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ZUSAMMENFASSUNG

Relationale Beschreibungen werden bisher in der Bildverarbeitung
vorzugsweise =zur Objekterkennung eingesetzt. In dieser Arbeit
wird eine Erweiterung des Relationalvergleichs vorgestellt, die
der Erkennung =zeitlich veridnderlicher Vorgénge, sogenannter
Ereignisse (events), dient. Mit diesem erweiterten
Relationalvergleich ist es méglich, sowohl die zeitliche
Ausdehnung von Ereignissen als auch deren inhirente Eigenschaften

wie Durativitat und Nicht-Durativitat korrekt zu behandeln.
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Abstract

In this contribution a relational matching strategy is described. It allows
to handle temporal information like the beginning and end of events,
durativity and non-durativity correctly. The implementation and use of
this strategy for temporal event recognition in the NAOS system is
discussed.

Introduction

Relational descriptions for picture processing were first proposed by
BARROW and POPPLESTONE [1]. Their aim is object recognition. The idea is
to describe the image in terms of relations between image regions and to
compare these descriptions with predefined relational models of
objects. The result is the best match between the description and the

model.

In [2] the matching process is described in detail. Especially the idea of
hierarchical syntheses is put forth. The models are structured
hierarchically and recognition proceeds by first finding the smaller
substructures and then checking combinations of these to recognize
larger substructures. This approach is shown to be computationally more

efficient than matching large structures.

In summary, relations are used to describe both the image and the object
models and matching is used to compare both descriptions. These ideas

were first used for object recognition in single images.

Leaving the single image paradigm and turning to image sequences we are
especially interested in time-varying properties of animage sequence

called events.

In our case events are 'meaningful' parts of ascene (image sequence)

insofar as an event may be verbalized using a verb of locomotion. Events



are organized around locomotion verbs [3].

Event recognition starts when object recognition has been achieved.
Thus a level of representation is assumed where the scene can be
characterized in terms of objects and relations between them. The
events are represented by event models. Event recognition proceeds by
matching event models against the scene description. This is in analogy to
the approach for object recognition described earlier. However, it will
be shown that the matching process has to be extended in order to cope

with problems arising from the nature of time varying events.

The overall goal of the NAOS system is the verbal description of the
motions of objects in a traffic scene (cf. [4]). The scope of the present

paper is the recognition of the events.

This paper describes a matching strategy for the recognition of temporal
events which is implemented in the NAOS system. Therefore the
representation of the scene is described first, second, the
representation of event models is shown and in the last chapter the
matching process and its neccessary extensions for recognizing temporal

events are discussed.

Scene representation

Assuming a stationary camera, a scene consists of two parts, namely the
non-moving objects (i.e. streets, buildings, ete.) and the moving objects.
The stationary background (the non-moving objects) is recognized using a
detailed street-model. The recognition of the form and trajectory of
the moving objects builds on special processes as described e.g. in [5].
Presently our scene-analysis system cannot classify the moving objects
like cars, pedestrians and cyclists. Therefore this classification is done
interactively. A detailed description of the processes necessary to

automatically construct the scene representation is contained in [6].

In our case the scene representation consists of the two parts:
- stationary background (instantiated street model)
- moving objects.
This representation - called geometrical scene description (GSD) - is an

object centered representation associating all relevant information of



an object with that object. In particular the GSD contains:

per single image of the scene

- time

- list of the objects

- viewer position and -orientation

- illumination

per object
- identity (in the sequence)
- 3D~-form and -appearance

- 3D-position and -orientation

class membership

color

functional features (e.g. the front of an object)

I

Without going into detail a section of the GSD is shown below. The

LOCATION-ent

ry has the form:

(LOCATION <internal name> <position> <orientation> <time1> {<time2>})

where the position is given by x, v and z coordinates of the object's

center of mass and the orientation is a vector describing the direction

into which the front of the object points.

