dereferencing is discussed in the context of question
answering.

LOG-REF is analogous to reF with the difference that an abstract
location instead of an object is to be related to an NL expression. The
locative case and other spatial deep cases such as source, path, and



160 NEUMANN

goal are often misconstrued as referring to names of places or objects.
With scene data as a referential data base the spatial deep cases can
be defined concisely as follows. The locative case is the union of all
positions of the agent during the event (i.e., the volume swept out by
the agent’s trajectory). To verbalize the locative case means to find a
natural language expression referring to that volume. In NAOS we

have only considered prepositional phrases so far. Hence, Loc-rer ¢

tries to find a reference object in the scene (Loc-onj) that is in a
prepositional relation to the locative volume. Similarly, source and
goal-deep cases are verbalized by relating the source or goal volume
to a reference object using a suitable preposition. Nole that after
linding a reference object in the scene, rer is called to generate a
natural language expression for this object.

The semantics of spatial prepositions are not trivial (see, for exam-
ple, Boggess, 1979, Herskovits, 1985, Waltz & Boggess, 1979). In
NAQS, we have currently implemented simplified versions of the
most commonly used prepositions. For example, ‘in-front-of,” ‘be-
hind,” and ‘beside’ simply test whether the second object is in the
appropriate sector of the first object. Sectors originate at the centroid
and extend in a fixed direction relative to the ‘front’ of an object.

We now turn to TiMe-reF, which relates time intervals expressed
in clock units of scene time to temporal expression in natural lan-
guage. One effect of TIME-REF is the determination of tense. This is
accomplished by comparing the interval boundaries with time
marks separating the past from the present. The present time is held
fixed and coincides with the end of the scene data. More sophistica-
tion will be required when the present time progresses as the de-
scription is generated. This is currently outside the scope of NAQS.

In addition to lense, temporal expressions can be used to specify
the event interval. The problem of referencing interval boundaries is
similar to referencing locations as there are"in general no names
attached. Hence, an indirect specification has to be generaled by
referring to a suitable item nearby—in this case in the temporal
neighborhood. For example, a ‘turn-off’ event could be used to mark
the beginning of the event in question:

“After the BMW turned off Schlueterstreet, the yellow VW . ..

If events are described in chronological order, reference to preced-
ing events is particularly easy, as one can use “then" or “after this”
or rely on the implicit understanding that the end of one event marks
the beginning of the next. This is elaborated further in the next
section.
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COMPOSING A DESCRIPTION

So far we have described methods for recognizing all events in a
scene that match event models of a given repertoire, and for generat-
ing a natural-language utterance for a single event. We now consider
the task of producing a coherent scene description. At several levels
decisions have to be made that determine format and contents of the
description. At the level of events, one has to select from a possibly
large number of instances. For example, any of the events 'move,’
'slow down,’ ‘leave,’ 'turn off,’ or others could be selected for a
description of roughly the same subspace of the scene. Furthermore,
one also has to decide the order in which events should be
presented.

At the case-frame level, there are choices concerning optional
deep cases or alternative case fillers. For example, one could say

“A VW turned off”
(which may very well be adequate in certain scenarios) or

“A VW turned off from Schlueterstreet into Bieberstreet after the
BMW had passed the FBL"”

One might also consider adverbials or other modifiers, relative
clauses, comparisons, and so on. Finally, decisions have to be made
concerning such matters as voice, use of pronouns, conneclives, el-
lipsis, and so on to obtain a pleasant and natural description.

Linguistic theories (see for example, Austin, 1962, or Cohen,
1978) view speech acts as purposeful and planned actions, designed
to achieve certain goals. Planning such actions involves a hearer
model, as the selection of an utterance must be done with regard to
its effect on the hearer.

Speech-act theory is also a useful framework for the description
task in NAOS. Our communication situation is very simple: A speak-
er/viewer ‘informs’ a hearer about a scene. Informing somebody
means communicaling things that are true and new. These are the
two basic criteria on which speech act planning in NAOS is built.
Other interesting criteria (e.g., focus and level of detail), are consid-
ered refinements that play a subordinate role.

What does it mean to convey ‘truth’? We follow the semantics of
Barwise and Perry (1983) where meaning is defined as a relalion
between utterances and situations. The interpretation of an utter-
ance by a hearer is the set of possible situations connected to that
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utterance via the meaning relation. Applied to scene description, we
define an utterance to be true if its interpretation—the set of possible
scenes—includes the actual scene. Thus, utterances leading to a
misunderstanding are not true in this sense. Hence, if an utlerance is
to be true, the speaker must take into account the semantics of the
hearer—he must take care that the hearer understands the right

thing. In the uncomplicated world of NAOS it is assumed that the.

hearer always has the same semantics as the speaker, and as no false
ulterances are intended, the ‘truth’ criterion is always satisfied.

Considering the interpretations of the hearer is also fundamental
for the second requirement, saying something new. As the in-
terpretation of an utterance is defined in terms of possible scenes, a
description that is composed of several utterances can be viewed as
narrowing down the set of possibilities. This is—conceptually—
carried out by set intersection. We define an utterance as new, if the
set of possible scenes is strictly reduced by that utterance. One may
equivalently speak about a partially specified scene instead of a set
of possible scenes. Using this notion, an utlerance is new if it con-
veys additional specifications for a partially specified scene.

In NAOS, a completely specified scene is available to the speaker
in terms of the GSD. Thus, the speaker has a representation of what
he tries to convey to the hearer. In addition, he needs a representa-
tion of what has been achieved at a given time (i.e., what the hearer

has learned about the scene from the description received so far). We -

call this representation a visualized geometrical scene description
(VGSD), as it can be considered the output of some kind of visualiza-
tion process.

A comparison of the GSD and the VGSD is the heart of speech-act
planning. Informing the hearer means causing his VGSD to approach
the GSD. Planning a speech act that informs means anticipating ils
effect on the hearer’s VGSD. This can be done by simulating the
hearer’s visualization process. We call this method of speech acl
planning visualization anticipation. The general idea is illustrated
in Figure 5.4.

