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ABSTRACT

This contribution is a comprehensive introduction to Computer Vision. Its
primary objective is to give an understanding of the major conceptual building
blocks of a general vision system, in particular of the representations of visual
information generated in such a system. Vision is viewed as a multilevel
knowledge-based process for constructing descriptions of the real world from
image data. Raw images are processed to yield edges, regions and other
useful image elements. Images elements are grouped into larger aggregates.
The crucial step is to interpret image elements as parts of the real world by
assigning meaning and three-dimensional shape. Finally, real-world objects
are understood as parts of meaningful situations or events. The different
stages of this process are discussed in detail.

1. INTRODUCTION

Computer vision is one of the most challenging areas of Artificial Intelligence
(Al). It is also an area which promises an extremely rich field of applications.
Although the performance of currently available computer vision systems is far
from the mark set by the human vision system, computer vision has already
been applied to numerous special tasks including, for example, industrial
object recognition, quality control, analysis of medical imagery, aerial image
classification, object tracking, and others. In addition, a considerable body of
knowledge, methods and insights has been assembled concerning vision
systems of the future. In fact, many advanced methods have already
demonstrated their potential under laboratory conditions.

This contribution is an introduction to Computer Vision organized in
correspondence to the overall architecture of a vision system. As it is
costumary in the field, vision is viewed as a multi-stage process transforming
digital images into increasingly meaningful representations. An overview is
given in Section 1.2. The discussions in the following sections are at the
"knowledge level": Processes and representations are described conceptually
in terms of information content and knowledge rather than procedures and
data structures. This is the view point typically taken in Artificial Intelligence. It
should be clear, however, that a vision system considered at the
implementation level is a highly structured and extremely complex computer
program. There may be different forms of implementation, e.g. using parallel or
sequential processing. In fact, several new approaches (FELDMAN 88) are



stimulated by the advent of massively parallel processing hardware.
Implementation aspects will not be elaborated further.

1.1 Purpose of vision

Vision in humans is an activity pursued without conscious intent (for the most
part). In order to provide guidance for the construction of artificial vision
systems it is necessary to establish the purpose of Computer Vision.

Most researchers of the field take Computer Vision to be "the construction of
explicit, meaningful descriptions of physical objects from images" (BALLARD
and BROWN 82). This definition is illustrated by the figure below.
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Fig. 1: Constructing a description of physical objects from images

a)

Vision involves:
a) physical objects
b) images of physical objects
c) computer-internal descriptions of physical objects



The physical objects may be any subset of the real world, often called a scene.
Scenes are in general 3-dimensional or, if time plays a part, 4-dimensional.
Images are 2-dimensional projections of a scene if not defined otherwise.
Time-varying scenes are taken to project into image sequences.

The output of Computer Vision is an explicit and meaningful scene description.
One may argue about the extent of such a description. Following MARR 81,
this description should state "what is where". Hence vision is scene
reconstruction ("where") and object recognition ("what"). But vision may also
involve higher-level concepts (e.g. "obstacle") as noted by WALTZ 79 and
others. NEUMANN 82 suggested that a vision system be able to understand
silent movies. Hence vision should encompass "scene interpretation” in the
widest sense.

It is not the purpose of computer vision to generate descriptions of jmages.
This is a misconception dating back to the beginnings where work on
character recognition prevailed. Image properties of an object are
conceptually quite different from real world properties. They describe 2D
projections, not 3D objects.

1.2 Framework of a vision system

It is highly unlikely that a single one-step process could be conceived which
reconstructs a scene from images. Computer vision is considered a multilevel
multiprocess task. Finding useful intermediate representations at various
levels of abstraction and procedures to compute these representations is the
main business of computer vision research. Actually, the emphasis has been
shifting towards representations rather than processes in the recent years.
See MARR 78 and BARROW and TENENBAUM 78 for a detailed discussion of
representation issues.

In Fig. 2 the framework of a vision system is sketched out in terms of levels of
representations which seperate major conceptual building blocks. Traversing
the diagram from the bottom to the top, we begin with digitized raw images,
possibly organized as an image sequence, at the lowest level. The first
processing step is often called segmentation, leading to a compressed
representation of each image in terms of image elements, e.g. edges and
regions. Image elements must be interpreted as scene elements, i.e. as parts
of a real three-dimensional scene. The process which tries to achieve this is
called low-level image interpretation. Scene elements are the constituents of
object descriptions. The next step is to recognize meaningful objects from all
the data gathered so far and using a priori knowledge about object properties.
Further processing has the goal to recognize gbject configurations, events,
special situations and other high-level concepts. This task is called high-level
image interpretation or scene understanding.
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Fig. 2: Conceptual building blocks of a vision system

Subsequent sections will deal with each of these building blocks in more
detail. At this point we note the following general properties.

