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The interpretation of the movements of articulated bodies in
image sequences is one of the most challenging problems in com-
puter vision. In this contribution, we introduce a model-based
approach for the recognition of pedestrians. We represent the
human body by a 3D-model consisting of cylinders, whereas for
modelling the movement of walking we use data from medical
motion studies. The estimation of model parameters in consecutive
images is done by applying a Kalman filter. Experimental results
are shown for synthetic as well as for real image data. © 1994
Academic Press, Inc.

1. INTRODUCTION

Vision enables us to perceive the form and spatial ar-
rangements of physical objects as well as to recognize if
objects move and how they move. In order to do this,
two things seem to be necessary {42)."On one hand there
must be a symbolic system to represent shape and motion
information and on the other hand the brain must containa
set of processes to derive such informations from images.

When investigating the dynamic aspects of traffic
scenes one has to deal with a variety of different objects
and motion types. In the sense above, these objects and
their motions have to be represented in order to automati-
cally analyze image sequences. Sitice the observed events
are, in general, very complex an efficient symbolic de-
scription is important, [t is advantageous to describe rec-
ognized motions by natural language [4, 49, 50, 64, 47,
48, 22]. We consider the work in this paper as a small
step toward this long-term goal,

In the following we introduce a model-based approach
for the recognition of pedestrians. We explicitly represent
the human body and its motion and use this knowledge
to derive 3D-positions and postures from images. The
current contribution is restricted to human walking which
is the most frequent type of locomotion of pedestrians.

Our aim is to analyze realistic monocular images.
Therefore, existing approaches which assume the joints
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of the human body to be marked (e.g., [57, 73, 23, 34,
19, 3]) or which investigate synthetic images (e.g., [52,
70, 68} cannot, in gencral, be applied. Among those ap-
proaches which evaluate real-world scencs, Cipolla and
Yamamoto {13} use stereo-images. Akita [1], Leung and
Yang [36, 37), and Pentland and Horowitz [54] essentially
analyze special gymnastic movements, but not locomo-
tion, which in general simplifies the interpretation because
the effect of self-occlusion is diminished. Other ap-
proaches restrict their analysis of locomotions to the part
of the legs [71] or to the part of the arms [77]. The pioneer-
ing work for recognizing walking persons in real-world
images has been done by Hogg [24, 25]. He uses the model
of a human body of Marr and Nishihara [41] in order 1o
estimate postures of walking persons from images. The
data for the motion model has been acquired interactively
from one prototype image sequence. Qur approach also
utilizes the cylindrical model of Marr and Nishihara [41].
However, for the motion model we use data from medical
motion studies representing an average over a relatively
targe number of test persons. Hogg [24, 25] compares the
contours of the model with grey-value edge points where
hidden model contours have not been removed. We in-
stead compare model contours with grey-value edge lines
and remove hidden model contours. In contrast to Hogg
(24, 25] our approach determines the initial posture auto-
matically and, for estimating the model parameters for a
certain image, earlier estimates are taken into account by
using a Kalman filter. Therefore, our estimates of the
model parameters over time are smoother.

The organization of this paper is as follows. After an
overview of our approach in the next section we describe
our model of the human body and its movement. Then,
we introduce the procedure for estimating the model pa-
rameters from single images and extend this approach to
image sequences.

2. OVERVIEW OF QUR APPROACH

One problem in recognizing pedestrians arises from the
nonrigidity of the human body. When analyzing rigid ob-
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Rigid Objects

FIG. 1. Comparison between rigid and nonrigid objects.

jects it is possible, for example, to group similar displace-
ment vectors in order to segment image regions belonging
to those objects. For nonrigid objects, however, such an
approach in general is not feasible since the movements
of the body parts are different (Fig. 1). In order to interpret
these complex movements it is necessary to represent
knowledge about the shape as well as the movement.
Therefore, we introduce a model-based approach. Cur
system will be called MEMO which is:an acronym.for
MEn in MOtion. In addition, this name reminds one of
the existence of a MEMOry in which knowledge is stored.

