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C.-D. Rahn

Abstract

Noise may be-a great obstacle to automatic processing and analysis of measured
data. In order to reduce noise several methods exist. However, all of the individual
methods have their strengths and weaknesses, which may heavily depend on the ori-
gin of data to be processed. Therefore, in certain circumstances it may be a necessity
to characterize the properties of the noise present in the data of interest, and then
select the most suitable method for either pre-processing or direct analysis based on
that information. This is especially true in the context of automatic image analysis.

This first part of a report pair examines in a detailed manner the noise properties
of two dedicated 2D flatfield digital image series acquired with a multi photon laser
scanning microscope (MPLSM). The main result is that noise in the given images
varies notably with local pixel intensity, and that this fact should be kept in mind

when processing image data acquired by this instrument.

Zusammenfassung

Rauschen kann eine automatische Verarbeitung oder Analyse von gemessenen
Daten erheblich behindern. Es existieren zwar zahlreiche Methoden zur Redukti-
on von Rauschen, jedoch besitzt jede einzelne Methode ihre speziellen Stirken und
Schwichen, welche stark vom jeweiligen Ursprung der zu verarbeitenden Daten
abhingen koénnen. Deshalb kann es im Einzelfall notwendig sein, die Eigenschaften
des Rauschens in den Daten zu charakterisieren, um dann eine geeignete Methode
der Vorverarbeitung oder der direkten Analyse auszuwihlen. Dies gilt besonders im
Falle automatischer Daténana]yse.

In diesem ersten Teil eines Bericht-Paares werden in detailierter Weise die Rausch-
Eigenschaften zweier sog. Flatfield-Bildserien untersucht. Diese Bildserien wurden
mittels Multiphotonen-Laser-Rastermikroskopie (MPLSM) gewonnen. Das Haupt-
ergebnis dieser Arbeit ist, dass in den untersuchten Bildern das Rauschen deutlich
mit der lokalen Pixel-Intensitit variiert. Diese Tatsache sollte beachtet werden, wenn
mit dem verwendeten Mikroskop aufgenommene Bilddaten verarbeitet werden sol-

len.
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1 Introduction

Depending on the actual context de-noising can be an important step in low-level image
processing. In fact, it can be a crucial step prior to the successful automatic analysis of
measured data. Since plenty of methods are available for de-noising images and several
techniques for robust analysis, all of which differ in their performance, as e.g. quality
of the result, speed of operation, availability in present software tools, degree of user
adjustment, one has to wisely choose and adjust a single method to achieve the given
task. Here, quantitative properties of the actual noise present in the data are a prerequisite
for choosing the appropriate method.

For this work, suitable phantom image data acquired by MPLSM are examined to
characterize the noise properties of fluorescence imaging. Technical details of the imaging
principle and the fluorescence effect can be found in [1] and [2] for example.

There are numerous sources of noise (see [4] for details) in laser scanning microscopy,
as e.g. noise in electronic circuits, thermic noise, and detector noise due to low light
intensities. This is especially true when using fluorescence imaging, which acts in a very
low intensity regime. Additionally, the signal-noise-ratio (SNR) will be further decreased
in the case of in-vivo imaging, where illumination intensities have to be balanced with
potential photo toxicity damaging the imaged tissue. Contrast-enhancing treatment of the
subject, as e.g. dye injection, may be too invasive to the structures of interest. Also,
increasing the pixel dwell time may be no viable option here, since acquisition of a 3D
image stack of reasonable size takes non neglectable time. More efficient detectors can
be very costly or may not be available at all. So, a priori noise reduction at the imaging
hardware level is not in every case possible.

Since very low light intensities constitute the imaging, the acquisition can be modeled
as a Poisson process. This fact is well confirmed here and described in the following
sections, but this examination itself is not founded on this imaging model. A more general
approach to the problem has been taken.

The rather general methods to examine the given image data used in this work should
be suitable also for other kinds of signals having at least a dimensionality of one.

This report is organized as follows: First, some notes on the acquisition of the exam-
_ ined images will be given. Then the generation of a reference image to be used as ground
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truth for the examinations is described. A large section discussing the results about the

image noise follows, and lastly some conclusions will be drawn.

