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We present an approach for elastic registration of 3D tomographic images which is based

on a set of corresponding anatomical point landmarks and takes into account anisotropic

landmark localization errors in form of 3D error ellipsoids. The 3D error ellipsoids are

directly estimated from the image data. The performance of our approach is demonstrated

for 2D and 3D MR images of the human brain.

1. INTRODUCTION

Nonrigid registration of 3D tomographic images of di�erent modalities (e.g., CT and

MR images) is a key issue for neurosurgery and radiotherapy planning. Here, we con-

sider image registration based on a set of corresponding anatomical point landmarks and

approximating thin-plate splines. With this approach it is possible to take into account

landmark localization errors and thus to control the inuence of the landmarks on the reg-

istration result. This is important for practical applications since landmark extraction is

always prone to error, either in the case of interactive or automatic landmark localization.

Our approximating thin-plate spline approach is an extension of the original interpolating

thin-plate spline approach [1],[3] and has been introduced in [5],[6] for images of arbitrary

dimension. The approach is based on functional analysis (regularization theory) and uses

scalar weights to represent landmark localization errors. For a di�erent approach to relax

the interpolation condition see [2]. However, this approach has been not been related to

a minimizing functional. Also, this approach has only been described for the 2D case and

has only been applied to synthetic data.

One problem with our approach in [5],[6] is that scalar weights for the landmarks

are only a coarse characterization of the localization errors. Generally, the errors are

di�erent in di�erent directions and thus are anisotropic. Another problem is how to

acquire the additional information about the landmark errors. Here, one approach is

the utilization of prior knowledge about the localization errors of anatomical landmarks.

Another possibility is to infer such information by analyzing the local intensity variations

of the image.

In this contribution, we further extend our approach by incorporating covariance ma-

trices of landmark position errors. For 3D images we have 3� 3 covariance matrices and
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we can represent the errors by 3D error ellipsoids. We show that the 3D error ellipsoids

can directly be estimated from the image data. These ellipsoids characterize the local in-

tensity variations at a landmark point and represent the minimal localization uncertainty

of a landmark (Cram�er-Rao bound). The estimated error ellipsoids are used as additional

input to our extended approximating thin-plate spline approach. With this new approach

it is possible to include di�erent types of 3D point landmarks, e.g., `normal' landmarks

as well as `quasi-landmarks'. An example for quasi-landmarks are edge points. Such

points are not uniquely de�nable in all directions, and they are used, for example, in

the reference system of Talairach [7] to de�ne the 3D bounding box of the brain. The

incorporation of such landmarks is important since `normal' point landmarks are hard to

de�ne, for example, at the outer parts of the brain.

In the following, we �rst present an extension of the approximating thin-plate spline

approach to incorporate landmark error ellipsoids. Then, we describe an approach for

estimating the error ellipsoids directly from image data. The performance of the whole

scheme is demonstrated for 2D as well as 3D MR images.

2. APPROXIMATINGTHIN-PLATE SPLINES INCORPORATING LAND-

MARK ERROR ELLIPSOIDS

In [5],[6] we have introduced a point-based approach for nonrigid matching of medical

images using approximating thin-plate splines which is based on the mathematical work

in [8]. To �nd the transformation u between two images of dimension d we assume to have

two sets of n landmarks pi and qi, i = 1 : : : n in the �rst and second image, respectively,

as well as information about the landmark localization error in terms of scalar weights �2i .

Then, u results as the solution of a minimizing functional which measures the distance

between the two landmark sets and the smoothness of the transformation:

J�(u) =
1

n

nX
i=1

jqi � u(pi)j
2

�2i
+ �Jdm(u): (1)

This functional can be separated into a sum of functionals which only depend on one

component of u. The smoothness term for one component can generally be written as

Jdm(u) =
X

�1+:::+�d=m

m!

�1! � � ��d!

Z
IRd

 
@mu

@x�11 � � �@x�dd

!2
dx; (2)

where m is the order of the involved derivatives of u. The relative weight between the

two terms in (1) is determined by the regularization parameter � > 0. The solution to

minimizing this functional can be stated analytically as

u(x) =
MX
i=1

ai�i(x) +
nX
i=1

wiUi(x); (3)

with polynomials �i up to order m � 1 and suitable radial basis functions Ui = U(�;pi)

as de�ned in [8].

The coe�cient vectors a = (a1; : : : ; aM)T and w = (w1; : : : ; wn)
T of the transformation

can be computed through the following system of linear equations:

(K+ n�W�1)w +Pa = v (4)

PTw = 0;
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where v is the column vector of one component of the coordinates of the target points qi,

Kij = Ui(pj), and Pij = �j(pi). The matrix

W�1 = diagf�21; : : : ; �
2

ng (5)

contains the scalar weights representing isotropic landmark localization errors.

This approach can further be extended when replacing the scalar weights �2i by covari-

ance matrices �i representing anisotropic landmark localization errors. Now our func-

tional reads as

J�(u) =
1

n

nX
i=1

(qi � u(pi))
T��1i (qi � u(pi)) + �Jdm(u): (6)

The solution to minimizing this functional is obtained by reducing it to the known thin-

plate spline approximation theory in [8] and thus can also be stated in analytic form.