In accordance to Kanade [30) a general scheme for
model-based approaches is depicted in Fig. 2. Kanade
distinguishes between the picture domain and the scene
domain. We have incorporated the 2iD-description of
Marr [40] which is a viewer-centered representation of
depth, orientation, and discontinuities of visible surfaces.
The 2D- and 3D-descriptions represent structures in the
image plane and object-centered three-dimensional struc-
tures, respectively. As a special case, the interpretation
cycle of our approach is shown in Fig. 3. The generic
model is a parametric model which represents knowledge
about the human body and the movement of walking. By
fixing the model parameters we obtain an instantiated
3D-model. The 2D-model description is obtained by a
projection onto the image plane and in our case consists

/ Images

pe———— = I~ Mode! Description

2D - 1mage Description

24 D. Model Deseription

2% D- Image Description

3D - 1mage Description

3D Model Description

Generic Modsl /

FIG. 2. General interpretation cycle.

of the visible contours of the 3D-model. The following
main steps of our approach will be described in detail in
the subsequent sections.

For segmenting the image plane in regions correspond-
ing to moving and nonmoving objects we apply a change
detection algorithm followed by binary image operations.
Using the enclosing rectangle of the detected image region
and an assumption about the height of the observed person
we estimate the 3D-position. In order to determine more
precisely the 3D-position and to estimate the posture we
then compare model contours with grey-value edges ap-
proximated by straight lines and estimate the model pa-
rameters by maximizing a measure of similarity. At the
beginning of the image sequence we perform an initializa-
tion by applying the procedure above for circa 10-15
images (about the half of a walking cycle) for each image
independently. By linear regression over these estimates
we obtain starting values for'the Kalman filter which is
applied afterward. In this subsequent phase, having esti-
mated the parameters for a certain image, we predict the

T~

2D Model Deseription

Images

2D - Image Description

3D- Mndet Description

. Generic Model

FIG. 3. Interpretation cycle for our approach.
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new position and posture for the following image ac-
cording to our motion model and again adapt the 2D-
descriptions of the model and the image. By repeated
prediction and estimation we determine the model param-
eters for the whole image sequence.

3. MODEL OF PEDESTRIANS

Models of the human body and its movements are inves-
tigated in the ficlds of biomechanics, computer graphics,
and robotics.

3.1. Modeliing the Human Body

In order to efficiently recognize shapes from images,
Marr and Nishihara [41] laid down three criteria which a
static 3D-model should satisfy (see also Vaina [72]). Based
on these criteria they proposed to use an object-centered
coordinate system, volumetric primitives, and a modular
hierarchical organization on the description. As an exam-
ple, Marr and Nishihara [41] suggest a 3D-model of the
human body consisting of ¢ylinders. In our approach we
use this model. The human body is represented by 14
cylinders with elliptic cross sections (head, torso, and
three primitives for each arm and leg) which are connected
by joints (see also Fischer [17]). Cylinders are a good
compromise between the number of parameters and the
quality of representation of the human body. Each cylin-
der is described by three parameters: one for the length
and two for the sizes of the semi-axes. The coordinate
systems for the single bedy parts are aligned with the
natural axes, The origin of the coordinate system of the
whole body is at the center of the torso. Transformations
between different coordinate systems are described by
homogenecus coordinates X = (X, Y, Z, 1T,

X' =AX,

R
0T
matrix R and the translation vector T. The inverse of A
is

where A = ( T), consisting of the 3 X 3 rotation

_ RT —RTT)
j:
A (m ')

if several transformations are appiied in series then one
has to multiply the single matrices A;:

RR., RT., +T,
AiA!H = ( 0T+] +ll )

For modelling the human body we use absolute sizes
of the body parts. Since pedestrians are *‘in general”

FIG. 4. Model of the human body.

dressed, and since clothing can strongly influence the
appearance of a person, the usefulness of existing cata-
logues of body-measurements of unclothed persons (e.g.,
DIN [15]) is limited. Therefore, we use sizes of the human
body parts obtained by direct measurements of a normal
person with average clothing. Visualizations of our model
are displayed in Figs. 4 and 5 (see also [35]).