2 Data Acquisition

In the present work, two distinct sets A and B of consecutively taken images of the same
scenery, each set of N = 10 members, have been examined. For acquisition, a Dermaln-
spect 100 (JenLab, Jena, Germany) MPLSM has been used. This instrument illuminates
the field of view by a scanning laser of the tuneable excitation wavelength A.,. Emitted
fluorescence light coming mainly from the illumination beam focus point will be col-
lected by a very sensitive photo multiplier tube (PMT), which counts electrons produced
by incoming photons due to the photoelectric effect. The number of photo electrons is
proportional to the fluorescence light intensity and will be mapped linearly to a gray-level
ready for on-screen display.

The used microscope has the peculiarity of a rather strong intensity shading (details to
follow), which is as mentioned above a prerequisite for our investigation. For all images
of a series, every imaging parameter was kept unchanged and hence differences between
single images only result from noise.

The first set of images I4;, i € T = {1,...,N}, was acquired at a two-photon fluores-
cence excitation wavelength of A., 4 = 750nm, while the second series! Ip ; was acquired
at ey g = 850nm. The wavelength A, of the emission spectrum maximum intensity is
typically quite above the half of the excitation wavelength and depends on the actual type
of specimen molecules. Both series differ in global intensity, since the efficiency of the
fluorescence effect for a given substance as well as the detector efficiency is a function
of the actual excitation or emission wavelength respectively. Despite the different A, all
other instrument parameters stayed unchanged. However, for the used microscope the ac-
tual physical parameters may vary implicitly for different instrument adjustments, as for
example the true photon flux of the illumination laser depends on the laser wavelength.
This too effects the global image intensity. The actually used range of instrument pa-

rameters, as e.g. nominal laser intensity, magnification, lenses, signal amplification, pixel

'Since both image sets are treated in the same way, the subscripts A and B will be left out in the follow-

ing.
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dwell time, etc. were adjusted as in a typical specimen imaging situation. The image size
in pixels is 512 x 512 and the intensity quantization is 8bit; the actual optical resolution
and magnification, are of no interest here.>

The 1maged scenery is a plain fluorescein solution (Aqueous solution, Sigma Chem-
ical, St. Louis, USA), presented on a small microscope slide, covered by a microscope
cover glass. The imaged plane was right in the middle of the liquid volume.

Imaging the described scenery should result in homogenous intense flatfield images
C, ideally showing no structures, i.e. C(X) = const. In fact, a rather strong shading caused
by uneven illumination modulates spatially the measured intensity, which is strongest in
about the field of view center, and vanishes to the field border. It can be shown that the
shape of the modulation function is quite close to a 2D Gaussian bell function (see [7]).
In fact, this shading is a benefit and even substantial for the work presented here. Two

typical flatfield images of both image sets can be seen in fig. 1.

Aoy = 750nm Aoy = 850nm

Figure 1: Shown are two MPLSM flatfield sample images. (a) Excitation wavelength: 750nm. (b) Excita-
tion wavelength: 850nm. The strong intensity shading effect is clearly visible.

In order to compactly describe measured data Z = (z),...,z,)” consisting of n sam-

’In the case of e.g. confocal imaging, the actual aperture size, i.e. the pinhole size. relates to the size
of the effectively excited volume and thus the aperture not only effects the actual spatial resolution but also
the number of photons taking part in the imaging process. Hence, an eventual aperture size would be of

interest here.

n
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ples, we make in this work much use of the mean (Z) and the unbiased standard deviation

StD[Z] of the data set, which are defined in a standard way by:

n

@ ==Yz, Sra’[Z]:\/ﬁi(z;—(Z))? M
i=l

fe]

3 Reference Image

In order to characterize the noise in given data, it would be necessary to know the true
function values without noise, i.e. the so-called ground truth. Typically, this informa-
tion is not available for measured data. So, let a reference image I be an estimation of
the shaded ground truth image C. For this estimation, the static scenery has been repeat-
edly imaged to produce a set {/;} of images. Each individual image /; in the set is then
compared to this reference image.