(CLASS vw
(COLOR vw

1 VW)
1 YELLOW)

(CLASS TRUCK1 TRUCK)

(CLASS BUI

LDING1 BUILDING)

(NAME BUILDING1 "Dept. of CS")

(LOCATION BUILDING1 (100-6070)(010) 1 40)
(LOCATION Vw1 (-100708) (410) 1)
(LOCATION VW1 (-80758) (410) 2)

¢

4

4

(LOCATION
(LOCATION
(LOCATION
(LOCATION

VW1 (87550 8)(100) 31)
Vw1 (88050 B8)(100) 3240)
TRUCK1 (505015)(100)1)
TRUCK1 (895015)(100)2)



The GSD contains a complete geometrical description of the original scene
and is the basis for the event recognition process. In the next paragraph

the representation of event models is described.

Event models

Due to the purpose of our system - verbal description of the motions of
objects in a traffic scene - events are grouped around motion verbs.
Events in our system are 'move’, ‘stop’, ‘accelerate’, 'overtake', etc.
Once an event is recognized it is known which verb may be used in a
natural language description of the event. As an example the event model

for ‘overtake’ is given below:

(OVERTAKE 0BJ1 OBJ2 T1 T2)
(MOVE 0BJ1 T1 T2)
(MOVE 0BJ2 T1 T2)
(APPROACH 0BJ1 0BJ2 T1 T3)
(BEHIND 0BJ1 0BJ2 T1 T3)
(BESIDE OBJ1 0BJ2 T3 T4)
(IN-FRONT-OF 0BJ1 0BJZ T4 T2)
(RECEDE OBJ1 0BJ2 T4 T2)

Informally the above event model may be read as follows. If OBJ1
overtakes O0BJ2 in the time interval from T1 to T2 the following
conditions must hold: Both objects move in the interval. In a subinterval
from T3 to T4 which is within (T1 T2) the objects are beside each other.
Before this 0BJ1 approaches 0BJ2 and afterwards 0BJ1 recedes from

oBJ2.

In general an event model consists of several relations (in the following
often called propositions). Each relation itself consists of a relation
identifier, e.g. MOVE, one or more variables, e.g. 0BJ1, 0BJ2, and time
variables denoting the interval during which the relation is valid, e.g. T1
and T2. Itisimplicitly assumed that T1< T2 if in a proposition T1 occurs

left of T2, e.g. (MOVE OBJ1 T1 T2).

Three types of propositions are distinguished: primitive, composite and
special. Primitive propositions are directly evaluated by specialized

procedures using the GSD. MOVE is an example for a primitive proposition.



Composite propositions like OVERTAKE consist of several propositions
which may themselves be composite again. Special propositions are used
to evaluate temporal expressions like ‘during’ which do not directly refer

to the GSD.
Propositions are evaluated by generating values for their variables so

that the proposition is true. For composite propositions to be true the

conjunction of the propositions they consist of must be true.

Event recognition

In this paragraph a detailed description of the matching strategy for

temporal event recognition is given.

There are two major differences to the relational matching scheme
described in [2]. First, in the beginning the GSD does not contain
relations which could be directly matched against event models as the
latter describe 'higher level concepts’ which have to be computed from
the basic ones contained in the GSD. The second major difference arises
from the temporal dimension of events. If for example we know that the
relation (MOVE CAR1 10 25) holds it might be necessary to verify that
CAR1 moves in the interval from 12 to 20. A literal match of the pattern
(MOVE CAR1 12 20) against (MOVE CAR1 10 25) will be unsuccessful. The
time variables of the MOVE event are not independent but are interval

boundaries and must be treated accordingly.

In the following a matching process is described which can handle time

variables as required. First the overall evaluation strategy is explained.

In general a list of propositions must be evaluated to recognize an event,

e.g.

