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Abstract

We propose an approach for estimation of elastic deformations
in medical registration. Compared to standard registration methods
based on elasticity theory, our estimation scheme does not contain
parameters of the deformation model (elastic constants). Rather, the
computed elastic deformation is uniquely defined through incorpora-
tion of prescribed displacements on boundary structures in the source
and target image. Under the assumption of correctness of input data,
our estimation scheme provides the exact correspondence of struc-
tures to be registered due to the constraints. Furthermore, to cope
with large-magnitude deformations, we propose an incremental model

based on successive linearizations of the non-linear elastic equilibrium



equation. To illustrate the performance of our approach, we show
experimental results for 2-D and 3-D synthetic as well as real medi-
cal images and provide timing information for sequential and parallel
realizations.
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1 Introduction

Comparative analysis of different object representations plays an impor-
tant role in the clinical routine, since it often helps to improve information
required for various applications, like comparison of different tomography
modalities for neurosurgery planning. Registration in medical image pro-
cessing aims at supporting a physician in finding correspondences between
image representations of diagnostically or therapeutically relevant objects.
It can be formally defined as a mathematical transformation applied to a
source image which puts it into spatial correspondence with the target im-
age. Important performance criteria for registration schemes are accuracy,
robustness, and time required to compute the transformation. According to
the application fields, one can distinguish between three main types of med-
ical registration: single patient registration, image-atlas registration, and
inter-patient registration (see, for example, [32] for more details on the clas-
sification of registration methods).

Transformations used in medical registration can be divided into rigid and
non-rigid as well as into local and global ones [32], where the specific type of
transformation to be used depends on the concrete registration task. Local
non-rigid transformations are normally used in applications where anatomical
variability or metamorphic processes are present and where, as a consequence,
rigid transformations may not provide satisfactory registration results. Ob-
jects of our interest in this paper will be only local non-rigid transformations.

Several groups of registration methods with local non-rigid transforma-

tions are known in the literature. One group is characterized as landmark-



based approaches [5], [26]. Anatomical landmarks are characteristic features,
typically points, which have to be found both in the source and target im-
age. They can be manually or (semi-)automatically localized. The obtained
correspondences are then used to compute the complete transformation of
the source image by using, for example, thin-plate spline (TPS) interpola-
tion [5] or approximation [26]. In [14], a landmark-based approach has been
developed, where interpolation with elastic body splines (EBS), derived from
elasticity theory, has been used. An important feature of the landmark-based
methods is that an analytical expression is available to compute the trans-
formation, and consequently these methods are computationally efficient.

Another group of methods consists of so-called surface-based approaches
[22], [30], [31]. These methods first compute a surface match, and the volu-
metric transformation is then interpolated to agree with this match. In con-
trast to physically-based methods, the volumetric transformation in surface-
based methods is not usually computed to obey physical laws. In [22], [31]
for example, a kind of weighted mean interpolation has been used, where
the deformation at a point is computed as a weighted linear combination of
distortion functions associated with the surfaces.

The approach developed in this paper belongs to physically-based nu-
merical methods [2], [8], where non-rigid transformations are modeled as
deformations of physical bodies, such as elastic solids or compressible fluids,
driven by applying external forces. Forces are usually derived from image
data to minimize some cost function obtained by comparing the source and
target image [7], [2]. The image transformations are then computed as nu-
merical solutions of the corresponding material motion equations.

In [7], a linear model based on elasticity theory, which assumed only small
deformations, was used to automatically find optimal mappings between CT
images and an atlas of brain anatomy. A cross-correlation coefficient between
intensity-based properties of local regions in two images was defined to de-
rive forces that drive the elastic deformation of the source image. It has been

later improved through the use of a multi-resolution scheme [2], [28] to in-



crease the speed of computations and to avoid local minima. A probabilistic
model based on the finite element method, which has been reported to have
properties close to the elastic models of [7], [2], has been proposed in [16].