A reference image I can be generated in several ways:

Averaging of the whole image set {/;} pixel by pixel, or, synonymously: time-filtering.
This enhances the quality of the reference image in terms of the SNR approx. by a
factor of /N, with N being the number of images to be averaged.

Model fitting to each individual image /;. If a parametric model function exists that suffi-
ciently fits the data, this route can be taken. The main advantage is that fluctuations
between the individual images (such as lazeral drift) can be damped effectively. But

model fitting may require high computational effort.

Spatial low-pass filtering of each individual image. This is a quite simple method, but it
may degrade severely the quality of the expected results, since the low-pass filtering

blurs the obtained intensity value distributions (described later).

In this work, averaging will be used to generate a reference image: 7(x) = ({/;(x)}).
Model fitting is also a nice option, but it heavily depends on finding the right parametric
function and of course the function ﬁtiing very well the data. For the actual data, a very
good model can be found, but the data showed sporadic deviations from the model (i.e.

“notches”, see [7]). As a consequence image averaging seems to be preferable.
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3.1 Verification of Comparability

Before comparing the noise properties of several images /; to a certain reference image /,
it is necessary to verify that all images are in perfect alignment. Since the geometry of
the used optics is very sensible to perturbations (floor vibrations, etc.) during an image
acquisition session, a lateral drift of the scenery or a drift of the shading may occur even
for a relative short image series. Such a drift would blur any image comparison results,
and mutual translations of the images /; would also degrade the quality of the reference
image 1.

For alignment verification purposes pure global field measures are needed for the
given images, since they do not contain any local structures possibly acting as landmarks
for the alignment. At this place we are not interested in describing the image scenery in
a detailed manner. In our case a simplified but robust description of the scenery suffices.
The so-called image moments stemming directly from multivariate descriptive statistics
'(see [8] for further explanation) are measures that fullfill these requirements.®> The mo-
ments compactly describe the location, orientation, and extension of structures in images.
Here the moments can be calculated for each of the given images as a whole.

Let € be the discrete imaged n-dimensional field of view, then the zeroth and first
order moments for a monochrome digital image /(x), with x = (x;) = (x1,....,x,;)7, can

be calculated as follows (simplified egs.):

M = Y Ix) (2)
xeQd
|

m = — I(x)-x (3)
Mx)e% (%)

Furthermore, we use the central moments of second order, which can be compactly written

as the symmetric and positive definite covariance matrix K:

1
K= — (x—=m)-(x—m)"
= Y I(x)-(x—m)-(x—m) 4)
XeQ
As a shortcut for the diagonal elements of K = (X j), we define V; = ,/K;;. For the
present 2D case of images i, j € {1,2} enumerate the dimensions of the data, and only

3In literature one can find, that the central moments are not very robust measures to describe arbitrary
random distributions (e.g. see [5]). This fact is not a problem in our case, since plenty of samples forming
the image of a 2D Gaussian bell function are accumulated for each moment estimation.
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one single off-diagonal element of the 2 x 2-matrix K remains, which we combine here
into the correlation coefficient:

2
Hia) )

CO = ;
Ki1-K»

However, the previous equations (2) to (4) are also applicable for higher dimensional
data, as e.g. volume data. In mechanical terms the preceding equations describing mass
inertia moments can be interpreted as follows: The intensity /(x) can be seen as local
density, M is the mass of the whole scenery, the point m = (m;) is the center of gravity,
and the eigenvectors of K are the main axes of inertia of the scenery while the accord-
ing eigenvalues measure the extension along the main axes respectively. However, for
our mere verification purpose we do not need to compute the eigensystem at this place.
Instead it is sufficient to use Vj, V2, and CO. The V; measure the anisotropic structure
extension along the image axes, and CO € [0, 1] varies with the orientation of the shading
shape within the image. For CO = 0 the structure is oriented perfectly parallel to one
of the image axes, and it is most diagonal oriented for the case of CO = 1. The basic
assumption behind the central moments is a Gaussian bell-like, i.e. strongly clustered,

density distribution of the data.