{ (OVERTAKE 0OBJ1 0BJ2 TBEG TEND)
(IN-FRONT-OF 0BJ1 "Dept.of CS" TBEG TEND)},

which can be paraphrased as "Which object overtakes another one in

front of the Department of Computer Science?".

Note, that we could as well want parts of the OVERTAKE event to be



IN-FRONT-OF our department by choosing different time variables for
the IN-FRONT-OF proposition. Choosing T3 and T4 for instance, would
imply that we want 0BJ1 to be in front of the department while it is
beside 0BJ2 (see event model OVERTAKE above).

If for a specific event model or proposition there is no instance in the
GSD, the model or proposition has to be evaluated. This is done by finding
all instances and storing them in the GSD. Composite event models are
evaluated recursively, primitive ones by specialized procedures. In

general, lists of propositions are evaluated recursively.

The evaluation of a list of propositions may be viewed as a tree search.
For an effective search it is necessary to evaluate the proposition with
the highest branching-factor first. Consider the OVERTAKE event model.
If more objects move and fewer objects approach other objects it is
more efficient to evaluate the APPROACH proposition first. we
distinguish between an intrinsic and an effective branching-factor. The
intrinsic branching-factor of a proposition is an estimate of its
probability of being true for arbitrary but fixed values of its variables.
The intrinsic branching-factor is domain dependent and arises from
experience and introspection. It is associated with the relation
identifier. The effective branching-factor is computed by first
multiplying the number of possibilities for assigning values to the
variables of the proposition and then subtracting the intrinsic
branching-factor from the reciprocal of this value. This is done at
evaluation time. For event recognition, the proposition with the highest
effective branching-factor is evaluated first, if it cannot be
instantiated the process may stop at once neglecting the rest of the
propositions. The effective branching-factor is recomputed after each
evaluation of a proposition in order to take care of newly instantiated

variables.

Event recognition is a two phase process embedded in a backtracking
control structure. In the first phase all instances of a proposition are
generated and added to the GSD. In the second phase the first
instantiation is chosen and it is tested whether for the instantiated
variables the remainder of the propositions can also be instantiated.
Composite propositions are therefore expanded and the resulting list of
propositions is evaluated. All composite propositions are thus finally

reduced to primitive ones.



Note that there may be several instances of a proposition due to
different time intervals, e.g. (MOVE CAR1 5 15) and (MOVE CAR1 25 40).
Backtracking ensures that all these instances are tested for

compatibility with the remaining propositions.

The event recognition is successful if for concrete values of the
variables the conjunction of the propositions is true. It fails if a
proposition cannot be instantiated in particular if it is not temporally

compatible to the others.

The description of the overall evaluation strategy ends here. Next it is
shown by means of an example that traditional relational matching is not

sufficient for temporal event recognition.

Let us look closely at the evaluation of a list of propositions consisting of
((MOVE 0BJ1 T1 T2) (MOVE OBJ2 T1 T2)). Possible values for the variables
0BJ1 and 0BJ2 are CAR1 and CAR2, CAR3 respectively. Let us further
assume that at the end of the first phase for the first proposition the
following instantiation has been found and added to the

GSD: (MOVE CAR1 15 B5).

In the second phase compatible instances have to be found. Therefore
two backtrack-loops are constructed for each proposition. One ensuring
that the non-time variables take all possible values and the other one

ensuring that for each value all instantiations are tested.

In the above example the instantiation of the first proposition is chosen
and it is tested whether the second proposition can be instantiated and
has a compatible instantiation. The variable 0BJ2 of the second
proposition is therefore bound to CAR2 and all instances are generated
and added to the GSD. Let us assume them to be (MOVE CAR2 3 12) and
(MOVE CAR2 67 75). Each of these instantiations is tested for temporal
compatibility in turn. In the traditional relational matching paradigm the
values of the time variables are therefore tested for equality. As this
fails OBJ2 is now bound to CAR3, all instantiations are generated and it is
again tested for temporal compatibility. Note that for an instantiation
(MOVE CAR3 10 70) this test would again fail although the instantiation

(MOVE CAR1 15 65) exhibits that both objects move in a common interval.

