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Abstract. In this paper, we present a new approach for coarse segmen-
tation of tubular anatomical structures in 3D image data. Our approach
can be used to initialise complex deformable models and is based on an
extension of the randomized Hough transform (RHT), a robust method
for low-dimensional parametric object detection. In combination with
a discrete Kalman �lter, the object is tracked through 3D space. Our
extensions to the RHT feature adaptive selection of the sample size,
expectation-dependent weighting of the input data, and a novel 3D pa-
rameterisation for straight elliptical cylinders. For initialisation, only lit-
tle user interaction is necessary. Experimental results obtained for 3D
synthetic as well as for 3D medical images demonstrate the robustness
of our approach w.r.t. image noise. We present the successful segmenta-
tion of tubular anatomical structures such as the aortic arc or the spinal
chord.
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1 Introduction

Deformable models are often used to segment objects in complex 2D and 3D
images (e.g. [10]). Since usually local optimisation methods are employed for
deformable model �tting, model initialisation is generally required to be close to
the real object to obtain reasonable �tting results. In particular, initialisation
becomes a major problem for elongated and complicately shaped objects (such
as long blood vessels), which are generally described by a large set of parameters.
Typically, these model parameters have to be initialised manually. Thus, there
is a clear need for automated methods, yielding an approximate segmentation
of complex shaped tubular objects, while requiring minimal user interaction.

Only a few approaches (e.g. [14, 3]) consider the segmentation of tubular
structures in 3D medical image data with minimal user interaction. However,
their drawbacks are that either an ad-hoc slice-tracking procedure is used in



conjunction with threshold-based determination of the tube wall [14], or the
method works only for a previously given scale of the tube diameter [3].

In this contribution, we introduce a new approach for segmentation of tubular
structures in 3D image data. To detect objects in 3D image data, we extend
in Sect. 2 the randomized Hough transform (RHT), a robust method for low-
dimensional parametric object detection, while in Sect. 3 we describe how this
method can be combined with a discrete Kalman �lter to track the objects
through 3D space. Segmentation is achieved by detecting elliptical cross sections
or straight elliptical cylinder segments that are subsequently tracked through
the 3D image. Our algorithm has been applied to both 3D synthetic and 3D
medical images (Sect. 4).

2 Extensions of the Randomized Hough Transform

The Hough transform is a well-known method for parametric object detection,
where detected pixels in the input image are mapped to a discrete parameter
space, whose maxima represent object candidates. In order to detect ellipses or
straight elliptical cylinders, which have a relatively large number of parameters
(leading to excessive space/time complexity for the conventional Hough trans-
form), we build upon the so-called randomized Hough transform (RHT) [16].

The RHT uses a randomly chosen subset of the input data, together with
a so-called many-to-one sampling scheme that maps input point sets to zero-
dimensional point sets in the parameter space. Thus, parameter spaces of higher
dimensions remain tractable, if a dynamic accumulation scheme is used. Several
drawbacks inherent to coarse-to-�ne and parameter-space decomposition Hough
transforms, such as increased noise sensitivity and projection artifacts [4, 9], can
be alleviated by the RHT, because the parameter space can always have both
full dimension and resolution. Our proposed extensions include a new object
parameterisation for straight elliptical cylinders, new derivations for an adaptive
sample size, and a novel input weighting scheme.

2.1 Object Parameterisations

For the object parameterisation of an ellipse, we apply an approach proposed
for the Hough transform in [8, p. 151], which determines a unique ellipse (if
there is any) that passes through a
set of �ve coplanar points. The ad-
vantages over other methods are that
no additional information (such as lo-
cal edge direction) is needed, and be-
cause the problem is reduced to linear
equations, standard numerical meth-
ods can be applied. As discussed in
Sect. 3, the plane from which the sam-
ples are taken should lie orthogonal to
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Fig. 1: Determining the cylinder axis



the tube axis. The straight elliptical cylinder is a degenerate quadric, so that a
direct approach in the above sense leads to a rather complex non-linear algebraic
problem. For the sake of speed, we therefore devised the following two-step al-
gorithm for straight elliptical cylinder parameter calculation, using the fact that
it is a ruled surface, but still avoiding the use of local edge direction (which is
hard to estimate in a robust way with the required accuracy):
1. Select randomly �ve coplanar points and determine the ellipse E through

them (if there is any).
2. Select randomly two distinct points p and q outside the plane containing E.