3.1.1 Results of Alignment Verification

Computational results of the above moments for the two image series are given in the
tables 1 and 2. They show, that the central point m (which equals the global maximum
here) of the shading shape does not drift a whole pixel between images (the respective
deviations are all well below 1), which indeed is a very good result. Also, the variations
of the V) and V5 (i.e. the shape extension) values within each series are far below 1 percent.
The CO-parameter has values of about 104, which means that V; and V> are practically
not correlated, and hence the shading shape is oriented as the image coordinate system.
The orientation value CO can therefore be neglected here.

The preceeding results show that all images of a series are nearly the same in terms of
the above image moments, and therefore a reliable reference image generation by averag-

ing is assumed.*

4That the individual results (see the last rows in tables | and 2) for both image series differ noticeably
although both series have been taken subsequently, gives another hint why this verification step is necessary:

8
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# m ma Vi Vs co/107*

1 259.422 268.479 189.005 187.882 2.45

2 259.248 269.416 188.760 188.188 1.86

3 258.831 270.269 188.642 187.378 1.48

4 258946 270.128 188.734 187.562 1.74

5 258.675 270.407 188.710 187.492 1.63

6 258.861 270.292 188.747 187.635 1.52

7 258.862 270.880 188.798 187.839 1.95

8 258.985 270.538 188.891 188.049 2.48

9 258.998 270.287 188.870° 187.482 1.81

10 258.999 270.155 188.873 187.372 1,
259.0+0.2 270.14+0.7 1888+0.1 187.7+03 19+03

Table 1: Central image moments for the 750nm series. The last row contains the respective mean values

and standard deviations.

# m m Vi Vs co/1g*

1 251.956 250.780 185.157 190.611 5.18

2 251.960 250.908 185.269 190.387 6.45

3 251.957 251.072  185.312 190.391 7.66

4 251.756 250.832 185.303 190.718 7.44

5 251.764 251.036 185.277 190.686 6.59

6 252.001 250.846 185.262 190.439 6.21

7 251.434 251.245 185.247 190.595 6.23

8 251.652 251.063 185.282 190.182 758

9 251.989 250.914 185.297 190.405 6.84

10 251.797 250.790 185.308 190.539 7.32
251.84+0.2 251.0+0.2 1853 +0.1 1905402 6.8 +0.8

Table 2: Central image moments for the 850nm series. The last row contains the respective mean values

and standard deviations.
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4 Discussion

4.1 Spatial Intensity Variability

The term spatial variability of the noise characterizes the actual amount of noise present
at a certain position x within the image field. This intensity uncertainty SD(x) can be
subjectively guessed from fig. 2. For each pixel position x € £, the standard deviation of
the intensity set of all images /; at that position is shown as a gray-level coding (SD(x) =
StD[{I;(x)}]). As can be seen in the two upper images, the “direct border pixels” may
show a significantly higher intensity variability than “near border pixels”, which is likely
an effect of the scanning unit of that particular microscope.

For a better visual impression, all the border pixels in the whole image set (a five pixels
wide frame) have been set to a value of zero denoted here as border clearance. Doing so
enhances the contrast of the deviation images for a human observer (lower two images
in fig. 2). It can be easily seen then and shown by simple image subtraction (data not
presented), that the pixel-wise intensity variability resembles quite well the appearance of
the flatfield images themselves. This allows two different interpretations:

(1) The variability is a function of the local scene intensity: SD(x) = f(C(x)), or
(2) the variability is merely a function of location: SD(x) = f(x).

Given the optical geometry of the used instrument, interpretation (1), namely that the
noise 1s a function of intensity and not of position within the field of view, seems more
likely. Images of structured specimen support this assumption. Only the border pixels
are following interpretation (2), have a low prediction reliability, and therefore should be
omitted for quantitative image analysis.

Strictly speaking, the modulation caused by the shading effect results implicitly in a
spatial variability of intensity as well. In section 4.2.2 it will become clear that this is only

a minor effect.

10
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Aex = 750nm Aex = 850nm

Figure 2: The standard deviation of the intensity dispersion on the whole image series per pixel is shown as
a gray-level density plot. Top row The pixel standard deviations as directly measured. On density plot (b)
a strongly smoothed contour plot showing three levels has been superimposed. Bottom row The standard
deviations measured under omission of the border pixels, which tend to show a very high variability. This
enhances the contrast in the center. Here, a maximum of variation can be seen at the field center.