The computational scheme to compute the coe�cient vectors of the transformation u is

analoguous to (4), while a separation is no longer possible. The weighting matrix now

represents the covariance matrices �i; i = 1 : : : n of the landmarks through

W�1 = diagf�1; : : : ;�ng; (7)

which is a block-diagonal matrix. Note, that the �i represent the localization errors

of corresponding landmark pairs. Thus, we have to combine the covariance matrices of

corresponding landmarks. If we assume that the corresponding two covariance matrices

only slightly depend on the nonlinear part of the transformation, then we can combine

these matrices by applying a linear transformation which allows for rotation, scale, and

shear. If we can further assume that the images have approximately the same orientation,

scale, and shear then we can simply add the two covariance matrices.

3. ESTIMATION OF LANDMARK ERROR ELLIPSOIDS

Having extended our approximating thin-plate spline approach from scalar weights to

full covariance matrices, we now have the problem of providing our algorithm with the

necessary information. One possibility is to use prior knowledge about the localization

errors of anatomical landmarks. In this contribution, however, we suggest a di�erent

approach which allows to estimate the 3D covariance matrices at landmarks directly from

the image data. In this case, the covariance matrices represent the minimal stochastic

localization error (Cram�er-Rao bound). The corresponding error ellipsoids characterize

the local intensity variations at a considered landmark point. Let �2n denote the variance

of the image noise, m the number of voxels involved in a local 3D window, and rg the

3D image gradient. Then, we can relate the matrix Cg = rg (rg)T , which captures the

local intensity variations of the 3D window, to the minimal localization uncertainty of the

center of the window x characterized by the covariance matrix �:

� =
�2n
m
C�1g : (8)

From (8) we can derive the 3D error ellipsoid of the position estimate with main axes

�x; �y; and �z. Based on the above relation we can distinguish di�erent types of land-

mark points in 3D tomographic images. This approach is a 3D extension of the 2D
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Figure 1. Estimated 2D error ellipses (enlarged by a factor of 30) for a 2D MR dataset:

frontal tip of ventricle system (left) and edge point at the outer contour of the head (right)

approach in [4] which has been applied within the �eld of photogrammetry. In our case,

3D landmarks with locally high intensity variations in all directions, i.e. strongly curved

intensity surfaces, have low localization uncertainties in all directions and we will refer

to them as `normal' point landmarks. Landmarks at edges have high localization uncer-

tainties along the edge but low localization uncertainties perpendicular to the edge. Such

landmarks will be denoted as `quasi-landmarks' since they are not uniquely de�nable in

all directions. They are used, for example, in the reference system of Talairach [7] to

de�ne the 3D bounding box of the brain. Note, that edges in 3D images are generally

surfaces whereas in 2D they are lines. Finally, `normal' landmarks and `quasi-landmarks'

can be distinguished from points in homogeneous regions where we have high localization

uncertainties in all directions.

As an example, we show in Fig. 1 the estimated error ellipses of the frontal tip of the ven-

tricle system as well as for an edge point at the outer contour of the head within a 2D MR

dataset. The selected points are examples for `normal' landmarks and `quasi-landmarks'.

Note, that the error ellipses have been enlarged by a factor of 30 for visualization pur-

poses. It can be seen that the error ellipse of the tip is small and close to a circle which

means that the localization uncertainty for this point is low in arbitrary directions. For

the edge point, however, the error ellipse is largely elongated and indicates a large local-

ization uncertainty along the contour and a low localization uncertainty perpendicular to

the contour. This is what we expect from the local intensity structure at the considered

points. In Fig. 2 the 3D error ellipsoid for the genu of corpus callosum within a 3D MR

dataset has been represented by three orthogonal views (sagittal, axial, coronal). Whereas

the sagittal view exhibits anisotropic localization uncertainties, in the axial and coronal

view the localization uncertainties in di�erent directions are more similar.

4. EXPERIMENTAL RESULTS

Our extended approximating thin-plate spline approach has been applied to elastic

registration of tomographic images of the human brain. Fig. 3 shows the registration
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Figure 2. Estimated 3D error ellipsoid (enlarged by a factor of 30) for landmark point at

genu of corpus callosum within a 3D MR dataset (orthogonal views: sagittal (left), axial

(middle), coronal (right))
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Figure 3. Registration result of two 2D MR datasets: `normal' landmarks and equal

scalar weights (left), `normal' landmarks, `quasi-landmarks' and estimated 2D error el-

lipses (right)

result of two 2D MR datasets of di�erent human brains. The edges of the second image

have been overlayed onto the transformed �rst image. On the left side of Fig. 3 is given the

result of our previous approach withm = d = 2 using `normal' landmarks and equal scalar

weights to characterize the landmark localization errors. Using instead our new approach

with additional `quasi-landmarks' at the outer contour of the head while automatically

estimating the error ellipses of all landmarks, then we obtain the result on the right side

of Fig. 3. It can be seen that the combination of both types of landmarks signi�cantly

improves the registration accuracy, particularly at the outer contour of the brain.

In Fig. 4 we show an application of our new approach to 3D MR datasets (see slices 29

and 67 on the left and right side, respectively). We have used `normal' landmarks as well

as `quasi-landmarks' as input to our elastic registration scheme and have estimated the

corresponding 3D error ellipsoids directly from the image data. Also for these datasets

we obtain a good registration result.
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Figure 4. Registration result of two 3D MR datasets using `normal' landmarks, `quasi-

landmarks' and estimated 3D error ellipsoids: slice 29 (left) and slice 67 (right)
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