The major new component of this scheme is the VGSD. Structure
and contents of the VGSD are not at all obvious, as visualized data
are in many respects different from the scene data represented by the
GSD, but still should be comparable. Internal representations of vi-
sualized scene data have been the topic of a long-standing debate
among philosophers, psychologists, linguists and, lately, researchers
from cognitive science and Al (See Block, 1981 or Yuille 1983, for
recent contributions to this so-called ‘imagery debate)’).

It would be beyond the scope of this chapter to discuss our ap-
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Figure 5.4. Visualization anticipalion for speech-act planning

proach relative to the positions taken up in that debate. Our position
is pragmatic. The nature of the internal scene representation follows
from the tasks which this representation must support. In our case
the emphasis is on making two representations comparable, the
VGSD that is derived from a NL description, and the GSD that is
derived from visual input. Although our task is speech-act planning,
we believe Lhat several other tasks such as spatial reasoning or re-
membering scenes will also require similar representations.

As indicated in Figure 5.4, the VGSD is generaled, roughly speak-
ing, by inverting the verbalization path. We assume that case frames
can be completely recovered from utterances. Hence, the visualiza-
tion process begins at the level of case frames. From a case frame,
propositions about the scene can be derived using deep-case seman-
tics and event models, following a procedure similar to the top-
down evenl! inslantiation process described in the previous section.
The major difference is, of course, that there is no referential
database (the GSD) on which to instantiate the variables of a predi-
cate. Instantiation takes place by creating (“visualizing”) scene
tokens which satisfy the predicates. Hence, from

“A yellow VW overtook a large truck”
the following primary VGSD propositions are derived:

(CLASS VW1 VW)
(COLOR VW1 YELLOW)
(CLASS TRUCK1 TRUCK)
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(SIZE TRUCK1 LARGE)
(OVERTAKE VW1 TRUCK1 T1 T2)
(MOVE VW1 T1 T2)
(MOVE TRUCK1 T1 T2)
(APPROACH VW1 TRUCK1 T1 T3)
(SYM-APPROACH VW1 TRUCK1 T1 T3)
(MOVE VW1 T1 T3)
(IN-FRONT-OF TRUCK1 VW1 T1 T3)
(BESIDE VW1 TRUCK1 T3 T4)

Here, VW1 and TRUCK1 are visualized objects. The time variables
are conslrained according to the past tense of the utterance or what-
ever temporal information can be extracted from the context of the
utterance. The predicates have been expanded down to the level of
primitives, and it should be clear that knowledge about the pro-
cedural definition of primitives is also available. The primary propo-
sitions implicitly define possible scenes compatible with the verbal
description.

This is not all there is to a VGSD. We believe that considerable
detail must be added by tapping a body of knowledge that has not yet
been mentioned in our discussion: knowledge about ‘typical events.’
A typical event is a scene description composed of an event and of
information that is typical for the event but not implied by the event
model. We have developed an analogical event representation for
this purpose (Mohnhaupt & Neumann, 1988) which is associated
with a propaositional event model as introduced before and essen-
tially provides typical trajectories in space and time.

There is much to say about typical events, their use in NL under-
standing and reasoning, their relationship to beliefs, their acquisi-
tion by experience, and other interesting issues. This is, however,
outside the scope of this chapter. In NAOS, typical event knowledge
is used to supply scene data —expectations— beyond the primary
propositions implied by the event models. Expectations have a
modality different from primary scene data because they need not be
true. “Contradictory” primary information overrides (or replaces)
expectations. Both primary scene and expectations are part of the
VGSD.

We have outlined the process of ‘visualization” now. With this
process the task of ‘informing’ is well-defined: describe a scene in
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such a way that the VGSD approaches the GSD in successive refine-
ments. In the NAOS system we have not yet developed a speech-
planning component that actually compules a VGSD. But we have
devised a standard plan for the special task of giving a complete,
coherent description of all moving objects. The plan is based on the
general idea of anlicipated visualization, as it monitors to which
extent the trajectory of a moving object has been specified so far, and
generales further utterances accordingly.

Standard Plan for Scene Description

The first ulterance is a standardized summary of all moving objects,
using the template:

“There are {N) moving objects in the scene: (n1) (class-1), (N2)
(class-2), . . ., and (nM) (class-m).”

Then a chronological description of each individual moving object is
given. The following example is a translation of a German language
text generated automatically for the scene in Fig. 5.2 (Neumann &
Novak 86).

The scene conlains four moving objects: three cars and one pedestrian.
A VW drives from the old post office to the FBI. It stops.

Anolher VW drives toward Dammtor station. It turns off Schlueter-
street. It drives on Bieberstreet toward Grindelhof.

A BMW drives toward Hallerplatz. Thereby it overtakes the VW which
has stopped at Bierberstreet. The BMW stops at the traffic lights.

The pedestrian goes toward Dammtor station. He crosses Schlueter-
street in front of the FBL

The description of an object is generated according to the following
rules:

1. The trajectory of the object is described complelely except
where not visible.

2. The trajectory is described in terms of the "“most special
evenls” according to the event hierarchy. This is done by
choosing the most special event covering a time interval from
the beginning of the scene to some time point, and then pro-
ceeding from this time point in the same manner until the
trajectory is completely covered.
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3. The spatio-temporal location of an event in four-dimensional
space-time is specified as follows:

(a) Spatial deep cases are used except where the location has
already been specified by the preceding event or the verb
does not allow it. If necessary, additional—less special—
events are verbalized to provide spatial information.

(b) Time specifications are only exceptional. As a rule the tem-.

poral distribution of events is given as follows:

* The first event begins at the beginning of the scene if not speci-
fied otherwise.

« Events described thereafter immediately succeed the preceding
event (chronological coverage).