All images are shown with spread contrast. The left column shows the values taken at 750nm. whereas the

right column shows the values for 850nm wavelength.
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4.2 Global Intensity Variability

4.2.1 Full Field Intensity Dispersion

In order to abstract from the position x within the field of view and to focus more on
the actual local noise itself, the values of all pixels having the same reference intensity g

throughout the full image series> I; were collected in a dispersion set Dy:
Dy:={Li(x) |I(x)=g,x€Q,ieT} (6)

Mean (D,) and standard deviation StD[D,] for each reference intensity g are shown in
fig. 3. The mean shows of course a linear relation with a slope of exactly 1 here. while the
standard deviation is linear only at a first approximation. The large error bars at the lower
end (750nm: x < 30 and 850nm: x < 10) of both curves stem from the strong noisiness
at the image border as already mentioned above. Again, setting the image border pixels
to zero, normalizes the plots very well at the lower end (not shown). Since the actual
number of samples (i.e. |D,|), which span a rather large range of ca. 100 to 35000 (see
the upper histogram plot in fig. 5), does not affect too much the nearly linear behavior, a
good quality of the shown estimations is assumed.

The remarkably precise linear relation between g and (D,) having a factor of 1, which
one would of course expect, renders the used type of reference image I a good choice:
the intensity variations account for the signal noise and not for the averaging of spatial
structures.

With border clearance applied, fig. 4 plots for both image series the coefficient of
variation (CV[X] := 5tD[X] /(X)) of the intensity with respect to the according reference
intensity. The non-constant factor between standard deviation and mean gives the impres-
sion. that 51D = g only holds in the sense of a first approximation. The reason for the
quite different slopes at different excitation wavelengths will be clarified in section 4.2.3.

In fig. 5 the respective standard deviations for g from fig. 3 are shown directly vs.
the reference intensity. Here, the particular nonlinearity is more visible. In fact, the upper

curve for 750nm is well describable (at least in the main operating range) by a power

3 Another option would be to just collect all those pixels within one single image, and then compare

plots like fig. 3 for all images. This has not been done here.
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Mean of Intensity Variation
180 T T T T T T T

160
140
120

80 f

60 #:

Mean Intensity (D) [a.u.]

20 I L " 1 1 I
0 20 40 60 80 100 120 140 160

Reference Intensity g [a.u.]

Figure 3: This plot shows the intensity averaged throughout the image series vs. the reference intensity.
The error bars show the respective standard deviation. The upper curve for 850nm is transposed by a bias
of 60, to enhance visual differentiability. Both curves start at the origin and have a slope of 1. -

function
SD[g]=a++/g—b (7

with the parameters @ = 3.04, and b = 26.2, as shown in the plot. For the 850nm curve
such a fit results in @ = 3.74, and b = 23.12. The rationale for this nonlinear relation will

be-given in the following section.

4.2.2 Single Intensity Dispersion

Every single reference intensity g manifests itself in an individual noise distribution. The
distributions for all possible intensities g do not share the same shape. As can be seen
from figs. 3 and 6, the distribution width is almost proportional to g. A detailed view on
this assumed proportionality follows later.

Fig. 6 also contains exemplary nonlinear least squares fits of Gaussian normal distri-
butions modeling the respective sampled distribution. The probability distribution func-

tion (PDF) for a Gaussian normal distributed random value z having mean u and standard

13
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Coefficient of Variation of Intensity Variation

T T T
750nm ———
& ‘ : ) 850nm
0.45 |- ;‘,( A 4 S A R 8 I S ST e T R St S Linear fit. - =
" ] H Linear fit -
0.8 Lk .

Intensity CV

0 1 i o I e 1

0 20 40 60 80 100 120 140
Reference Intensity g [a.u.]