3.2. Modelling the Movement of Walking

There are two basic methods for describing bodies in
motion: kinematic and dynamic approaches (e.g., [5, 56,
69]). A kinematic description explicitly specifies the ge-
ometry of objects, i.e., position, orientation, and deforma-

FIG. 5. Several persons-.
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FIG. 6. Moticn curve of the knee-joint for the whole walking cycle.

tion without taking into account the cause of the move-
ment {e.g., [21, 12, 78,79, 5]). If the movement is explicitly
given by time-dependent functions then it is very easy
to simulate movements. However, there are hardly any
functions known for describing the complex movements
of the human body (but see the laws of motion in Weber
and Weber [74]). Another possibility for simulating human
movements is to provide interactively movement posi-
tions at certain time instants (keyframe technique) which
is time consuming and often does not lead to the desired
result. Also, movement positions can be reconstructed
interactively from recorded image sequences (rotoscopy).
By this, it is possible to model only such movements
which have previously been performed. If, however, data
from motion studies is already available then these values
can be used for simulation.

In contrast to kinematic methods, dvaamic methods
take into account forces and torques and have the poten-
tial to produce realistic motions (e.g., [75, 76, 11]). How-
ever, these approaches are computationally expensive
and specifying forces and torques can be difficult. In addi-
tion, the resuiting movements are not always satisfying
and sometimes they are improved by kinematic adjust-
ment (see also [33]).

Since in our approach for recognizing pedestrians we
want to use the model for analyzing real-world images,
the agreement with actual movements is important, On
the other hand, the number of parameters needed for
specifying the model should be kept small in order to
facilitate their estimation from images. Therefore, we de-
cided to apply a kinematic approach.

For modelling the movement of walking we use data
from human motion studies. Those studies have a long
tradition (see {2, 74]). At the end of the 19th century,
photographic methods have been developed [46, 39, 91.

For medical purposes in Murray et al. [45] (see also Mur-
ray [44]) the movements of 60 normal men ranging in age
from 20 to 65 years have been analyzed to obtain the
basic elements of walking. Astonishingly, the movement
patterns of the body parts are very similar for the different
persons, although it is often possible to recognize persons
by their gait. We use for our model the average data of
this investigation (see also [61]). A nice property is that
only one parameter is needed to specify the relative posi-
tions of all body parts. For each of the joints at the shoul- .
der, elbow, hip, and knee we have taken the values for
the angle positions at [0 time instants. These values are
interpolated by periodic cubic splines (see [66]). The
whole walking cycle has been standardized to one. As an
example, the motion curve of the knee-joint is displayed
in Fig. 6. Analogously, we modeled the vertical displace-
ment of the whole bady. Since walking is a symmetric
movement, the motion curves of the joints are only needed
for one side of the human body. Movement states of our
model for half of the walking cycle are shown in Fig. 7.
Depicted are the contours of the cylinders under central
projection. Hidden contours have been removed (e.g.,
[51, 53]). Fast reproduction of these motion states on a
screen reveals that our motion modei appears to be fairly
realistic.

4. ESTIMATING THE MODEL PARAMETERS FROM
SINGLE IMAGES

4.1. Detecting Moving Objects

We assume the image sequence to be recorded with a
stationary camera. In order to segment the image plane
in regions corresponding to moving and nonmoving ob-
lects we apply a change detection algorithm. For each
image point we approximate the grey values ina 5 X §
window by a bivariate polynomial of second order and
compare polynomial fits in consecutive images (see [63, §,
71). Let X be the matrix representing the image coordinates
and f the parameters of the fit. The # grey values of the
window are given by g,= X8, and we can estimate 3, =
X*g, by using the generalized inverse X* = (XTX) X7
We consider a point of an image % to represent systematic
changes, if (|| - |, denotes the Euclidean norm)

N R 1
IXB. — XB;|. = 7 IX X*(g, — g}, > T
1

holds for the preceding (j = & — 1) or for the following
(j = & + 1) image, where T is a threshold (Figs. 8 and 9).
Experimentally we have found that this procedure yields
better results than the approach in Hsu et al. [26]. The
reason for this is that in our approach we directly compare
the polynomial fits in consecutive images and therefore
we do not need to estimate image noise which, in general,

L

Vn (1)
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FIG. 7.

cannot be done very reliably using only local measure-
ments.

In order to improve the detected image regions we apply
binary image operations. Detected image points having a
small number of neighbors in a 3 x 3 window are deleted
and nondetected points with a large number of neighbors

FIG. 8. Grey-value image of a pedestrian.

_— — |||

Movement states for half of the walking cycle.

are marked. Since the relations between neighbors change
permanently during this process we implemented these
operations recursively. If, at the end of this procedure,
there are still holes left (not marked areas surrounded
by detected image points) we fill them by an additional
algorithm. The application of our approach yields the re-

Result of the change detection algorithm.