In real applications, however, deformations required for registration are
not always limited to locally small deformations. Motivated by this con-
sideration, an approach based on the theory of fluid mechanics has been
introduced in [8] and improved in [6] to increase speed. These models exploit
the property that fluids do not carry memory about their initial state, thus
no increase of the restoring forces happens during the deformation. Hence
the fluid models can be applied for computations of large non-linear defor-
mations.

A common limitation of the fluid models in comparison to the elastic ap-
proaches mentioned above is that a local intensity-based similarity measure is
used for the derivation of forces. This may lead to false matches since inten-
sity properties alone are not always reliable features by measuring similarity
between images, e.g. in the case of non-rigid multi-modality registration. In
[13], [11] a linear elastic model based not on intensity but shape properties of
objects to be registered has been proposed. The elastic deformation is driven
by external forces obtained from mapping parametric representations of the
outer cortical surface and the boundary of the ventricles in the source and
target image. The principal drawbacks of this approach are, however, that
it is parameter-dependent and assumes only small deformations.

In this paper, we propose an approach for estimation of elastic deforma-
tions in medical registration which exploits, analogously to [13], [11], shape
properties of the involved images. Two principal differences are, however,
that our approach is parameter-free and is not limited only to small defor-
mations. Input data for our approach are point correspondences (displace-
ments) of boundary structures obtained in a first step of the registration
process. This first processing step is not the objective of the present pa-
per. Rather, we focus on the second step of the registration process and

develop an approach that incorporates the displacements as hard constraints



into the elastic deformation model. As a consequence, the parameters of the
deformation model (elastic constants) are not required in our approach.

In summary, we list several important advantages of our approach which
also directly refer to clinical applications as compared to standard physically-
based numerical registration methods:

i) We do not use any local intensity-based similarity measure to derive
forces which drive the elastic transformation. As a consequence, the images to
be registered do not necessarily need to be similar w.r.t. intensity properties,
e.g. in the case of non-rigid multi-modality and image-atlas registration.

ii) Driving forces are implicitly used in our approach via incorporating
prescribed displacements as constraints. As a consequence, the remaining
parameters of the deformation model (elastic constants) drop out from the
mathematical formulation of our registration approach, and thus the model
does not require careful parameter-tuning to obtain good results. It is im-
portant to note that the parameter-free formulation on the one hand limits
the degrees of freedom of possible deformations, but on the other hand makes
the registration result more predictable.

iii) Since there exists a unique solution to the mathematical problem asso-
ciated with our registration approach, it can always be guaranteed that the
required deformation is obtained and that certain structures in the source
image are exactly matched with those of the target image due to the con-
straints, provided that correct input data are available.

iv) Registration methods based on linearized elasticity theory implicitly
assume that only small deformations occur. As this is not always true in real
applications, we develop an incremental model to cope with large deforma-

tions which are closer to clinical reality.

Organization of the paper

In Section 2, we present our estimation scheme. We first formulate the solu-
tion to the elastic registration problem as a solution of a non-linear equation

describing the static equilibrium in elastic materials under applied external



forces. In the following two subsections, we describe two different lineariza-
tions of the non-linear equilibrium equation which lead, correspondingly, to
our linear and incremental deformation model. We obtain a parameter-free
formulation of the deformation models by incorporating a subset of the solu-
tion as extra hard constraints (Subsection 2.4). In Subsection 2.5, we describe
the discrete implementation of the incremental deformation model, where we
distinguish between the models with and without memory. In Subsection 2.6,
we introduce criteria which allow us to detect areas of large non-linear de-
formations in the elastically transformed image in order to determine the
application scope of the linear model. In the remainder of the section, we
briefly describe the problem of obtaining input data and the numerical im-
plementation of our approach.

Section 3 presents experimental results with our estimation scheme. We
performed registration experiments in 2-D (Subsection 3.1) as well as in 3-D
(Subsection 3.2). For the 2-D experiment, we give timing results in the uni-

and multiprocessor modes.