The reason for the above failure is the lexical incompatibility of the



values for the time variables T1 and T2. The role of the time variables as
boundaries of a durative event is not considered. Without extensions the

paradigm of relational matching cannot be used for our purposes.

We will now describe an extension to relational matching which allows to

treat time variables correctly.

Two basic types of events must be distinguished, durative and
non-durative events. An event which is valid in the interval (T1 T2)is
durative if it is also valid in each subinterval (T3 T4) with
TILT3<T4LT2. 1In our system all primitive events (propositions) are
durative whereas certain composite events like OVERTAKE are
non-durative. A special kind of a non-durative event where one boundary
is fixed, is a timepoint event, e.g. STOP. The fixed timepoint in this case
is given by the first time where the object does not move. For durative
events the match between the pattern (MOVE CAR3 15 65) and a date
(MOVE CAR3 10 70) should succeed as the time interval of the pattern is
included in the interval of the GSD entry. This implies that time variables
should not be instantiated but rather be restricted in their possible

values. Hence the match should lead to the inequality: 15 € T1 < T2 € 65.

The time variables in a proposition have to be interpreted as boundaries
of the interval in which the proposition is valid. A single match of a model
against a GSD entry leads to arestriction of the possible values of the
time variables which can be written as an inequality. Further matches
with the same and also newly introduced time variables lead to a system
of linear inequalities. If this system has a feasible solution the
propositions are temporally compatible. In [7] it is proposed to use the
SIMPLEX algorithm of linear programming to find such feasible solutions.
We propose a simpler algorithm which also accounts for durative and

non-durative events.

In the implementation of the event recognition scheme each time
variable has associated with it a minimum and a maximum value. When
starting the recognition procedure these values are initialized to the
beginning and end of the scene. Furthermore, each variable carries two
lists, one containing all the variables which are greater ("upper variables")
and the other one containing all the variables which are smaller ("lower

variables").

For durative events the time wvariables T1 and T2 mav be interpreted as



minimum and maximum of the interval in which the proposition is valid.
Hence we use for instantiations the notation:

(<durative event>...<min T1><max T2>) e.g. (MOVE CAR1 15 65).

For non-durative events more than two time variables are necessary (see
e.g. event model OVERTAKE) and the interval boundaries T1 and T2 lie
within certain boundaries themselves. Therefore we use for
instantiations the notation (<non-durative event>..
-{<min T1><max T1>) (<min T2><max T2>)) e.g. (OVERTAKE CAR1 CAR2 (1 13)
(15 20)).

A special kind of non-durative events are inchoative and resultative
events like START and STOP where one interval boundary is fixed i.e. has
equal minimum and maximum values. Therefore we use for instantiations
the notations (<inchoative event> ..T1 (<min T2> <max T2>)) and

(<resultative event> ...(<min T1><max T1>) T2) e.g. (START CAR1 12 (13 20)).

Consider a match of the pattern (MOVE CAR3 T1T2) with
(MOVE CAR3 10 70). The notation of the instantiation implies that it is a
durative event, therefore 10 is interpreted as the minimum value for T1
and 70 as the maximum value for T2. T1 has as upper variables (those
being greater) T2 and no lower variables and T2 has as lower variables T1
and no upper variables. According to the type of the event, durative,
the procedure TIMETEST propagates the minimum value of T1 upwards and
the maximum value of T2 downwards according to the following algorithm

(due to Neumann):

1. add T2 to the set of upper variables of T1 and T1 to the set of

lower variables of T2;

2. if the minimum (maximum) of T1 (T2)is greater (less) than its
present maximum {(minimum), the propositions are

incompatible;

3. if the minimum (maximum) of T1 (T2) is less (greater) or equal
to its present minimum (maximum), retain the present

minimum (maximum);

4. if the minimum (maximum) is greater (less) than the present

minimum (maximum) but smaller (greater) or equal than the



present maximum (minimum) use it as the new minimum

(maximum);

5. do the above steps for all upper (lower) variables of T1 (T2)
with the new present minimum +1 (maximum -1); if it fails for

one variable, the propositions are incompatible.