* Vision is a knowledge-based process. At each processing step various types
of knowledge must be brought to bear. For example, to recognize a particular
object knowledge about the shape of such objects must be exploited. The
lower the processing stage, the less specific will this knowledge have to be.
Early vision processes reflect real world constraints of a very general nature,
e.g. that object boundaries tend to give rise to sharp variations of image
intensities.

« Vision involves bottom-up and top-down processing. The bottom-up path
may be highly ambiguous by the nature of the problem, hence bottom-up
processing often corresponds to hypothesis generation. Vice versa, top-down
processing often corresponds to hypothesis verification.

* Scene reconstruction from images is essentially the inverse of generating
images from a scene. Hence understanding the image formation process is



crucial for low-level image interpretation. Scene reconstruction includes the
computation of intrinsic scene characteristics which individually influence
image formation, e.g. object surface reflectivity and orientation. At best, the
reconstructed scene allows the generation of synthetic images which are
identical to the real ones.

Vision systems structured according to this general framework are being
developed in several research groups. Up to now, however, they can only

perform tasks in very limited domains and not always to satisfaction. A critical
survey of such laboratory systems has been written by BINFORD 82.

1.3 Related disciplines
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Fig. 3: The pattern recognition paradigm



Pattern recognition is a well developed discipline which offers formal
procedures for recognizing different manifestations of objects of the same kind,
e.g. handwritten letters. For a comprehensive treatment see DUDA and HART
73, part |, or any other of several excellent books on pattern recognition.

A pattern recognition problem has the structure shown in Fig. 3. Objects are to
be represented by feature vectors. Then classification takes place according to
the location of the feature vector in feature space. Pattern recognition offers a
sophisticated classification theory. It rarely gives hints as to which features
should be computed in a concrete problem. Pattern recognition plays a minor
role in advanced approaches to computer vision. Most existing commercial
vision systems, however, follow the pattern recognition paradigm.

itiv ien

This is a young discipline devoted to understanding human cognitive
processes using computational models. Cognitive science has roots in the
established fields of computer science, Al, psychology, neurology, linguistics,
and others. Computer vision and Al have a strong tradition of amalgamating
ideas and findings from biological vision research. Hence there is no clear-cut
distinction between a cognitive and an Al approach to vision. Generally,
human vision is important for computer vision because

 humans provide an example of a well-working vision system, and

* the output of computer vision should be in terms of the semantic categories
shaped by human thinking.

Biologically oriented computer vision research is carried out at many
institutions. For access to the literature see MARR 81, ZUCKER 82, FLEET et

al. 84.

2. EARLY VISION AND SEGMENTATION

The task of the first processing stage is to transform a raw image into a
representation from which interesting properties of the real world scene can be
computed more readily. The approaches which have been taken in computer
vision research differ widely according to what properties of the real world
scene are deemed interesting and how carefully the processes are designed
to meet the objectives. A frequently stated goal is to segment the image into
parts which correspond to meaningful entities of the scene, hence the name
segmentation for this phase. Meaningful entities are, in general, objects and
object parts of which a scene might be composed. For segmentation two
complementary approaches can be taken (PAVLIDIS 77):

A Find regions with uniform image properties.

B Find boundaries where image properties are discontinuous.



Region analysis conveniently leads to a segmentation of the image whereas
edge analysis requires further processing (e.g. thinning and linking) to obtain
closed boundaries which would define image regions. Much work has been
invested into segmentation techniques over the past 25 years (see some
selected references below) and new proposals are still being published. Yet
one can safely say that methods of sufficient generality which are applicable to
arbitrary natural scenes, are not available. There seems to be one common
cause for most failures: The uniformity computed by the segmentation operator
on the image does not correspond to a uniformity of real world objects. For
example, regions of uniform greylevel do not generally outline surfaces of
uniform reflectance. This raises two issues. First, what are valid assumptions
about real world scenes which can be exploited for segmentation? Second,
how should the image be processed to exploit these assumptions?