FIG. 9.
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FIG. 10. Result after applying binary image operations.

sult in Fig. 10. Most false detections have been removed
and the detected object candidate is a useful representa-
tion of the imaged pedestrian.

In addition, we compute a surrounding rectangle and
the outline (Figs. 10 and 11). For the object candidate a
velocity field is evaluated with the approach in Schnérr
[65] (Fig. 12). Based on these descriptions, in Bister et
al. [8], we introduced an approach to automatically derive
trajectories of several simultancously moving objects
without using explicit models. For a street crossing with
moving cars, pedestrians, and cyclists observed from
bird’s-eve view we demonstrated the applicability of our
approach.

FIG. 11.

Outline.

FIG. 12. Velocity field.

4.2.  Determining the 3D-Position

The next step is to estimate the 3D-position of the con-
sidered pedestrian. For our approach we suppose the de-
picted scene to be calibrated (e.g., [60, 18, 58]). We exploit
the information of the enclosing rectangle of the detected
object candidate and make an assumption about the abso-
lute height of the observed person. Using homogeneous
coordinates the projection of a 3D-point X = (X, ¥, Z,
1)T onto the image plane (Fig. 13) withx = (x, y, *, 1), =
denoting an arbitrary value, / being nonzero, and the 4 X
4 matrix T is given by

hx=TX. @

Line of Sight

Image Plane

Center of Projection

FIG. 13. Used coordinate systems,
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The midpoints of the bottom and the top edges of the
detected rectangle x, and x, represent the sole and the
top of the human body, respectively. The connection line
between the corresponding 3D-positions is supposed to lie
perpendicular to the plane upon which the person moves.
With H denoting the assumed height of the person and
H = (0, H, 0, 0)7 we can write

hx, =TX, (3)
hx,=TX,+ H). (4)

From (3) and (4)
hflxu - hﬂxD + TH = 0 (5)

follows and with

In I ~Y .
ty ty —1 0 ’
0 x —X X7 = 4
u 0 I,
0 0 y. -y h,
0 I -1
t]4
(¥
las
b* = Hi, I
Hisy
Hity,

we obtain the following linear system of equations:

T*X* 4+ b* =10 (6)

For the five unknowns of X* we have six equations;
i.e., (6)is overdetermined. An approximate solution could
be computed by using a numerical method. However, in
our case we require the condition that the connection line
of the 3D-positions of the sole and the top of the head is
perpendicular to the plane where the pedestrian walks.
To satisfy this requirement we allow a shift of the mid-
points of the bottom and the top edges of the rectangle.
The requirement is satisfied when the last three equations
in (6) are exactly fulfilled. Having determined A, x,,, and
v, in this manner, the 3D-position of the sole X, can be
evaluated using the first three equations in (6). Then the
3D-position of the top of the head results by adding H to
the Y-component of X,,.

Forareal image sequence the midpoints of the rectangle

K. ROHR

FIG. 14. Midpoints of the bettom and top edges of the detected
rectangles.

are displayed in Fig. 14. The estimated 3D-positions pro-
jected on the X Z-plane and connected by straight lines
are shown in Fig. 15. The distance in X-direction covered
by the pedestrian is about 4.5 m and the distances of the
pedestrian to the camera lie between 10.9 m and 12.6 m.
From this result we see that a single measurement is not
very reliable because of the variations of the height of the
detected rectangles. Therefore, it is advisable to take into
account several measurements.

4.3, Matching Model Contours with
Grey-Value Edges

In order to estimate more precisely the 3D-position and,
in addition, to determine the posture of the pedestrian,
we compare model contours with grey-value edges (see
also [62]). Since the contours of our model consist of

I

Estimated 3D-positions projected on the X Z-plane.