2 Estimation of elastic deformations

2.1 General considerations

We first define the notion of elastic registration. Let €2 be the source image
domain. We define an arbitrary transformation ¢ : Q — R? of the source

image as:

P(x) = @ + u(z), (1)

where u :  — R? denotes the displacement field.
We will call elastic deformation a smooth, orientation-preserving defor-
mation described by the equations of static equilibrium in elastic materials.

In the most general form, assuming that no deformation occurs on the image



boundary, the equilibrium equations can be written in operator form as:

L(u) = f, (2)

where L is the non-linear elasticity operator which we will define later, and
f : Q — R3? denotes the external forces.

To solve the registration problem, we usually first need to derive the ap-
propriate external forces by comparing the source and target image and then
solve the non-linear equilibrium equation (2) to compute the transformation
which will bring the images to be registered into the optimal spatial corre-
spondence. Two possible schemes for linearization of (2) and derivation of
input data will be discussed in the following subsections.

We assume that there is no deformation on the boundary of the image
domain in our model (homogeneous Dirichlet boundary condition). Hence

the non-linear elasticity operator can be written as [10]:
L(u) = —div{(I + Vu)S}, (3)
where the second Piola-Kirchhoff stress tensor S : Q@ — M3 is defined as
S = \tr(E)I + 2uE, (4)
and

A 1
E = i(VuT +Vu+ Vu'Vu) (5)

denotes the Green-St. Venant strain tensor. The two positive constants A

and p are known as the Lamé elastic constants.

2.2 Linear deformation model

To compute one linear approximation of the elasticity operator, we perform

the conventional linearization by using the Fréchet derivative of L:

L(u) = L£(0) + L£'(0)u + o(uw). (6)



Since no deformation occurs with the absence of the external forces, we

have £(0) = 0, and by neglecting the last term in (6) we obtain
f=L(u) ~ L' (0)u. (7)

To compute L£'(0)u, we simply drop all non-linear terms of £(u) with

respect to u and obtain
L'(0)u = —div S, (8)

where § = A tr(E)I+2uE is the linearized stress tensor and E = Vu+Vu"
denotes the linearized strain tensor. The linearized equilibrium equation is

then given as
—divS =f, 9)

which is also a compact form of the well-known Navier equation [21] that

has standardly been used in elastic registration approaches [7], [2], [13].

2.3 Incremental deformation model

The principal drawback of the linearization scheme introduced in the previ-
ous subsection is that it equivalently describes only small-magnitude defor-
mations, which is not always the case in practical registration tasks. Another
possible linearization scheme is the iterative incremental linearization, where
applied forces are supposed to vary by small increments, thus causing small
deformations in each iteration step. This model is computationally more ex-
pensive than the linear model, since a complete linear problem needs to be
solved in each step, and from our knowledge has not yet been investigated
in elastic registration.

Starting with n = 0 and using again the expression for the Fréchet deriva-

tive, the incremental linearization scheme can be written as

L) = L) + £/ () (™ = ") +ofu™ —u"), n=01...,
(10)



or by neglecting the last term
fn+1 o fn _ L(un-i—l) _ £(u") ~ L:I(un)(un-l-l o un), n—= 0, 1, e (11)

hence the incremental linearization iteratively approximates the non-linear
deformation model by successively solving the corresponding linear problems
and is not limited to only small deformations. For the proof of the conver-

gence of the incremental scheme (11), see [10].

2.4 Parameter-free estimation of elastic deformations

Since an elastic deformation is only defined when corresponding values have
been assigned to the elastic parameters (Lamé’s constants), one of the most
important problems when using the elastic model is to find optimal values for
these parameters. Since no methods for choosing optimal values of the elastic
parameters in medical registration have yet been proposed, an important
advantage of our approach (described next) is that it does not contain any
parameters of the deformation model.