Figure 4: Coefficient of Variation of global intensity variation. The open left ends of both curves are due to
the border clearance. The strong noisy deviations of linearity stem mainly from the respective low sample

number.

deviation © is given by:

2
potaimo) = ——exp |3 (152) ®
In our case, z is the actually measured intensity, while u = g represents the respective
reference intensity. According to the plot the fits are very accurate. The systematic asym-
metry or positive skew® that is visible in the plots (left tail of data is below the Gaussian
prediction and vice versa for the right tail) stems from the fact that imaging of the stochas-
tic fluorescence photons (which are in fact generated by a quantum mechanical process)

is actually a Poisson process having the following discrete probability function:

pp(z#) = exp( _"‘)% ®)

Now, for increasing mean values y, Poisson distributions approximate asymptotically a

corresponding Gaussian normal distribution (details can be found in any text book on

The skewness of a distribution is related to its 3rd central moment.

14
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Standard Deviation of Intensity Variation at 750nm
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Standard Deviation of Intensity Variation at 850nm
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Figure 5: Global intensity variability. Shown is the standard deviation from fig. 3. The large number of
zero intensity pixels in both plots is due to the mentioned border clearance. A standard deviation of 0 in
the curves does not state absolute certainty, but merely that not enough pixels of the according reference
intensity could be accounted for an estimation. The pixel counts have been included to give a hint on the
certainty of each deviation estimation. The fits have been restricted to 30 < g < 110 for the upper plot, and
30 < g <60 for the lower. See text for further description.

15
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Variability of Intensity at 750nm
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Figure 6: This figure shows the variability of the measured intensity in the present images. Each curve
presents the probability density of the actual measured intensity with respect to a certain imposed reference
intensity. Also shown is an exemplary Gaussian model fit to a single distribution. Top Variability at a
wavelength of 750nm, bortom a similar plot for the images taken at a wavelength of 850nm. Note the

different scalings of the abscissa of both plots.
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stochastics):
yli_)rr}opp(z;ﬂ) = pG (21, /1) (10)

Plotting of the two corresponding distribution functions for reasonable (i.e. not too large)
w exactly reproduces the above skew. The skewness of a Poisson distribution having the
mean u varies with u~1/2,

It is well-known though, that fluorescence imaging in a low intensity regime (i.e.
counting of few photons) is a genuine Poisson process (see [4]). Typically this fact is
neglected in many applications, and Gaussian distributed white noise is assumed instead.
Anyhow, fig. 6 shows that for the used microscope working in the prevailing parameter
range the white noise assumption is not very accurate. White noise would show a rather
constant deviation. Instead a Poissonian noise distribution is clearly dominant. Obviously,
for relatively high actual pixel intensities the noise is stronger than for low intensities and
therefore the uncertainty of the real intensity is notably larger. This might seem to be
contra-intuitive at first glance. '

The “true” or reference pixel intensity g is proportional to the mean number u of
detected i.e. counted photons

g=mn-u, - an

where the factor 1 can be tuned by the microscope detector gain. Equation (10) predicts
that the uncertainty SD[g] = StD[p(g)] of a given intensity g (i.e. the SNR) is proportional
to the square root of the number of counted photons:

SDlg] = VA==V (12)

This clearly relates to eq. (7), with the parameter a relating to the detector offset, and
the parameter & gives a pre-amplification. So, the actual SNR increases with intensity.
Furthermore fig. 6 shows clearly that the resulting gray-level resolution’ is very low: The
intensity dispersion curves for two reference intensities differing by a nominal pixel value
of well 10 show a large overlap. Hence, a reliable retrospective estimation of the true

"Where the sparial resolution gives the minimum distance of two neighboring structures to be opti-
cally separable in an image, the gray-level resolution gives the minimum difference in discrete gray-levels
two different pixels in an image must have, so that the respective intensities in the original scenery differ

significantly.

17
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intensity at a location x within measured data is a non-trivial task. There are two typical

solutions to this problem:

(1) Application of de-noising techniques to the image data with the intention to increase
the SNR. Techniques tailored to Poisson noise are preferable.

(2a) Reduction of the intensity quantization granularity i.e. the number of gray-levels
present in the acquired images. This can be done by integer division of the measured
discrete gray-levels by a reasonable divisor B, with the result that successive gray-
levels in the resulting image are more separated with respect to counted photons
(see [4]).