A thorough treatment of these issues is due to Marr who proposed the primal
sketch as output of the first processing stage. It consists of edge elements
(zero-crossings of the second derivative of filtered versions of the image
intensities), blobs, terminations, discontinuities and groupings of such tokens
into higher organizational units, e.g. edge segments. Note that the idea of
segmentation has been abandoned: The goal is to compute tokens which are
generally useful for recovering the 3D-scene geometry. The term "early vision"
is used collectively for such processes.

Another major issue of early vision is the problem of resolution. It is widely
agreed that multiple resolutions are desirable for reasons of processing
efficiency, see TANIMOTO and KLINGER 80 for several contributions along
this line. A processing system for images at various resolutions is often called
a processing "cone" or "pyramid”. Marr argues for obtaining different
resolutions by one-octave Gaussian bandpass filters. This appears to be in
good agreement with the human visual system.

The last issue which will be pointed out here concerns grouping. At several
stages in early vision image elements have to be combined to a larger whole.
For example, edge elements are grouped into straight line pieces. The
problem is to achieve a globally consistent result by local, possibly parallel
decisions. One method is the Hough transform which is applicable whenever
the constraints imposed by local evidence can be expressed by possible
parameter values of the global result, e.g. by the parameters of possible
straight lines through an edge element. Grouping is performed by finding
parameter values with a maximal number of votes. Another basic method is
relaxation. This is an iterative procedure where local values are modified
according to their compatibility with the surrounding neighbourhood. The
method is attractive because of its biological plausibility and conceputal
elegance, but the behaviour is not always predictable and implementations on
a sequential machine may be quite slow.



3. LOW-LEVEL IMAGE INTERPRETATION

The reconstruction of the 3D-scene geometry requires that image elements be
interpreted in terms of scene elements, i.e. that scene characteristics are
determined which "explain" the corresponding image characteristics. For
example, an edge in the image may be interpreted as (or explained by) a
shadow boundary in the scene. The basic problem here is that for each pixel
there are several intrinsic scene characteristics (BARROW and TENENBAUM
78) which influence the intensity value, hence reconstruction is a one-to-many

mapping.

From the physics of image formation the three main characteristics which are
encoded into an intensity value are incident jllumination, reflectivity of the
surface, and surface grientation w.r.t. light sources and sensor. For scene
reconstruction it is crucial to recover these constituents as well as other
intrinsic properties such as depth values. This is the basic task of low-level
image interpretation.

Because of the inherent ambiguity this can only be done, of course, if
additional knowledge and assumptions about the scene are brought to bear.
For example, one can exploit that surfaces are continuous in space and often
have at least piecewise uniform reflectivity. Another important assumption
concerns the geometry of light sources, objects and sensors: It is necessary to
assume generality, i.e. the absence of deceiving coincidences. This means in
particular that small changes of view point do not cause qualitative jumps of
image properties. In consequence, collinearity in the image is taken to imply
collinearity in space, straight lines in the image are straight lines in space,
closed contours in the image are also closed in space, etc.

A typical example for low-level image interpretation is the evaluation of texture
gradients, e.g. in the image of a golf ball. Without using prior knowledge about
golf balls, based only on the generality assumption, one can reconstruct the
three-dimensional surface orientation of the visible part of the golf ball.

Distance and orientation of visible object surfaces in a viewer-centered
coordinate system are sometimes called a "2 1/2 D sketch", using a term
introduced by MARR 81.

Computer vision research seems to be on the brink of formulating an
encompassing set of real world assumptions to be exploited, and
interpretation rules derivable from such assumptions. A bulk of contributions
towards this end can be found in BRADY 81. NEUMANN 82 contains a
discussion of the conceptual dependencies of the assumptions and rules.
While such a framework of rules is emerging, much work remains to be done
at a technical level. What are efficient procedures which would embody the
interpretation rules? How do they interact? How does one deal with
exceptions (when one or more of the assumptions are violated)?



4. OBJECT RECOGNITION

Image understanding requires that meaning is assigned to the components of
a scene, individually and as a whole. Object recognition assigns meaning in
terms of class membership or identity. The term "recognition” aptly describes
that something in the scene matches knowledge retained from prior
encounters. This knowledge is called a model, while the corresponding part of
the scene description is called an instantiation of this model. The main issues
of object recognition are

(1) how to represent object models, and
(if) how to recognize objects given such models.

The following discussion concerns object recognition as conceived for a
general vision system. For specialized tasks such as in industrial vision
simplified procedures may do the job.