To obtain a parameter-free formulation, we first eliminate one degree of
freedom from the elastic model by setting the parameter A to zero. As a
consequence, we prevent the lateral shrinking of objects in images when they
are stretched. In this case, the solution of the elastic equilibrium equation
will be completely controlled by the applied external forces (cf. [2]), since
the remaining parameter i can be transferred to the right-hand side of the
equation and considered as a scaling coefficient for the forces. Another pos-
sible advantage of the elimination of the parameter A is that if an object is
supposed to grow only in one direction, the driving external forces can be
applied only in this direction and no extra forces are needed to prevent object
shrinking.

The next important step is to show that this modified equilibrium equa-
tion has a unique solution. This means that only one combination of external
forces can cause the concrete deformation. For the proof of the uniqueness

of the solution in the linear case, we use the variational formulation of the



equilibrium equation (9). It is given as [23]: Find uw € V such that
a(u,v) =1(v), YveV, (12)

where the symmetric bilinear form a(u, v) and the linear form [(v) are defined

a(u,v) :/Q<E(u),E('v)>dx, (13)

1
—E/Qf-vdx, (14)

and V denotes the space of admissible functions for which the variational
problem (12) is well posed. By using the properties of the bilinear (V-
ellipticity and continuity) and linear (continuity) form in (12), it has been
shown that the variational problem (12) has a unique solution, see [23], [10]
for details.

Analogously, the variational formulation of our incremental deformation
model (11) is given as [23]: Find du" € V such that

a(du”,v) =I(v), YveV, (15)
where
a(du",v) / Z Qijpg (VU™ )0p0u, 0jv; dz, (16)
1,J,P,q=1

/ 5f"- (17)

In the latter variational formulation, du" = u™t' — u™, §f" = f*H — f°

denote correspondingly displacements and forces increments and

3 3
~ n n n
Qijpg(VU") = Gijpg + > OjpOrtif + D airpOruif +

k=1 r=1

3 3
+ Z Uk jprOp U Oy + Z Apjsr Esr (U")04g,

k,r=1 s,r=1

10



where a;j, = %(5@5” + 0ig0ip)s 4, 7,0,q¢ = 1,2,3, and 0;; is Kronecker’s
symbol.

An important advantage of the variational formulation is that its discrete
representation is readily obtained by applying the finite element method
(FEM). For discretization of (12) and (15), we used the Galerkin method [9].
For details on the FEM discretization of the equilibrium equations, see [23].

By using the uniqueness of the solution of the equilibrium equation, we
can implicitly define the required external forces, by incorporating a subset
of solution as extra constraints in the discrete representations of the equation
with the absence of the explicit external forces on its right-hand side. As a
consequence, the remaining elastic parameter u drops out from our formula-
tion, thus making it completely parameter-free. Incorporation of prescribed
displacements in our model requires a modification of the matrix and of the
right-hand side vector of the linear equation system corresponding to the
discrete representation of the deformation model. It can be shown, that
this modification of the linear systems corresponding to (12) and (15), re-
spectively, preserve symmetry and positive definiteness [23]. As a result, we
obtain as unique solution a displacement field which exactly fits given local
correspondence input data, without the need to specify external forces in an

ad-hoc manner.

2.5 Discrete implementation of the incremental model

When implementing the incremental model on a discrete grid, the deforma-
tion gradient is approaching zero after some iterations due to discretization
(cf. [8]). As a consequence, the matrix associated with the discrete incremen-
tal model becomes badly conditioned and its update required in each step of
the iterative procedure cannot be performed.

One possibility to obviate this problem is to stop the updates of the
matrix if the value of the deformation gradient falls below some selected
threshold and to use this discrete approximation of £’(u") in the following

iteration steps. In this case, we will preserve memory about several preceding
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iterations in our model. Formally, we can write:
L'(u") = L'(ub), k=max{ic{0,...,n}|det(I + Vu') >e}. (18)

Another possibility is to use £’(0) as an approximation of £'(u") in
the iteration process. This latter method is analogous to the chord method
for iteratively solving non-linear systems of equations [20]. In this case,
no memory about preceding deformations is preserved. Such a behavior is
analogous to the one of fluids where the restoring forces can relax over time
8].