FIG. 15.
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FIG. 16. Enclosing rectangle and grey-value edge lines.

straight lines we decided to compare them with edge lines.
In comparison to edge points the number of image features
is smaller and the influence of noise is reduced. Inside
the detected rectangle we compute edge points with the
approach of Korn [32], link them together, and approxi-
mate them by eigenvector line fitting as described in Duda
and Hart [16, p. 332] {see Fig. 16),

In a certain motion state we compute for each visible
model contour a window and cut the grey-value edges to
the portion inside the window (Figs. 17 and 18). We use
a measure of similarity between model contours and grey-
value edges that takes into account three geometric quan-

FIG. 17. Search windows of the model.
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FIG. 18. Comparison between grey-value edge and model contour.

tities. The tength [, is the projection of the (cut) grey-value
edge onto the model contour with length /;,; and measures
how much the two edges overlap (since we compare the
projecied grey-value edge with the starting and endpoints
of the model edge, /; is always smaller than or equal to
ly;}. The second quantity is the distance 4, between the
midpoint of the (cut) grey-value edge and the correspond-
ing projection onto the model line. The third quantity is
the angle between the two edges. The larger [; and the
smaller (I, — /), d;, and A¢g;, the more similar are the
two edges. We use the following measure of similarity:

(G 102, 4 Aso%)
=] A /L F A St B St 1
5;=lLexp 5 ( 0’.%,' 0'421! Uiq, (7
With
O'i O 0 IMI' - l‘
z{- = 0 0'55 0 s k: = d{
0 0 o}, Ay
we can write
5. = I g_]’?k;rzi-lkl‘_ (8)

The parameters o;; and o; are determined in depen-
dence of the length of the model contour: o= ¢, I, and
4= €4 1 = ¢4 ¢, by, where ¢, ¢,, and ¢, are constant
for all model contours; T4, is constant, too. Therefore,
the exponent in (8) is independent of scaling the model.
Since we want grey-value edges with larger values of [,
to have a larger influence on the overall similarity, we
weight the exponential function by this value. Alterna-
tively, one could weight by /.
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Many approaches for line matching compare the mid-
points or the starting and endpoints of the model contour
with the grey-value edge supposing that the two edges
are similar in length (e.g., [38, 43, 67, 6]). In our applica-
tion the grey-value edges of the lower and upper parts of
the arms and the legs often are connected to one single
grey-value edge. Then a comparison between midpoints
or starting and endpoints would lead to large discrepanc-
ies. Therefore, we first cut the grey-value edges and then
use the quantities of similarity as above.

For qualitatively comparing our measure of similarity
with the one in Lowe [38] we write the exponential func-
tion in (7) as the multiplication of three single exponential
functions e ~*i%, where x;, = (I, — [V, djo,; and Ag/
o, and replace each of these functions by l/x;,which for
x; larger than a minimum value has a comparable course.
Then we have

2
lasi

$i= ¢l (pri — li) d; Ap;

&)

with ¢ being constant. The measure in Lowe [38] is given
by

¢ [%}Wl
5 =
L My = low) di B,

(10}

with ¢; being constant and Iy, denoting the length of the
(uncut) grey-value edge. The comparison shows that the
normalization in (10} is done by Iy, and not by I, as
in (9). In addition, (10) is independent of scale. In our
application grey-value edges often are longer than model
contours. Besides that, the (visible) model contours in
general are highly different in length and we want model
edges with larger values /; to have a larger influence on
the overall similarity. Therefore, in our opinion, (9) is
the more adequate measure for our case. The use of the
exponential function in (7) has the additional advantage
that the resulting expression is defined for all values and
decreases to zero fast for dissimilar edges. If several grey-
value edges overlap the search window, then we take the
one with highest similarity value. The overall measure of
similarity in dependence of the model parameters p is the
sum of the values s; for all visible model edges of the
pedestrian normalized by the sum of their lengths /,;:

n
Z Wei Wy Wi, S
s(p) = Z———— > max. (i)
lMi
i=1

The single values s; can be weighted by the magnitude
of the grey-value gradient at the matched grey-value edge

K. ROHR

s(pose}

pose

-0.2 0.4 0.5 0.8

FIG. 19. Similarity curve.

wg; and the magnitude of the corresponding velocity vec-
tors wy,. By using the wy,; it is possible to weight the
significance of the single body parts for recognition.

We search those parameters p which maximize s(p).
In order to obtain a more stable recognition resuit we
remove hidden model contours. However, one disadvan-
tage is that no analytical relation between p and s(p) can
be determined. Therefore, for maximizing s{p) we use a
grid search method with equally spaced points and take
the state of motion with highest simifarity value. Since
the computational expense increases exponentially with
the number of parameters, in further work possibilities
to reduce the computation time should be investigated,
e.g., using a smaller number of space points, choosing

FIG. 20. Determined motion state.
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FIG. 21. Similarity curve.

a variable density of space points, or using some other
optimization procedure.