Sweep a line through p and points along ellipse E, and calculate the ellipse
E0 in the same plane generated by sweeping simultaneously a parallel line
through q (see Fig. 1). The intersection points of these two ellipses (it can
be shown that there are at maximum two) determine the possible cylinder
axes: A line through one of those intersections and q (solid line in Fig. 1)
is parallel to the cylinder axis, which of course intersects the two ellipses'
plane at the center of E. Having determined the axis, the remaining cylinder
parameters can easily be calculated.

2.2 Adaptive Sample Size

When using random sampling schemes for the Hough transform, it is normally
no longer necessary to consider all points of the input data set. Usually, a sub-
set will suÆce, whose size depends on the input data quality. This subset is
typically generated by drawing a sample of a given size from the input data
points. Instead of the formulas given in [15], which are only hints to sample size
selection, we suggest a di�erent way to derive an estimation of an appropriate
(data-dependent) sample size. This enables us to state an upper bound for the
probability of false detections. Although the derivation is strictly correct only
for an unlimited sample size, in practice the given error limit is almost always
valid.

Because the counts in the accumulator cells are binomially distributed [15],
we can approximate an individual cell's count for large sample sizes by the
normal distribution. Thus, if we know a priori the probability ps for sampling
points from a signi�cant object and the probability pns for sampling points from
a non-signi�cant object, it can be shown that if the sample size satis�es

n �
z2
�p

ps (1� ps) +
p
pns (1� pns)

�2

(ps � pns)
2

; (1)

then with probability of at least 1 � erf(z=2) the counts of signi�cant cells are
larger than those of non-signi�cant ones. This actually prevents non-signi�cant
objects from being erroneously detected, because for the RHT, the detected
object coincides with the maximal accumulator count. The value z thus param-
eterises the sample size and the remaining error probability.

We can re�ne this a priori sample size estimate by calculating the probability
p0

s
, which denotes the actual probability for sampling points from an object



corresponding to a given cell, using the theorem of the iterated logarithm by
Khintchine (e.g. [2, pp. 204]):

p0

s �
nk + n log(log(n))�

p
n log(log(n)) (2nk � 2k2 + n log(log(n)))

n2 + 2n log(log(n))
; (2)

where n denotes the current sample size and k the current cell count. As it is
only required for the most signi�cant object's cell count to be larger than non-
signi�cant cells, we can substitute for ps in (1) the estimate p0

s calculated from
the maximum accumulator cell count to determine a data-dependent sample size.

2.3 Windowing the Hough Transform

In images from cluttered environments, non-relevant image structures often
distract the RHT from the relevant features, especially when the objects
to be detected are tiny compared to the image size. Therefore, masking
out all but small areas around the features has proven to be advantageous
[6, 7], where usually rectangular,
binary-valued windows are used.
We extend masking towards arbi-
trary discrete functions that are
adapted to the problem at hand:
As the input pixels are selected
randomly for the RHT, we have
to induce an appropriate discrete
probability density function onto
the input image, with high val-
ues at the most possible object lo-
cations. These arbitrary discrete
probability functions can be re-
alised by employing the so-called
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Fig. 2: Example of a continuous window func-
tion for ellipse detection

alias method described in [13].
As the Kalman �lter (explained below) yields estimates of the expected position,
size, and shape of the input object in the next slice, the image can be windowed
appropriately. Assuming a Gaussian distribution of the ellipse's main axes errors
and exact estimates of the center position and the rotation angle, the window
function in Fig. 2 shows the incorporation of Kalman prediction into the RHT.

3 Kalman Filter Approach

In order to track the detected objects (either ellipses or straight elliptical cylin-
ders) through 3D image data, we apply a discrete Kalman �lter [5]. Apart
from the useful prediction information which can be exploited as mentioned in
Sect. 2.3, this approach allows to include an explicit model of the tubular struc-
ture's axis curve. For modeling this axis, we used both a linear and a quadratic
Taylor approximation.