The difference between the two incremental models can be seen in Fig-
ure 1, where we also compared the two formulations of the incremental model
(11) with the linear elastic model (7). We prescribed large displacements in
the middle of a 25x25 rectangular grid (top row/left). The deformation com-
puted with the linear model is shown in the right image of the top row of
the figure. One can see that a topology violation occurred, since the linear
model is not suitable for computations of large deformations. In the bottom
row of Figure 1, the deformations computed due to the incremental model
with and without memory are shown. The value of € in (18) was chosen to
be 0.2. One can see that the deformation without memory (right image) is
more smooth than the deformation where memory about some previous iter-
ations was preserved (left image). However, both incremental deformations

preserved the topology of the grid.

2.6 Criteria for large deformations

As we have already mentioned, the derived linear registration model may
cause topology violations in applications where computations of large defor-
mations are needed. Since the linear model is computationally more efficient
than the incremental one, a very important problem in registration is to
decide which deformations can be considered to be large. In other words,
a reliable criterion is needed to determine which kinds of deformations are

beyond the scope of the linear model. It has also been reported for other
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linear approaches based on elasticity theory that they are not suitable for
computations of large deformations [7], [2], [11], but no criteria have been
given, which registration problems are out of the application scope of the
linear models. However, such investigation has been done in [4] for the TPS
model of Bookstein [5], where a general criterion based on a definition of
small strain has been applied.

There exists the following formal definition of small strain [21]: Strain
can be considered to be small if all components of the displacement gradient
Vu are small compared to unity.

One can also see that if this condition is satisfied, the Green-St. Venant

strain tensor can be approximated as

Blu) = % (V' + Vu + Vu' Vi) ~ % (V' + Vu) = B(w).  (19)
By using the latter consideration, we define a deformation to be large if
there exists a component of the displacement gradient which is greater than
some ¢ < 1. In addition, we can determine areas after elastic deformation
where the linear approximation of the Green-St. Venant strain tensor was
not satisfactory by comparing its linear and non-linear terms.
Formally, our criteria can be written: The linear strain approximation for

large deformations is satisfactory if (we consider for simplicity the 2-D case):
1
01| > §|(31U1)2 + (Quz)?| and D] > €, (20)
1
|Oaua| > §|(82U1)2 + (Qauz)?| and |Bpus| > €, (21)
|82U1 + 81U2| > |81U182U1 + 81U282u2| and |82u1| > g or |81’LL2| > g
(22)

The comparison of the linear and non-linear terms of the Green-St. Venant
strain tensor in (20)-(22) has also been used as a criterion in [4] for the TPS
model. In this work, we additionally require |0;u;| > &, 1,7 = 1,2,3 in order
to distinguish between small and large deformations. We have applied these
criteria to a 2-D registration experiment described in Section 3 to detect large

non-linear deformation areas (see Figure 4).
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The criteria (20)-(22) allow us to determine the large deformation areas
only after having computed the elastic transformation. One can also men-
tion the criterion used by Christensen et al. [8], where a comparison of the
determinant of the deformation gradient with a threshold value after each
iteration step was carried out to avoid topology violations when applying the
fluid registration approach. It is, however, desirable to have a criterion for
the input data which could help us to predict undesirable effects, e.g. topol-
ogy violations, before applying the elastic transformation. This point is the

objective of current research.