» The duration of an event follows from location specifications
and a typical velocity in case of durative events (e.g., ‘walk’).
For nondurative events a typical duration is assumed. Excep-
tional cases arise if no locomotion takes place (‘stand’) or stan-
dard values deviate too much from the actual ones. For the latter
case one can use linguistic means to modify standard values, for
example adverbials (‘quickly’). If it is necessary to explicitly
specify a time point, this is done by referring to time points that
have already been specified. All start and end times of events
that have been previously mentioned according to the standard
plan, are considered specified.

Note that temporal specifications rely heavily on typical event
data. Thus, knowledge of typical events—common to speaker and
hearer—is shown to play a significant part in scene description.
Further details about text generation in NAOS are given in Novak
(1986).

Question Answering

The possibility of putting questions to a vision system and oblaining
answers is certainly an interesting perspective, as queslions may
radically reduce the required processing compared to general-pur-
pose scene analysis. In NAOS, top-down processing can only be
demonstrated down to the level of the GSD. But other systems show
the effectiveness of top-down constraints below this level (Brooks,
1983).
Consider the decision question:

“Did a yellow VW overtake a truck in front of the FBI?”
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To answer this question, the following steps are executed. First,
all noun phrases are dereferenced. That is, REF is called with a noun
phrase as input and generates scene objects that fit the description.
For example, a set of yellow VWs: VW1, VW3, ... may be de-
termined as the range of OBJ1. If no such objects exist, an answer
such as

“There is no yellow VW in the scene”

will be gencrated. In general, the second step is a quanlization lest
on referents. Consider the question:

“Did the BMW overtake two trucks?”

If a BMW has not been previously mentioned, the definite article
implies that there is exactly one BMW in the scene. Also; there must
be at least two trucks. If the quantization test fails, an appropriate
answer will be generated.

Although dereferentiation of objects is performed before event
recognition, all other constraints of a question are evaluated in con-
nection with the event model. Loc-rRer takes a locative expression
(e.g., “in front of the FBI"') and generates the appropriate scene con-
straint, for example, (IN-FRONT-OF 0BJ1 LOC-0B] T1 T2) with BUILDING1
(which is the FBI1) bound to Loc-obj. Spatial deep case expressions
supplied by the parser are transformed into constraints in a similar
way. TIME-REF generates constraints for the interval boundaries. For
example, from the past tense of the question one gets

T-PAST-BEG = T1 < T2 = T-PAST-END

where the boundary values are fixed time marks as mentioned ear-
lier. Hence, from the first of the two questions one gets the
predicates:

(OVERTAKE 0OBJ1 OBJ2 T1 T2)
(IN-FRONT-OF OBJ1 OBJ3 T1 T2)

with the following ranges attached to the variables:

OBJ1 = {VW1, VW3, .. }
OBJ2 = {TRUCK1, TRUCK 2, . . }
0OBJ3 = {BUILDING1}
T1 = (T-PAST-BEG T-PAST-END—-1)
T2 = (T-PAST-BEG+1 T-PAST-END)
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These constitute a set of constraints on events that can satisfy the
question.

Event recognition now takes place as described in the next sec-
tion. A trace of this process is presented in Appendix B.

Event Recognition

We now turn to the process of event recognition, which is the search
of the GSD for events that could match the constraints previously
generated. For botlom-up scene description the search is uncon-
strained.

The GSD and all facts computed about the scene are kept in an
associative database. The availability of an associative net was one of
the reasons for selecting the programming language FUZZY for our
implementation. The basic techniques for event recognition are hier-
archical matching (Barrow, Ambler, & Burstall, 1972) and backtrack-
ing search. The scheme used in NAOS is particular in several ways
as hecomes apparent here. The following shows the search strategy
of EvENTEVAL. This is the component of NAOS that tries to instanti-
ate a list of predicates with range restrictions with the goal of making
all predicates conjunctively true.

EVENTEVAL list of predicates:

* seLECT predicate from list.

* GENERATE all instances.

+ Select instance and TEST for compatability.
* Backltrack if not compatible, else

* EVENTEVAL remaining predicates.

Before commenting on this procedure, it is necessary to consider
the GENERATE component in more detail. The following steps are
carried out:

GENERATE all instances of a predicate:

* Generate all instances of non-instantiated arguments except
time variables. Each combination of such instances defines a
predicate ‘pattern.’

« Skip predicate pattern if generated before,
* EVENTUAL body if predicate is composite, else evaL body.

ceNERATE cycles through all patterns of a predicate by substituting

i vaviaBles oveent [or those de-
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noting time intervals. The variable range restrictions are used to
generale potential instances. There are provisions for avoiding du-
plicate computations by keeping a history of all patterns which have
been tried before. Evaluation is either carried out by a recursive call
of EVENTEVAL or by EVAL that deals with primitive predicates. Each
evalualion of a pattern generates all time intervals for which the
pattern is true. EVAL can be characterized as follows.

EVAL primitive predicate:

* Compute all maximal time intervals, for which the predicate is
true.
» Enter instances into database.

The computations of EvaL are carried out using data of the GSD or
facts of the knowledge base. In its simplest form the computation of a
primitive predicate is a direct retrieval from the GSD (e.g., cLAss or
coLor). But there are also primitives which require more processing
(e.g., SYM-APPROACH, BESIDE).

"From the structure of EVENTEVAL and GENERATE one can see that
event recognition proceeds in a doubly recursive manner: by recur-
sively instantiating a list of predicates and by recursively decompos-
ing predicates. This should be kept in mind when studying the trace
of the ‘overtake’ example in Appendix B.

So far, very little has been said about instantialing time intervals.
Time intervals are different from other data in that they are repre-
sented by constraints rather than fixed instances. Consider the
proposition

(MOVE CAR1 10 30)

As MOVE is durative, the interval boundaries 10 and 30 have to be
interpreted as constraints marking the range of possible subintervals.
Hence if a predicate

(MOVE OBJ1 T1 T2)

is matched against the move dala, osjl is instantiated to carl,
whereas T1 and 12 are only constrained:

10 = 11 < 12 = 30.