Fixing the 3D-position of the model and varying the
posture parameter pose within the whole walking cycle,
for the grey-value edges in Fig. 16, we obtain the similarity
curve in Fig. 19 using equal weights w; for all the model
edges in{11). The state of motion with the highest similar-
ity (pose = 0.55) is superimposed onto the original image
in Fig. 20 and agrees with the observation. However, the
similarity curve has several secondary maxima and we
see that in general it is not a good choice to use a downhili
method. The relatively large values around pose = (.05
which stem from the fact that the walking cycle is symmet-
ric with respect to time are interesting. Even for a human
observer it is hard to decide whether the right leg is in
front of the left leg or vice versa and surely there are
cases in which our algorithm determines the posture dis-
placed by half of the walking cycle from the actual pos-
ture. Another example in Figs. 21 and 22 shows qualita-
tively the same result.

5. ESTIMATING THE MODEL PARAMETERS FROM
CONSECUTIVE IMAGES

In this section, the approach for evaluating single im-
ages as described above is extended to image sequences.
We first perform an initialization and then incrementally
estimate the model parameters by using a Kalman filter
approach.

5.1. Initialization

A human observer only needs 0.2 s (less than a quarter
of the walking cycle) to recognize a walking human repre-
sented by moving light displays [28, 35]. Therefore, auto-
matically analyzing a number of images which show about

103

FIG. 22.

Determined motion state.

half a walking cycle (circa 10-15 images) should be suffi-
cient to obtain starting values. In the initialization phase
for each image independently we apply the change detec-
tion algorithm and the procedure for estimating the 3D-
position in Section 4. When matching image edges to
model contours the search space for the posture is the
whole walking cycle (2 Apose= 1), whereas after initializa-
tion (because of the knowledge available now) the search
space can be reduced (e.g., 2 Apose = 0.4). In addition,
we vary X and Y around the estimated 3D-position.

For a synthetic image sequence (grey-value images can
be seen in Fig, 27) the determined postures are marked
in Fig. 23. The dashed line indicates the actual movement.
With the exception of the outlier at image number 10
which is displaced about the half of the walking cycle

pose
10 +
- i .
05+
e |
T N-u N
1 -
-
01 + ."’.
2 3
00 +~—F+H——4———+— t i f t +—+ } } =
2 3 4 5 & 7 8 4% 10 11 12 13 14 Nr
FIG. 23. [Initialization for a synthetic image sequence.
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FIG. 24. [Initialization for a real image sequence (f2).

{dotted line) the estimates agree with the actual move-
ment. The estimates for a real image sequence named 2
(Figs. 24 and 29) also lie relatively well on the line of the
actual movement and the one displaced by half of the
walking cycle. However, the number of false estimates
displaced about Apose = 0.5 is much higher. It should
be noted that for this image sequence the image portion
covered by the pedestrian is relatively small and therefore
it is hard to decide whether the right leg is in front of the
left leg or vice versa. For another image sequence (Figs.
25, 31}, where the pedestrian covers a larger portion of
the image plane, the number of false estimates displaced
about Apose = 0.5 is smaller.

5.2. Incremental Estimation

After initialization we apply the recursive equations of
the Kalman filter [29, 20]. In the field of computer vision,
Kalman filter approaches have been introduced, for exam-
ple, by Broida and Chellappa [10] and Deriche and Fau-
geras [14]. Broida and Chellappa [10] describe an ap-
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FIG. 25. Initialization for a real image sequence (£3).
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proach for incrementally estimating model parameters of
rigid objects from measured image points, whereas in
Deriche and Faugeras [14] grey-value edge lines are
tracked in the image plane. Our aim is to recognize human
movements. Since the body parts of pedestrians often
are occluded by one another (self-occlusion), tracking of
image lines in general would lead to severe problems.

In the following we assume the pedestrian to move with
constant velocity. By interpreting the parameter values
for the best fit in a single image as measurements for the
corresponding time instant, the system description and
the measurement model for the Kalman filter approach
can be expressed by a linear relation. Therefore, we use
a discrete linear Kalman filter.