2.7 Prescribed displacements as input data

As input data, our elastic deformation model requires a subset of the so-
lution. Analogously to [13], [11], we use for this purpose displacements on
object boundaries, assuming that they can be found both in the source and
the target image. Examples for such boundary structures, for example in to-
mographic brain images, are the outer brain contour and the boundary of the
ventricular system. Compared to intensity-based methods for the derivation
of input data [7], [2], [8], an important advantage of using boundary map-
ping is that we use shape properties of images, which are generally robust
and modality invariant features compared to intensity properties.

The input correspondences of boundary structures can be obtained by us-
ing, for example, active surface models [12], [27], or alternatively by applying
boundary matching algorithms such as, for example, curvature-based meth-
ods [1], [18]. In this paper, however, we do not attempt to discuss in detail
the concrete methods which could be applied for definition of the required

boundary mapping.

2.8 Numerical solution

After discretization, we obtain the displacement field for deformation from

a system of linear equations. Due to the properties of the bilinear form in

14



the variational formulations of the elastic equilibrium equations (7), (11), the
matrix of the system is sparse, symmetric, and positive definite [23]. As a
consequence, we can use efficient Krylov-subspace methods [17] to iteratively
solve our system of equations. For our experiments, we used the method of
conjugate gradients (CG) which is known as probably the most efficient solv-
ing method for large linear equation systems with sparse symmetric positive
definite matrices typically arising from FEM applications [29]. To reduce
memory requirements for matrix storage, we used a special compact band
storage scheme [29].

To reduce the condition number of the matrix in the system and conse-
quently to reduce the number of iterations required to solve the system, the
optimal preconditioning is very important. To test the performance of our
solver, we have applied the CG-method without any preconditioning and in
combination with the Jacobi and block Jabobi preconditioners as well as in-

complete Cholesky factorization (ICC) [29]. The results are given in Table 1.

3 Experiments

In this section, we present some experimental results obtained with our elastic

deformation model.

3.1 2-D registration experiment

In our first experiment, we registered pre- and post-operative 256 x 256 2-D
MR images of the same patient using our linear model. These images are
depicted in the top row of Figure 2. Prior to elastic registration, the two
3-D data sets were globally registered by using an affine transformation. For
computation of this transformation, we used 5 pairs of landmarks which were
manually localized. As corresponding structures for elastic transformation,
we took the outer and the inner skin contours which were extracted by us-
ing an edge detector. Additionally, we used the brain surface contours, the

contours of the right lateral ventricle, and the contour of the tumor in the
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source image together with the contour of the resection area in the target
image which were manually as well as semi-automatically (using a snake ap-
proach [19]) determined. They are depicted in the bottom row of Figure 2.
Additionally, we fixed two boundary structures in the source image: the oc-
cipital part of the midline of the brain and a part of the dura mater in the
brain shift area at the top of the brain. The input data for elastic trans-
formation were obtained through the use of the minimal distance algorithm
[3] (for the skin contours) and from the snake model for all other structures
(see [24] for more details about obtaining correspondences using the snake
model). The result of elastic registration is shown in Figure 3. One can see
that a more accurate match of the corresponding anatomical structures has
been achieved after elastic registration (bottom image) compared to global
affine registration (top image). Local elastic transformation has also allowed
to cope with metamorphic processes due to the tumor resection. Another
approach to cope with deformations due to brain shifts, which is based on a
three component tissue model, has been proposed in [15].

By observing the deformed image in Figure 3/bottom, we can conclude
that the most considerable deformations occurred in the areas of the tumor,
the brain shift, and the skin in the operation area. We then used the criteria
(20)-(22) to detect large non-linear deformations during the experiment. The
value of the threshold & was chosen to be 0.2. The results are shown in
Figure 4. These results correspond quite well with the expectations which
can be made by visually observing the elastically deformed image.

Since the assumption of only small deformations is obviously not satis-
fied for this experiment, we have repeated it using 10 iteration steps of our
incremental model. For comparison, we show the enlarged tumor areas in
the images deformed with the linear model and incremental model with and
without memory in the left row of Figure 5. In the right row, grid deforma-
tions for the same areas are shown where one can see that the incremental
model without memory showed the best results.