(2b) Another approach to reduce the number of quantization levels is described in [9].
A square root-based transformation on the pixel intensities is able to stabilize the

'noise, so that the data seems to come from a Gaussian instead of a Poisson random

process.

Solution (1) has the potential advantage of not decreasing the range of gray-levels in the
images, 1.e. the intensity dynamics. Reduced intensity dynamics might obscure important
image details. However, there is no global solution for the reduction of Poisson noise
In arbitrary image data available yet. For solution (2a), in terms of counted photons,
the single pixel intensity levels should be separated by about p = /Hmax, Where tipqx 18
the number of photons counted for the highest detected intensity in the image (see [4]).
Pragmatically one can try to directly obtain this value from original images by careful
examination of very high intense image regions, which are known to be homogenous.
Doing so for the present images would leave only about 10 distinct pixel gray-levels in
both image sets, which is a rather small number. However, knowledge of the parameter
can be useful also for adjustment of potential de-noising methods.

For low pixel intensities (g < 30) in fig. 5 the noise is much stronger than the Poisson
photon counting model predicts. This is due to other noise sources in the imaging device,
such as dark current and amplifier noise (see [4]). In the very low intensity regime these
effects dominate the Poisson noise. The upper ends of both StD-curves are rather noisy
due to the few accounted samples for the respective estimation.

In the case of high photon flux imaging (i.e. large u) as e.g. in photography, the

parameter M in eq. (11) becomes very small. The linear pixel intensity dependence on
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N dominates the square root proportional relation of the noise intensity, and the Poisson

noise is neglectable then.

4.2.3 Variability Comparison at different Excitation Wavelengths

Fig. 6 shows how a particular reference intensity g disperses at different excitation wave-
lengths A.y. Differences become more clear from fig. 7. For two different reference
intensities and for both images series, the variation of actual intensity is shown. Addi-
tionally, fits of Gaussian normal distributions are given. The respective parameters can be
found in table 3.

Comparison of different Wavelength Responses
0.09 R i — ey

T LS | yrey
750nm: Reference Intensity 30 ——
850nm: Ref. Int. 30 --==---

750nm: Ref. Int. 40 --------
850nm: Ref. Int. 40 i

i

Probability

Actual Intensity

Figure 7: This plot compares the intensity distributions of two concrete reference intensities for both

excitation wavelengths. Corresponding Gaussian fits are shown as thin lines.

Again, the typical Poisson to Gaussian deviations are clearly visible in the plots as
are the differences for both excitation wavelengths. The two 750nm curves are noisier
because less samples are available for the according reference intensity estimations (com-
pare the histograms in fig. 5). -

The factor of approx. 1.2 between the variabilities for both wavelengths visible in
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Ref.Int. |30 40 50 60
7500m | 4.99 649 7.73 8.68
850nm | 6.21 7.64 8.82 9.81
o 124 1.18 1.14 113

Table 3: Gaussian Fit Standard Deviations according to fig. 7. The last line gives the quotient for the

according both standard deviations.

table 3 stems from, according to eq. (12), an almost 40 percent increase® of resulting
fluorescence photons in the 850nm case. But at the same time the detector sensibility for
the resulting emission wavelength decreases by a net factor of about 2.3 with respect to
the much brighter 750nm illuminated flatfield. The median values of all pixel intensity
values for both reference images, which are taken as mean global intensities here, are 85

and 36, respectively. The median value is less sensitive to noise than the mean value.

4.2.4 Direct Poisson Modeling of Noise Distributions

Of course it is possible to directly use the Poisson function for modeling the intensity
distribution of a given reference intensity g in the examined images instead of a Gaussian
normal distribution. In this case the detector pre-amplification mentioned above has to
be taken into account. The Poisson distribution function then gains a second degree of

freedom, the shift { and reads:
p(z) = pp(z+8:0%) (13)

with z being the measured random intensity, { = 6% — g, and & and g are again the standard
deviation and reference intensity of the respective intensity distribution. Both parameters
can be estimated from the sampled distributions.® A comparison plot of the differences
of Gaussian and Poisson modelled distributions is given in fig. 8. The Poisson model
does a slightly better job in describing the data, but this advantage vanishes for increasing

8This effect depends on the actually imaged fluorochrome.
9The mean and standard deviation can be either estimated from the samples directly using eq. (1) or

estimated by a fit of the assumed distribution function to the histogram of the samples. The fitting method
generates slightly more accurate results in terms of the summed squares of residual values (SSR). E.g., for
g =40 and A, = 750nm, SSR =2.2-10~* for the standard estimation, and SSR = 1.2-10~* for the fit.
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intensities. Anyhow, we still prefer using the Gaussian model in this work for its ease of

use with respect to further statistical analysis of the noise distributions.