There are two conflicting requirements for an object model. First, it must
abstract from properties which distinguish objects of the same class. For
example, it should in general not contain illumination and view-point
information since these characteristics are usually irrelevant for class
membership. Second, an object model must support recognition. Hence it
should provide a description easily comparable with a scene description,
which is in general illumination and view-point dependent. The burden of
providing descriptive features by which scene components can be compared
with models may be partly placed on low-level image interpretation processes
(Section 3). If they provide discriminating object-specific features, in particular
view-point independent 3D shape properties, object models may be
comparatively compact. But as low-level vision remains a problem, it is useful
to consider object models which also encode view-point dependent
information ("mixed models").

Models must be distinguished according to their use for identification
(determining physical identity) or classification (recognition of class
membership). Some tasks require identification, e.g. tracking a moving object,
others require classification, e.g. sorting work pieces on a conveyor belt.
Classification establishes the traditional ISA-relationship between a class and
a class member, while the identity relation may be called IS. The two types of
models differ by the abstractions which they perform. Both models usually
abstract from time, position and orientation in space, view point, and
illumination. In addition, classification models usually abstract, to some
degree, from surface properties and shape.

Recognition involves comparison, or in a general sense, matching.
Techniques for matching structural descriptions are well developed formally,
but there remain problems of efficiency with large model databases. It is
essential that temporal or spatial context and higher-level knowledge be
brought to bear to narrow down the possibilities. Object models must be
viewed as constituents of larger knowledge frames. See MINSKY 75 for a
discussion of such knowledge structures.



Matching may also be performed at a lower level of representation, for
example at the iconic level. This requires that a lower-level representation be
computed from the hypothesized instantiation of an object model, for example
by synthesizing an image. Recognition based on this strategy is sometimes
called 'analysis by synthesis'. If geometrical measures are to be used as a
goodness criterion for matching, it may be more efficient to use geometrical
rather than symbolic representations. Matching will then be performed by
comparing surfaces, edges, vertices, etc. in Euclidean 2- or 3-space.

5. SCENE UNDERSTANDING

Scene understanding deals with representations and processes "above" the
level of recognized objects. The conceptual units of interest at this stage are,
for example, object configurations, situations, motion concepts, events or even
episodes. There is no established boundary as to where vision ends and other
cognitive processes begin. See WALTZ 79 and NEUMANN 82 for a discussion
of the scope of a vision system. It is important to realize, however, that scene
understanding is about interpreting (representations of) real world scenes.
Images are only indirectly involved.

"Scene understanding” refers to the recognition of higher-level concepts,
which is essentially bottom-up processing. However, the top-down path -
exploiting higher-level knowledge for scene reconstruction and object
recognition - is equally important. In fact, laboratory systems have been able to
work on natural scenes because higher-level knowledge guiding the
recognition task has been provided by the experimentator.

Research in bottom-up recognition of higher-level concepts is only at the
beginning. The remainder of this section will deal with one aspect which has
received somewhat more attention: the interpretation of motion. The necessity
of recognizing motion concepts in time-varying scenes is evident when one
considers the description of a moving object at the object recognition level. It
would consist of identity, class membership and shape as well as the spatial
positions and orientations for each time slice. Recognition of motion concepts
then amounts to finding a more succinct, qualitative description, e.g. 'moving
along a straight line'. The question of what concepts should be used and how
they should be organized has been treated in depth by TSOTSOS 80. He
distinguishes between domain-independent concepts (e.g. rotate, translate,
expand, shrink) and domain-dependent concepts expressed in terms of the
former ones. Concepts may be defined in accord with natural language
expressions - humans tend to name conceptual entities which are important.

The work on traffic scene description in project NAOS (NEUMANN and
NOVAK 86) is one of the first examples where a natural-language description
is automatically generated from a time-varying scene. Fig. 4 shows the main
levels of representation in NAOS. Note that image sequence analysis up to the
level of object recognition has been bypassed using interactive techniques.
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Fig. 4: The main levels of representation in NAOS

With the perspective on future cognitive systems, scene understanding can be
considered an interface between vision, natural language, spatial reasoning
and other cognitive processes.

The technigues proposed for representation and recognition of motion
concepts are in many ways similar to those used in any Al problem where a
complex whole is to be recognized by its components: One attempts to
instantiate relational or frame-type structures. The need for novel methods
arises mainly from the special nature of time and the strong dependency of
higher-level concepts on common sense knowledge. In general, scene
understanding requires interaction with various knowledge sources and
cognitive processes, e.g. common sense knowledge about physics, spatial
inference, rules of typical behaviour, etc. Most of these components still
require considerable research in their own right.
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