The words in parentheses are for propagating the maximum. The addition
(subtraction) of one in step 5 above ensures T1 < T2. In the beginning,
the present minimum (maximum) are the initialized values (see above).
Note, that according to the overall control structure all entries are

subject to subsequent backtracking.

After running the above procedure for the example we have established
as minimum and maximum 10 and 69 for T1 and 11 and 70 for T2. Consider
the next match of the pattern (MOVE CAR1 T1T2) against
(MOVE CAR1 15 65). It is easily verified, that using the above mechanism
the new values for the minimum of T1 and the maximum of T2 will be 15
and 65. In comparison, consider the next match to be between the
pattern (MOVE CAR1 T1 T2) and the GSD entry (MOVE CAR1 1 9). The
algorithm shows the instances to be incompatible and backtracking

ensues.

We will now give an example of a non-durative event, namely STOP. The
event model STOP is a composite one consisting of the primitives MOVE and
STAND:
(STOPOBI T1 T2)

(MOVEOBJI T1 T2)

(STAND OBJ T2 T3).
When the system has to recognize all STOP events it first initializes the
minimum and maximum values for the time variables T1, T2 and T3 to the
first and last image of the sequence (e.g. 1 and 50). Then the generation

phase starts.
Consider the GSD to contain the following entries after generating all
instantiations of the first proposition: (MOVE CAR1 38 45) and (MOVE

CAR1 29 34).

The first instantiation (MOVE CAR1 38 45) is then taken and according to



the above algorithm minimum and maximum wvalues for T1 and T2 are
established of 38 and 44 for T1 and 39 and 45 for T2. The (STAND CAR1 T1
T2) instantiations are then generated. Assume the only instantiation to
be (STAND CAR1 34 38). Due to the algorithm of TIMETEST, 34 is
interpreted as minimum value of T2 and therefore not compatible to the
already existing value of T2. Backtracking ensues and the second MOVE
instantiation is taken establishing 29 and 33 as minimum and maximum
values for T1 and 30 and 34 for T2. It can easily be verified that the
above STAND instantiation is compatible and (STOP CAR1 (29 33) 34)is
entered into the GSD.

The difference between non-durative events on the one hand and
durative events on the other hand is that in the first case a match leads
to the propagation of the minimum and maximum value of each time
variable accarding to the above scheme. For durative events only the
minimum of T1 and the maximum of T2 are propagated upwards

respectively downwards.

Conclusion

A relational matching strategy for the recognition of
temporal events has been described. An extension to the traditional
relational matching scheme was introduced which handles all temporal
relations between events correctly. Especially it accounts for the role
of durative and non-durative events. The overall control structure of

the recognition process is backtracking.

Among other work on temporal relations and temporal logic (cf. [7],
(81,091, (101, [11], see also the bibliography given in [12]), ALLEN 81, Jjust
to cite one, as well notes the difference between durative and
non-durative events. He is mainly concerned with keeping the temporal
order of events when the present (now) is changing and therefore

proposes an interval based representation.

Most of the above mentioned approaches deal either with the ontology of
time or the question whether time should be represented using time
points or intervals, or constructing a history of events or with the
question which temporal inferences can be made from natural language

input. In the NAOS system we pursue the question how to recognize

11



temporal events given a representation of real-world scenes and models
of the events. This lead to the use of relational matching and the

described extension.

The recognition scheme is implemented in LISP/FUZZY on a DECsystem 10

at the Fachbereich Informatik in Hamburg and is running under TOPS 10.
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