If xk is a point on the tube axis at time k�t, an estimate at instant (k+1)�t
can be calculated as follows (quadratic model):

xk+1 = xk +�tx0

k +
1

2
�t2x00

k ; x
0

k+1 = x
0

k +�tx00

k ; x
00

k+1 = x
00

k ; (3)

where �t denotes the time interval and x
0

k
, x00

k
the �rst and second derivative

w.r.t. time, resp.
Therefore, taking together the results from the previous sections, we were able

to implement a tube tracker that adapts itself to the input data quality and re-
stricts random sampling e�ectively to the Kalman-predicted area. Furthermore,
the Kalman prediction of the axis curve o�ers an additional advantage: If the
intersection plane is not orthogonal to the cylinder axis, even tubular structures
with elliptical cross sections generally do not yield ellipses when intersected by a
plane (see e.g. [12] or [11] for a more in-depth discussion). Thus, when employing
the detection of elliptical cross sections, it is essential to re-slice the 3D input
data locally, orthogonal to the Kalman prediction of the axis curve. Otherwise,
when tracking highly curved structures, the plane intersection curve will di�er
signi�cantly from an ellipse after a few steps. This can lead to inaccuracies due
to model mismatch.

4 Experimental Results

We performed about 20,000 experiments using 3D synthetic binary data with
varying object sizes and noise levels to assess the performance and robustness
for all four possible combinations of the described object parameterisations (el-
lipse and straight elliptical cylinder) and the axis approximation (linear and
quadratic). It turned out that the detection of elliptical cross sections and the
tracking with the quadratic model in (3) performed best. For this variant we
show in Fig. 3 one of the binary input images used (slices of a torus), which was
degraded with 10% shot noise, and the rendered segmentation result. The plot
on the right hand side of Fig. 3 depicts the mean fraction of successfully seg-
mented 3D input images (solid line). This means that the whole arch was tracked
and the detected axis was never farther away from the real axis than twice the
radius. The mean of that distance from the true arch axis is depicted by the
dashed line, whereas the vertical error bars for both plots denote the standard
deviation from the corresponding mean. The results are promising, especially
regarding noise insensitivity. Up to a noise level of 15%, the test structures were
always fully tracked. The small systematic error w.r.t. the true torus axis (� 0:5
pixel) is due to discretisation artifacts in the RHT accumulator. In compari-
son, the other variants were more sensitive to noise. However, for small noise
levels, tracking elliptical cylinder segments was signi�cantly more accurate than
tracking elliptical cross-sections.

We also conducted experiments using 3D Magnetic Resonance (MR) data,
applying the same approach as above (detection of elliptical cross sections and
tracking with the quadratic model). To generate the binary data sets necessary
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Fig. 3. Experiments using 3D synthetic data. The two images on the left hand side
show at the top a slice of a 3D input data set (torus, degraded with 10% shot noise)
and below the segmentation result. On the right hand side, a plot of two statistics for
the experiments with the method using detection of elliptical cross sections and the
quadratic axis model is given, where every point is the mean value of 20 to 40 separate
experiments.

for the algorithm, we used a 3D extension of the edge detection method described
in [1]. Figure 4 shows the segmentation result of the human aorta in a thorax
MR angiography after 3D edge detection. The only initial parameters required
for the algorithm were the start point of the aorta axis, the initial radius, and
an approximate initial direction. The algorithm then continued segmentation
through 3D space until the bottom of the image data volume was reached.

Using the same approach, Fig. 5 shows the result for a 3D MR image of the
human head, where the spinal chord was segmented, starting from the bottom
of the image up to the medulla oblongata.

5 Summary

We have proposed a new segmentation method for tubular structures in 3D image
data, which is based on an extension of the randomized Hough Transform and a
discrete Kalman �lter. Experimental results obtained for both 3D synthetic and
3D MR image data showed promising results, especially regarding the robustness
w.r.t. noise. Out of the four variants we investigated, the one using a quadratic
axis model and the detection of elliptical cross sections performed best. Because
of its robustness and the small number of required initial values, we characterize
our novel algorithm to be well suited for coarse segmentation as well as for
initialisation of complex deformable model �tting.



(a) Coronal slice of the thorax (b) 3D segmentation of the aorta

Fig. 4. Experiments using real 3D MR-angiography data of the thorax. CPU time
(without prior 3D edge detection) for segmentation of the aorta was 347.29 sec on a
300MHz Sun Ultra 2 workstation. The arrow marks the position of the aorta when
crossing the image plane.

(a) Sagittal slice of the
human head

(b) 3D segmentation of the spinal chord

Fig. 5. Experiments using real 3D MR data of the human head. CPU time (without
prior 3D edge detection) for segmentation of the spinal chord (see arrow) was 108.46 sec
on a 300MHz Sun Ultra 2 workstation.
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