As more predicates involving the same time variables are instanti-
ated, more constraints accumulate.
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For the following example we assume that all ‘move’ events have
been computed in an initialization step and entered into the
database. (This is the usual procedure in NAOS.) Consider the data

(MOVE CAR1 1 30)

(MOVE CAR2 7 13)

(MOVE CAR2 20 35)
(IN-FRONT-OF CAR2 CAR1 15 27)

and the list of predicates (taken from the event model ‘overtake’)
(MOVE OBJ1 T1 T2)

(MOVE 0BJ2 T1 T2)
(IN-FRONT-OF OBJ2 OBJ1 T1 T3)

One possible instantiation would give rise to the inequalities:
1=711<T12=30

20=T1T1 <712 =35
15 =711 < 13 =< 27.

Assuming for the sake of simplicity that the three propositions
amount to a complete ‘overtake’ event, what are the 1empora| con-
straints of this event? We can solve the inequalities by inspection
and get

The resulting ‘overtake' event is recorded using the notation:
(OVERTAKE CAR1 CAR2 (20 26) (21 30))

Hence, the general form for writing a constrained time interval
with beginning T-eec and end T-END is

(T-BEG-MIN T-BEG-MAX) (T-END-MIN T-END-MAX)
For durative predicates, the minimal and maximal values coin-
cide except of the fact that zero intervals are not allowed. Thus, the

notation introduced earlier

(...7117T2)
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is equivalent to
(.. (11 12-1) (T1+1 T2)).
Inchoative predicates are written
(...T1[T1+1 T2))
which is equivalent to
(.. (r171) (T1+1 12)).
Similarly, for resultative predicates
(... (1T1712-1) T2)
is equivalent to
(. s » (1 T2-1) (T2 F2])s

Note that another instantiation for the example data would result
in an inconsistent set of inequalities. Checking the current time con-
strainls for consistency is the task of the TeEsT component of
EveNTEVAL. If the test fails, backtracking ensues and other instantia-
tions are selected.

The fact that recognition of temporal events involves feasibility
test and solution of a set of linear inequalities has also been aobserved
in Malik and Binford (1982). They suggest linear programming, in
particular the simrLEx method, to obtain the desired results. In
NAOS, a much simpler procedure is employed. It is based on an
inequality net that is maintained for all time variables. Each variable
has a current minimum and maximum value and is linked to other
variables according to the inequalities. This is shown in Fig. 5.5 for
the example used earlier.

1
Flgure 5.5. Inequality net for lime variables
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If a new inequality is encountered, new links are added, and the
new constraints are propagated along the links, lower bounds up-
ward and upper bounds downward. Whenever a minimum sur-
passes a maximum, the inequalities are inconsistent. Otherwise,
minimum and maximum are valid bounds and provide the desired
solution. Note that all entries are subject to backtracking.

We believe that this incremental constraint propagation method is |

a key element for dealing with temporal concepts in scenes. It re-
flects the fact that the basic building blocks of interesting concepts
are scene properties extending over some time interval (i.e., durative
properties). Taken together, they give rise to systems of inequalities
as shown above, and to concepts which need not be durative (e.g.,
‘overtake’ or ‘stop’).

In conclusion of the discussion of event recognition we describe
the seLECT component of EVENTEVAL, as this is another unusual fea-
ture of NAOS. seLecT determines the order in which a list of predi-
cates is instantiated. It should be intuitively clear that the size of the
search tree and hence the computing costs depend on this order. For
examp]e, consider finding all ‘stop’ events. As ‘stop’ is composed of

‘move’ and ‘stand,” the question is which to evaluate first. Assuming
that no a priori knowledge about motility is available and that there

are many more stationary objects than moving ones, it would be-

advisable to first find moving objects and then the standing ones that
were moving earlier.

In NAOS the optimal order for evaluating predicates is deter-
mined based on the intrinsic branching factor associated with each

predicate (this is a priori knowledge about the likelihood of its oc- . .

currence), the actual number of patterns of each predicate (given the
variable ranges), and the cost for evaluating a predicate. From this a
score is computed which favors predicates with the least chance of
success and the smallest cost. After each predicate evaluation the
score is recomputed for the remaining predicates (see Neumann,
1984 for details).

DISCUSSION

In this section we compare our work on natural-language motion
description with related approaches. We also indicate in which di-
rection current work in NAOS is proceeding.

Our work can be considered as a contribution to high- level in-
terpretation of image sequences. Image sequences with motion have
not yet been studied for a long time—the 1979 Workshop on Com-
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puter Analysis of Time-Varying Imagery in Philadelphia marked the
beginning of general interest in this area. One of the early contribu-
tions is the pioneering work of Badler (1975). He investigated the
recognition of motion concepts in computer-generated line draw-
ings. His conceptual units are oriented toward natural-language
verbs (‘swing,’ ‘bounce’) and directional adverbials (‘forward,’ ‘up-
ward’). The focus of Badler's work, however, is not on generating a
natural language output but on segmenlting trajectories into motion
primitives which can be combined into complex motion patterns.

The work of Tsotsos (Tsotsos, 1980; Tsotsos, Mylopoulos, Covvey,
& Zucker, 1980) builds on some of the motion concepts developed by
Badler, but also improves on Badler's framework in several respects.
Most importantly, a hierarchy of domain-independent motion con-
cepts is defined (e.g., ‘area-expand,’ ‘rotate’) from which domain-
specific motion concepts (e.g., ‘posterior-rapid fill,” which is a spe-
cial left ventricular motion in Tsotsos’ domain) can be constructed.
Tsotsos also presented a data-driven recognition strategy where hy-
potheses are generated according to conceptual proximity. Prox-
imity is based on i1sA, PART-OF, SIMILARITY, and TEMPORAL-NEXT links
in the conceptual database. The implication hierarchy in NAQS
plays a similar role: Implication links are used to prevent useless
instantiation attempts.