For this experiment, we have also tested the performance of our iterative

16



linear solver based on the method of conjugate gradients. For this purpose,
we used PETSc (the Portable, Extensible Toolkit for Scientific Computation)
software package [25]. We first tested how the preconditioning influences the
number of iterations and the computation time. For discretization of the
image plane, we used a very simple adaptive scheme, where fine discretization
is performed only within the common bounding box of the source and target
image. The results are presented in Table 1. All the results are given for
one processor of a multi-processor SGI Power Challenge computer. Only the
time required to solve the linear system is given, the matrix compilation and
incorporation of constraints require some extra time. One can see that the
preconditioning substantially reduces the iteration steps and, consequently,
the computation time.

Next, we tested the effects of parallelization on the computation time. We
used for this purpose an SGI Power Challenge computer and parallelization
tools provided by PETSc. All computations have been done using the block
Jacobi preconditioning. The results are given in Table 2. One can see that
an approximately double decrease of the computation time can be achieved
by a double increase of the number of processors used. The dependence of

the computation time on the number of processors is shown in Figure 8.

3.2 3-D registration experiment

In our second experiment, we linearly and incrementally registered a 3-D
synthetic image with a part of the cortical surface from a real image. The
boundary of the cube was matched to the cortical boundary by using the 3-D
minimal distance algorithm. The size of both images was 80 x 80 x 80 voxels.
The computation of elastic deformation took about 23 minutes on a single
processor of an SGI Power Challenge. The result of the experiment using the
linear model is presented Figure 6. One can see that despite the complicated
shape of the cortical surface, a rather good approximation of it was obtained
(top row). In the middle row of Figure 6, magnitudes of the displacement
field are shown for the slices 15, 30, 45. In the bottom row of the figure,

17



the deformations of the slices 15, 30, 45 are represented as deformations of a
rectangular regular grid.

For some slices, however, the application of the linear model caused topol-
ogy violations, as it is shown for slice 60 in the top row of Figure 7. For
comparison, the deformation computed with 10 iteration steps of the incre-
mental model without memory for the same slice is shown in the bottom row
of the figure. One can see that the incremental model provided much better

results compared to the linear model.

4 Discussion

In this paper, we have described a linear and an incremental approach for es-
timation of elastic deformations in medical registration. Compared to other
physically-based numerical methods, our approach does not contain the pa-
rameters of the deformation model (elastic constants). The computed elastic
deformation is solely constrained through incorporation of prescribed dis-
placements obtained by mapping boundary structures in the source and tar-
get image. Our incremental deformation model circumvents the principal
drawback of the models based on linear elasticity theory which assume only
small deformations. We have also described criteria for detecting areas of
large non-linear deformations in the transformed image.

From the experimental results, we could see that the linear model caused
in some cases topology violations when deforming grids in contrast to the
incremental models. From the described two incremental models, the model
without memory showed somewhat better results. This model is analogous
to the fluid model [8], where no memory about the undeformed state is
preserved, thus more smooth deformations are obtained.

Probably one of the most important points concerning the usage of our
deformation model in practical applications which we currently investigate is
the problem of obtaining accurate correspondences between boundary struc-

tures in the source and target image. In this paper, we used for demonstration
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purposes the snake model and the minimal distance algorithm. Their usage
in real applications is, however, limited due to the complexity of medical
data. Our elastic deformation model does not contain any parameters to
influence the reliability of the input data, thus the development of robust
methods for definition of the input boundary mapping is needed.