Note that the discrete eq. (9) is not very suitable for doing a nonlinear least squares fit.
Instead a continuous analogon p of the Poisson probability function p, can be formulated:

p(z:u) = exp(—pu+zlogu—logl(z+1)) , (14)

where log I'(-) is the natural logarithm of the Gamma-function, which substitutes the fac-
torial in the original equation. The factorial is the one term that effectively discretizes eq.
(9). The logarithm of the I'’-function is computeable more efficiently than the I-function

itself (see [6]).

Poisson Fit to Noise Distribution
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Figure 8: Comparison between Poisson and Gaussian distribution functions modeling an intensity distri-

bution for a reference intensity of g = 30.

S Conclusions and Prospectives

In this work it was shown, that examination of a set of laser scanning fluorescence flatfield
images taken under absolutely the same imaging conditions can be fruitful in order to
characterize the actual imaging process and its noise properties. Precise‘knowledge of
a measurement process is fundamental for successful automatic data analysis. Detailed
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quantitative information on the actual intensity variability due to noise of a laser scanning
microscope was presented in this work.

Although using instrument parameters being similar as in typical specimen explorat-
ing situations, the overall imaging conditions were quite artificial for the images examined
in this work. However, it has become clear that the fluorescence intensity mapping is ac-
tually a notable Poisson process in this case. The often preferred Gaussian white noise
approximation does not hold very well for the used microscope. In cases where the de-
tector can not be optimized in its efficiency or where the output signal yield can not be
increased by any kind of contrast enhancement, the Poissonian nature of the noise must
be taken into account when automatic data processing techniques as e.g. de-noising and
segmentation shall be applied to observed data. For example, the use of locally adap-
tive filters might be necessary for processing the MPLSM images. This depends on the
specific object domain.

Additionally, the small distinctness of pixel intensity levels when imaging within the
low intensity Poisson regime is a problem with respect to image contrast. The number
of statistically differentiable gray-levels is reciprocal to the noise amount of the actual
maximum intensity. A method to automatically detect and adjust the number of admissi-
ble distinct intensity levels in acquired images of a given domain is left here as an open
problem. The intensity dispersions discussed in this report are very similar to the intensity
spread function, as proposed by Pawley [3].

Furthermore, the noise dependency of actual illumination wavelength and detector
sensitivity at the resulting emission wavelength was shown. Since the illumination laser
of the used microscope is accurately tuneable, an optimized parameter adjustment in terms
of specimen molecules and illumination wavelength may be utilized to prospectively en-

hance image contrast.

Further investigations might now involve phantom images showing very simple struc-
tures such as step edges in order to examine the intensity variation and shading influence
on contrast, too. Imaging thin calibrating grids or fluorescence beads showing strong in-
tensity contrast and again utilizing the shading effect and the characteristic noise would
give information about how the resolution depends on local signal intensity. Sharp edges
being perpendicular to the fast scanning direction and showing very high contrast can
help in examining the dynamic properties of the PMT detector, as e.g. potential hystere-
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sis effects in the output signal. True volume imaging and the effect of depth of focus
(DOF) on the noise should be examined additionally. The DOF, which can be tuned by
the microscope aperture, relates to the local volume that is illuminated to form one voxel
of the resulting data set. Also of interest might be a more thorough validation of intensity
variability at differing combinations of excitation wavelengths, fluorochromes, and illu-
mination intensity. A reproducibility verification of the above given results is desirable.
At last, an extension of the described approach to other instrument classes ase. g. confocal

microscopy might be fruitful.
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