It is interesting to note that Tsotsos, who did not attempt to pro-
vide natural language output, based his motion concepts on catego-
ries developed by Miller (1972) for motion verbs of the English lan-
guage. Tsotsos realized that some of Miller’s categories cannot be
easily incorporated in a vision system (e.g., ‘causalive’ or ‘per-
migsive’ motion), whereas others have natural visual correlates (e.g.,
‘inchoalive’ motion). This was also observed by Marburger, Neu-
mann, & Novak (1981), which is the first report on the NAOS project.

A different set of motion concepts underlies the system SUPP
(Okada, 1980), which produces sentences from a short sequence of
line drawings showing, for example a bird landing on a tree, a man
enlering a car, and so on. Okada used 20 semantic features (e.g.,
‘displacement,’ ‘deformation,’ ‘change in quality,’ ‘start and stop’) to
decide which of a set of about 1,200 primitive verb concepts applies
to a given scene. Usually, many concepts qualify and give rise to as
many simple sentences describing the same event. Okada's work
seems lo be influenced by the feature space paradigm of pattern
recognition. It suffers from the lack of structure of feature vector
semantics.

There is one issue common to all this work and also to NAOS that
is worlh emphasizing: the question of what motion concepts should
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be considered a conceptual unit. Tsotsos stressed the role of taxo-
nomical hierarchies (1sa, PART-OF), hence motion concepts are de-
compositions of a conceptual space. In NAOS, the conceptual
units—events—are subspaces of scenes. They are considered units
by virtue of corresponding natural language concepts. Taxonomical
units are useful building blocks if parsimonious representations are
desired. Events are useful for pragmatical reasons. A combination of
both may be advantageous as exemplified by certain event models in
NAOS.

The choice of verb-oriented event models has several conse-
quences which are discussed in Neumann and Novak (1983). For
example, one is led to deal with concepts that express more than
actually can be observed in the subspace of a scene associated with
the verb. A striking example is “continue walking,” which is the
translation of one of the meanings of the German verb
“weitergehen.” It denotes an uninterrupted walk where stopping
has been expected (e.g., “He continued walking in spite of the ap-
proaching car”). To recognize such an event, one obviously has to
generate expectations about the development of the scene. There are
many other verbs of this kind and also other ways of expressing
expectations in natural language, for example by negative statements
("“The car did not stop™). A framework for generating expectations in
NAOS has been devised (Retz-Schmidt 1985). The main idea is to
employ script-like conceptual units that represent knowledge about
typical sequences of events, for example about typical behavior at
traffic lights. Scripts constitute a level of representation “above”
events, much in accord with structures proposed in Wallz (1981).
Partially instantiated scripts give rise to expectations. Event models
may consist of expectations as well as other predicates about the
scene.

On the natural-language side our work is influenced by the early
NL dialogue system HaM-rPM (von Hahn, Hoeppner, Jameson, &
Wahlster, 1980) and its successor HAM-ANS (Hoeppner, Morik, &
Marburger, 1984). One of the domains of HAM-ANS is a street scene
(in fact: the same street as in NAOS) which has been used to study
various NL issues arising from a dialogue about a scene (e.g. focus of
attention and referencing). Working close to the 11am-ans research
group was an interesting experience, as they approached NL scene
description from the language side, whereas our work is vision ori-
ented. On several occasions we found our ideas and concepts com-
peting with existing linguistic notions, for example when defining
deep cases. In the authors’s opinion, vision—or for that matter: the
physical nature of a scene—is the easier side from which to investi-
gate NL scene description.
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APPENDIX A

Event Hierarchy in NADS

P
S

parents {or predecessors)
sons (Or successors)

1

abbiegen (lurn off)
P: drehen (turn)
S: —

abfahren (depart)
P: beschleunigen (accelerate), halten (halt)
Ss =

anfahren (start driving)

P: beschleunigen (accelerate), halten (halt)
S: —

anhalten (stop)
P: bremsen (slow down), halten (halt), stehenbleiben-1 (stop)
S: einparken (park)



198 NELIMANN

ankommen (arrive)
P: herankommen (come near)
S: —

ausweichen (yield, avoid)
P: bewegen (move)
S —

begegnen (meet)
P: naehern-r (approach)
S: treffen-r (meet)

beschleunigen (accelerate)
P: fahren (drive)
S: abfahren (depart), anfahren (start driving), losfahren (start driving)

betreten (tread on)
P: gehen (walk)
S: —

bewegen (move)
P: existieren (exist)
S: ausweichen (yield, avoid), drehen (turn), entfernen-r (recede), fahren
(drive), folgen (follow), gehen (walk), kommen (come), laufen
(run), naehern-r (approach}, rasen (speed), stehenbleiben-1 (stop),
ueberqueren (cross)

bremsen (slow down)
P: fahren (drive)
S: anhalten (stop), stoppen (stop)

drehen (turn)
P: bewegen (move)
S: abbiegen (turn off), einbiegen (turn into), umdrehen (turn round)

einbiegen (turn into)
P: drehen (turn)
S: —
einholen (catch up with)
P: naehern-r (approach)
Gy e
einparken (park)

P: anhalten (stop), parken (park), stoppen (stop)
S —

entfernen-r (recede)
P: bewegen (move)
S: passieren (pass), verlassen (leave), vorbeifahren (drive past), vor-
beigehen (go past), vorueberfahren (drive past), voruebergehen (go
past), wegfahren (drive off)

erreichen (reach)
P: naehern-r (approach)
S: ueberqueren (cross)
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exislieren (exist)

P: —

S: bewegen (move), stehen (stand)

fahren (drive)

P: bewegen (move)