Another important research subject is the efficient numerical implementa-
tion of our approach. The implemented method of conjugate gradients with
preconditioning shows acceptable results (several seconds in 2-D or minutes
in 3-D in the sequential realization) if the matrix can completely be loaded
into the computer memory. However, this is not always possible in the 3-D
case due to the large number of variables of the deformation model. One
possibility to obviate this problem is to use highly adaptive grids for FEM
discretization of image domains. This can substantially reduce the number of
nodal points and, consequently, the variables of our model. Another point in
the numerical implementation is the detailed investigation of the use of par-
allel and multi-grid solvers which can considerably accelerate our approach.
As an example, we showed that the double increase of the number of proces-
sors used results in approximately double decrease of the computation time
required to register pre- and post-operative 2-D medical images.

Although our approach is physically-based, it is important to note that
the developed registration model can only be considered an approximation of
a realistic model of deformation processes in biological materials. Only a sub-
set of such materials can be considered as an elastic medium. Moreover, only
one elastic parameter is implicitly present in our model as a scaling factor for
the applied forces. Also, the injectivity condition, which is necessary for any
physical deformation, may not be satisfied in our model due to discretiza-
tion. As a result, the non-rigid transformations obtained on the basis of our
registration model do not exactly correspond to real physical deformations.
The development of realistic models of biological materials is a very chal-
lenging problem, which is nowadays a subject of intensive research. Besides

registration, surgery planning and education are further possible application
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areas of models of real biological materials.
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A Notation

R space of real numbers

M" space of real square matrices of order n
e,e ...,e, basis vectors in R"

Q bounded open subset of R"™

Q closure of the set €2

0; = 0/0x; partial derivative with respect to z;
0 partial derivative of order «
u-v=u'v vector inner product

det(A) determinant of a matrix

tr(A) =), a; trace of a matrix

(A, B) =tr(A"B) usual matrix inner product

divl =}_,>,0;T;;e; divergence of a tensor field
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Figure 1: Deformation with large displacements. Top row/left: Prescribed
displacements. Top row/right: Deformation computed with the linear model.
Bottom row: Deformation computed with the incremental model with mem-
ory (left) and without memory (right). One can see that the incremental

model preserves the topology when computing large deformations.
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Figure 2: 2-D registration example using the linear model. Top row: Two
MR slices taken from the same patient with the pre-operative source image at
the left. Bottom row: Corresponding structures, as determined by a clinical

expert, in the globally transformed source image and in the target image.
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Figure 3: 2-D registration example using the linear model. Top image: Re-
sult of affine registration. Bottom image: Result of elastic registration. More
accurate registration of the corresponding structures was obtained in com-
parison to the global transformation. Additionally, the elastic transformation

coped with the metamorphic processes (tumor resection and brain shift).
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Figure 4: Large non-linear deformation areas for the 2-D registration example
in Figures 2-3. Top: Expansion in z-direction. Middle: Expansion in y-
direction. Bottom: Pure shear. As one can see, the assumption of only small

deformations is not satisfied for the experiment.
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Figure 6: 3-D registration experiment. Top row: Source, target, and de-
formed source image. Middle row: Magnitudes of the displacement field for
the horizontal slices 15, 30, 45. Bottom row: Deformations of the horizontal

slices 15, 30, 45 projected onto the xy-plane.
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Figure 7: Comparison of the linear and incremental model for the 3-D regis-
tration experiment in Figure 6. Top row: Slice 60 of the 3-D image deformed
using the linear model and its enlarged section. Bottom row: The same slice
of the image deformed using the incremental model without memory and
its enlarged section. One can see that the incremental model does not suffer
from considerable violation of the grid topology, as in the case with the linear

model.
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Number of iterations | Time (sec.)
No preconditioning 628 187.5
Jacobi 215 66.9
Block Jacobi 54 41.7
I1CC 54 39.9

Table 1: 2-D registration: Timings for the uniprocessor mode.

Number of processors | 1 2 4 8 | 16
Number of iterations | 54 60 66 | 69 | 76
Time (sec.) 41.7 1 20.6 | 11.0 | 4.4 | 2.1

Table 2: 2-D registration: Timings for the multiprocessor mode.

Time (sec.)

I og,N

Figure 8: Dependence of the computation time on the processors number N.
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