S: beschleunigen (accelerate), bremsen (slow down), hinterherfahren
{drive behind, follow), rasen (speed), vorbeifahren (drive past),
vorueberfahren (drive past), wegfahren (drive off), weiterfahren-2
(continue driving)

folgen (follow)
P: bewegen (move)
S: hinterherfahren (drive behind, follow)

gehen (walk)
P: bewegen (move)
S: betreten (tread on), losgehen (start walking), vorbeigehen (go past),
voruebergehen (go past), weggehen (go off), weitergehen-2 (con-
tlinue walking)

halten (halt)
P: stehen (stand)
S: abfahren (depart), anfahren (start driving), anhalten (stop), losfahren
(start driving), parken (park), stoppen (stop), wegfahren (drive off)

herankommen (come near)
P: kommen {come)
S: ankommen (arrive)

hinterherfahren (drive behind, follow)
P: fahren (drive), folgen (follow)
S —

kommen (come)
P: bewegen (move)
S: herankommen (come near)

laufen (run)
P: bewegen (move)
S: rennen (run fast)

losfahren (start driving)
P: beschleunigen (accelerale), halten (halt)
8: weiterfahren-1 (resume driving)

losgehen (start walking)
P: gehen (walk), stehen (stand)
S: weitergehen-1 (resume walking)

naehern-r (approach)
P: bewegen (move)
S: begegnen (meet), einholen (catch up with), erreichen (reach), pas-
sieren (pass), vorbeifahren (drive past), vorbeigehen (go past),
vorucherfaliren (drive past), voruebergehen (go past)
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parken (park)
P: halten (halt)
S: einparken (park)

passieren (pass)
P: naehern-r {approach), entfernen-r (recede)
S: vorbeifahren (drive past), vorbeigehen (go past), vorueberfahren
(drive past), voruebergehen (go past) .

rasen (speed)
P: bewegen (move), fahren (drive)
S —

rennen (run fast)

P: laufen (run)
S —

stehen (stand)
P: existieren (exist)
S: halten (halt), losgehen (start walking), stehenbleiben-1 (stop),
stehenbleiben-2 (remain standing), warten (wait), weggehen (go
off), weitergehen-1 (resume walking)

stehenbleiben-1 (stop)
P: bewegen (move), stehen (stand)
S: anhalten (slop), stoppen (stop)

stehenbleiben-2 (remain standing)
P: stehen (stand)
S —

stoppen (stop)
P: bremsen (slow down), halten (halt), stehenbleiben-1 (stop)
S: einparken (park)

treffen-r (meet)
P: begegnen (meet)
ueberholen (overtake)
P: vorbeifahren (drive past), vorueberfahren (drive past)
S —
ueberqueren (cross)
P: bewegen (move), erreichen (reach), verlassen (leave)
S: —
umdrehen (turn round)
P: drehen (turn)
S: umkehren (return}), wenden (turn, make a u-turn)
umfahren (drive round)

P: vorbeifahren (drive past), vorueberfahren (drive past)
S: —
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umgehen (walk round)
P: vorbeigehen (go past), voruebergehen (go past)
S —

umkehren (return)
P: umdrehen (turn round)
Gy e
verlassen (leave)
P: entfernen-r (recede)
S: ueberqueren (cross)

vorbeifahren (drive past)
P: entfernen-r (recede), fahren (drive), naehern-r (approach), passieren
(pass)
S: umfahren (drive round), ueberholen (overtake)

vorbeigehen (go past)
P: entfernen-r (recede), gehen (walk), naehern-r (approach), passieren
(pass)
S: umgehen (walk round)

vorueberfahren (drive past)
P: entfernen-r (recede), fahren (drive), naehern-r (approach), passieren
(pass)
S: umfahren (drive round), ueberholen (overtake)

voruebergehen (go past)
P: entfernen-r (recede), gehen (walk), naehern-r (approach), passieren
(pass)
S: umgehen (walk round)

warten {wait)
P: stehen (stand)
S —
wegfahren (drive off)
P: entfernen-r (recede), fahren (drive), halten (halt)
S: —
weggehen (go off)
P: gehen (walk), stehen (stand)
S: —
weilerfahren-1 (resume driving)
P: losfahren (start driving)
S —
weiterfahren-2 (continue driving)
P: fahren (drive)
S —
weitergehen-1 (resume walking)

P: losgehen (start walking), stehen (stand)
S —
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weitergehen-2 (continue walking) ((LOCATION TRUCK1 (100 50 15) (1 00) 6 7) . 1)
P: gehen (walk) ((LOCATION TRUCK]1 (110 50 15) (1 00) 7 8) . 1)
[ ((LOCATION TRUCK1 (120 50 15) (1 00) 8 9) . 1)

wenden (turn, make a u-turn) ((LOCATION TRUCK1 (130 50 15) (1 0 0) 9 10) . 1)

J ((LOCATION TRUCK1 (140 50 15) (1 0 0) 10 11) . 1)

P: umdrehen (turn round) i ((LOCATION TRUCK1 (150 50 15) (1 00) 11 12) . 1)

8 — ({(LOCATION TRUCK]1 (160 50 15) (1 00) 12 13) . 1)

((LOCATION TRUCK1 (170 50 15) (1 00) 13 14) . 1)

((LOCATION TRUCKI (180 50 15) (1 0 0) 14 15) . 1)

3 ((LOCATION TRUCKI (190 50 15) (1 0 0) 15 16) . 1)
((LOCATION TRUCK1 (200 50 15) (1 00) 16 17) . 1)

((LOCATION TRUCKI1 (210 50 15) (1 00) 17 18) . 1)

((LOCATION TRUCKI1 (220 50 15) (1 0 0) 18 19) . 1)

((LOCATION TRUCK1 (230 50 15) (1 0 0) 19 20} . 1)

r ((LOCATION TRUCK1 (240 50 15) {1 00) 20 21) . 1)
({LOCATION TRUCK1 (250 50 15) (1 0 0) 21 22) . 1)

{{LOCATION TRUCK1 (255 50 15) (1 0 0) 22 23) . 1)

{{LOCATION TRUCK1 (260 50 15) (1 0 0) 23 30) . 1)

((LOCATION TRUCKI1 (255 50 15) (1 0 0) 30 31) . 1)

((LOCATION TRUCK1 (250 50 15) (1 0 0) 31 32) . 1)

BUIBTIAA ((LOCATION TRUCK1 (245 50 15) (1 0 0) 32 33) . 1)

((LOCATION TRUCKI1 (240 50 15) (1 0 0) 33 34) . 1)

T e ((LOCATION TRUCK]I (238 50 15) (1 0 0) 34 40) . 1)

e T MR L 99 ((LOCATION VW1 (-100 70 8) (4 10) 1 2) . 1)

N N ((LOCATION VW1 (-80 75 8) (4 10) 2 3) . 1)

P — ((LOCATION VW1 (-60 80 8) (4 10) 3 4) . 1)
((LOCATION VW1 (-40 B5 8) (4 1 0) 4 5) . 1)
((LOCATION VW1 (-20 90 8) (4 10) 5 6) . 1)
((LOCATION VW1 (0958) (410)67).1)
((LOCATION VW1 (20 100 8) (4 10) 7 8) . 1)

APPENDIX B

Overlake Example

Figure 5.6. Synlhelic view ol ‘overlake' example

W

Geometrical scene description (GSD) for ‘overtake’ example:

((CLASS BUILDING1 BUILDING) . 1)

((LOCATION VW1 (40 105 8) (4 1 0) 89) . 1)

((LOCATION VW1 (60 110 8) (1 00) 9 10) . 1)

((LOCATION VW1 (90 110 8) (100) 10 11) . 1)
((CLASS BUILDING2 BUILDING) . 1) ((LOCATION VW1 (125 110 8) (1 00) 11 12) . 1)
((CLASS TRUCK! TRUCK) . 1) ((LOCATION VW1 (165 110 8) {100) 12 13) . 1)
((CLASS VW1 VW) . 1) ((LOCATION VW1 (210 110 8) {100) 13 14) . 1)
((CLASS VW2 VW) . 1} ((LOCATION VW1 (260 110 8) (1 0 0) 14 15) . 1)
((NAME BUILDING! FBI) . 1) ((LOCATION VW1 (310 110 8) (1 0 0) 15 16) . 1)
((NAME BUILDING2 (OLD POST)) . 1) ((LOCATION VW1 (360 110 8) {100) 16 17) . 1)
((SIZE TRUCK1 LARGE) . 1) ((LOCATION VW1 (410 110 8) (1 00) 17 18) . 1)
((COLOR VW1 YELLOW) . 1) ((LOCATION VW1 (450 110 8) (4 -1 0) 18 19} . 1)
((COLOR VW2 BLACK) . 1) ((LOCATION VW1 (490 100 8) (4 -1 0) 19 20) . 1)
((LOCATION BUILDING1 (100 -60 70) (0 1 0) 1 40) . 1) ((LOCATION VW1 (540 90 B) (4 -1 0) 20 21) . 1)
((LOCATION BUILDING2 (-200 350 80) (0 -1 0) 1 40) . 1) ((LOCATION VW1 (580 80 8) (4 -10) 21 22) . 1)
((LOCATION TRUCKI1 (5050 15) (100)12).1) ((LOCATION VW] (620 70 8) (4 -1 0) 22 23) . 1)
((LOCATION TRUCK1 (60 50 15) (100) 2 3) . 1) ((LOCATION VW1 (660 60 8) (4 -1 0) 23 24) . 1)
((LOCATION TRUCK1 (70 50 15) (1 00) 3 4) . 1) ((LOCATION VW1 (700 50 8) (1 0 0) 24 25) . 1)
((LOCATION TRUCK1 (80 50 15) (100) 4 5) . 1) {(LOCATION VW1 (740 50 8) (10 0) 25 26) . 1)
((LOCATION TRUCK1 (90 50 15) (1 00) 5 6) . 1) {(LOCATION VW1 (775 50 8) (1 0 0) 26 27) . 1)
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((LOCATION VW1 (805 50 8) (1 0 0) 27 28) . 1) T: (IN-FRONT-OF TRUCK1 VW2 32 40)
((LOCATION VW1 (830 50 8) (1 0 0) 28 29) . 1) G: (MOVE VW2 32 39)
((LOCATION VW1 (850 50 8) (1 00) 29 30) . 1) T: (MOVE VW2 32 39)
((LOCATION VW1 (865 50 8) (1 0 0) 30 31) . 1) >> (APPROACH VW2 TRUCK1 32 30)
((LOCATION VW1 (875 50 8) (1 00) 31 32) . 1) ; T: (SYM-APPROACH VW1 TRUCK1 1 12)
((LOCATION VW1 (880 50 8) (1 00) 32 40) . 1) | G: (IN-FRONT-OF TRUCK1 VW1 1 12)
((LOCATION VW1 (-100 55 7) (1 0 0) 32 33) . 1) ) >> (IN-FRONT-OF TRUCK1 VW1 1 11)
((LOCATION VW1 (-80 55 7) (1 00) 33 34) . 1) T: (IN-FRONT-OF TRUCK! VW1.1 11)
((LOCATION VW1 (-60 55 7) (1 0 0) 34 35) . 1) G:  (MDVE VWi 1 11)
((LOCATION VW1 (-40 55 7) (1 0 0) 35 36) . 1) i T: (MOVE VWi 1 32)
((LOCATION VW1 (-20 55 7) (1 0 0) 36 37) . 1) >> (APPROACH VW1 TRUCK 1 1 1)
((LOCATION VW1 (055 7) (1 00) 37 38) . 1) T: (APPROACH VW2 VW1 32 39)
{(LOCATION VW1 (10 55 7) (1 00) 38 39) . 1) G: (RECEDE VW2 VW1 1 40)
((LOCATION VW1 (20 55 7) (1 0 0) 39 40) . 1) G: (SYM-RECEDE VW2 VW1 1 40)
T: (APPROACH VW2 TRUCK1 32 39)
The initialization phase yields the following additional entries: , G: (RECEDE VW2 TRUCK1 1 40) '

G: (SYM-RECEDE VW2 TRUCK1 1 40)

(MOVE VW2 32 39) T: (APPROACH VW1 TRUCKI 1 11)

(MOVE VW1 1 32) G: (RECEDE VW1 TRUCK1 1 40)
(MOVE TRUCK1 1 23) G: (SYM-RECEDE VW1 TRUCK1 1 40)
(MOVE TRUCK1 29 34) >> (SYM-RECEDE VW1 TRUCK1 12 34)
T: (SYM-RECEDE VW1 TRUCK1 12 34)
In the following example all OVERTAKE events are to be instanti- G: (BEHIND TRUCK1 VW1 12 34)
ated. The range of the variables OBJ1? and OB)2? is {VW1 VW2 >> (BEHIND TRUCK1 VW1 14 40)
TRUCK1}. The trace markers have the following meanings: T: (BEHIND TRUCK1 VW1 14 40)
G: = generate all instances G: (MOVE VW1 14 34)

T: (MOVE VW1 1 32)
>> (RECEDE VW1 TRUCK1 14 32) -
T: (RECEDE VWi TRUCK1 14 32)

T: = test instance
>> = enler proposition into database

SEARCH: G: (MOVE vwi 1 32)
" T: (MOVE vwi 1 32)
(OVERTAKE 0BJ17 DBJ27 (1 40) (1 40)) G: (MOVE TRUCK1 1 32)
T: (MOVE TRUCK1 29 34)
G: (OVERTAKE 0BJ17 0BJ2?7 (1 40) (1 40)) T: (MOVE TRUCK1 1 32)
G: (APPRDACH 0BJ17 0BJ27 1 40) G: (BESIDE VW1 TRUCK1 2 22)
G: (SYM-APPROACH 0BJ1? 0BJ27 1 40) >> (BESIDE VW1 TRUCK1 9 14)
>> (SYM-APPROACH VW2 VWi 32 39) T: (BESIDE VW1 TRUCK1 9 14)
>> (SYM-APPROACH VW2 TRUCK1 32 39) . >> (OVERTAKE VW1 TRUCK1 (1 10) (15 23))
>> (SYM-APPROACH VWi TRUCK1 1 12) T: (OVERTAKE VW1 TRUCK1 (1 10) (15 23))
T: (SYM-APPROACH VW2 VW1 32 39) FOUND:
G: (IN-FRONT-OF VWi VW2 32 39)
>> (IN-FRONT-OF VWi VW2 32 40) ; (OVERTAKE VW1 TRUCK1 (1 10) (15 23))

T: (IN-FRONT-OF VW1 VW2 32 40)
G: (MOVE VW2 32 39)
T: (MOVE VW2 32 39)

>> (APPROACH VW2 VW1 32 39) The next trace is for llura example “Did a yellow VW overtake a
T: (SYM-APPROACH VW2 TRUCK! 32 39) truck in front fo the FBI?” The variable X17, X2? and X37 are bound
G: (IN-FRONT-OF TRUCK1 VW2 32 39) to VW1, TRUCK1 and BUILDING1 respectively. The database has

>> (IN-FRONT-OF TRUCK1 VW2 32 40) : been reinitialized.
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SEARCH:

(OVERTAKE X17 X27 (1 40) (1 30)
(IN-FRONT-OF X17 X37 1 30)

G: (OVERTAKE X17 X2?7 (1 40)(1 30)
G: (APPROACH 0BJ17 0BJ27 1 40)
G: (SYM-APPROACH 0BJ17 DBJ27 1 40)
>> (SYM-APPROACH VWi TRUCKL 1 12)
T: (SYM-APPROACH VW1 TRUCK1 1 12)
G: (IN-FRONT-OF TRUCK1 VW1 1 12)
>> (IN-FRONT-OF TRUCK1 VWi 1 11)
T: (IN-FRONT-OF TRUCK1 VWi 1 11)
G: (MOVE VW1 1 11)
T: (MOVE VWi 1 32)
>> (APPROACH VW1 TRUCK1 1 11)
T: (APPROACH VW1 TRUCK1 1 11)
G: (RECEDE VW! TRUCK1 1 40)
G: (SYM-RECEDE VW1 TRUCK1 1 40)
>> (SYM-RECEDE VW! TRUCK1 12 34)
T: (SYM-RECEDE VW1 TRUCK1 12 34)
G: (BEHIND TRUCK1 VWi 12 34)
>> (BEHIND TRUCK1 VWi 14 40)
T: (BEHIND TRUCK1 VW1 14 40)
G: (MOVE VWi 14 34)
T: (MOVE VWi 1 32)
>> (RECEDE VWi TRUCK1 14 32)
T: (RECEDE VW1 TRUCK1 14 32)
G: (MOVE Vw1 1 32)
T: (MOVE Vw1 1 32)
G: (MOVE TRUCKi 1 32)
T: (MOVE TRUCK1 29 34)
T: (MOVE TRUCK1 1 23)
G: (BESIDE VWi TRUCK1 2 22)
>> (BESIDE VW1 TRUCKL 9 14)
T: (BESIDE VWi TRUCK1 9 14)
>> (OVERTAKE VWi TRUCK1 (1 10) (15 23))
T: (OVERTAKE VW1 TRUCK1 (1 10) (15 23))
G: (IN-FRONT-OF VW1 X37 1 23)
>> (IN-FROHT-OF VW1 BUILDING1 4 15)
T: (IN-FRONT-OF VW1 BUILDING1 4 15)

FOUND:

(OVERTAKE VW1 TRUCK1 (4 10)
(IN-FRONT-OF VW1 BUILDING1 4 16)