The general discrete linear model is given by

(12
(13)

O = P py Ly
2 = HkPk + L

The searched parameters are represented by the state
vector p, at the time instant k. @, ,_, is the transition
matrix. I',w, represents modelling errors, where I', often
is chosen to be the identity matrix and w, is assumed to
be Gaussian distributed with expected value £{w,} = 0
and covariance matrix E{w,wi} = Q,, i.e., w, ~ N(0,
Q,). H, denotes the measurement matrix and v, ~ N(0,
R,) the measurement errors. Often it {s reasonable to
assume that the errors w, and v; are uncorrelated, i.e.,
E{w,v{} = 0for all j k.

Predicting the parameters and the covariance matrix is
done by

(14)
(15)

With these predictions and the current measurement z,
the estimates p, and P, in the current image are computed
by (f is the identity matrix)

p=pi+ kk(zk —Hpi) (16)
P.= (- KH)P} (17
K. =PrHIHP:HT + R, (18)

At the beginning, a starting vector p, and a covariance
matrix P, are needed.

In our application, we want to estimate the 3D-position
and posture of the observed pedestrians. The state vector
isp, =X, X, V,, ¥\, Z,, Z,, pose,, pose;)" and the time
difference between two images is Ar. Supposing constant
velocities, we have
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1 A0 000 0 0
0 1 00600 0 0
0 0 1L &r 0 0 0 0
0 0 01 00 0 0
L=l 0 0 0 0 1 Ar 0 O (19)
00 000 1 0 0
00000 0 1 A
0 0 0000 0 1

Errors for the velocities are taken into account by the
covariance matrix @,. At the beginning, cross-correla-
tions between the single parameters are set to zero:

O 0 0 0 0 0 0 0
0034 0 0 0 0 0 0
0 0 0 0 0 0 0 0
6 0 0 o3 0 0 0 0
%=l ¢ 0o 0 0 0o 0o o o |
0 0 0 0 0 o0l 0 O
O 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ol

In our case, we have measurements for X = (X, ¥, Z)
and pose. The measurement matrix is given by

0
H
i (21)
0

[
o o o o
=R = ]
o o o o
o o o O
- O o @
(=T == e )

and uncertainties of the measurements are characterized
by

ory O 0 0
0 ok 0
R, = 0 0 ok, (22)
0 0 0 O Ryose

6. EXPERIMENTAL RESULTS

We show experimental results for a synthetic as well
as for real-world image sequences. In the initialization
phase we evaluate the images number 2 to 14 (sec Figs.
23, 24, and 25) and determine starting values by linear
regression. The 3D-position X is an estimate for the center
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of the torso (origin of the overall coordinate system).
Since the estimation for pose, especially in real scenes,
often is displaced by half of the walking cycle, for this
parameter the estimates are first grouped together. In
general the estimates lie approximately on two lines. It
is possible that the number of estimates for the actual
movement s smaller than for the displaced movement.
Therefore, if for one line the number of estimates is higher
than half of the number for the other line, we take the
line with highest mean value of similarity. We note that,
although in our experiments it was possible to automati-
cally estimate the actual initial posture with this proce-
dure, in general this is a very hard problem and should
be investigated further.

For incrementally estimating the searched parameters
we predict the model for the following image and compare
the model contours with the grey-value edges. The search
space for the parameters is placed symmetrically around
the predicted values. In this phase we do not apply the
change detection algorithm. The assumption that the pe-
destrian moves parallel to the image plane on a plane
in the scene simplifies the expressions (19)-(22) for the
Kalman filter. The scene coordinate Z describing the
depth of the observed human is supposed to remain con-
stant and we take over the value from the initialization
phase. Incrementally we estimate the height of the person
above the plane of movement (Y) assuming that the (nor-
malized) height remains constant, i.e., ¥ = 0 and therefore
o5y = 0. In addition, the coordinate X in the direction of
the movement and the posture pose are estimated. The
initial uncertainties for the velocities of these parameters
are derived from the average velocities of pedestrians.
Assuming 1s time duration for a walking cycle and the
covered distance to be 1.6 m (e.g., Murray er al. [45, 44]
and Inman [27}), the average velocities of X and pose at
an image rate of 25 images per second are X = 6.4 cm/
image and pose= 0.04/image. A chosen deviation of 30%
then leads to o)y = 3.69 cm¥/image? and o, =
0.000144/image®. The other elements for the covariance
matrices have been chosen heuristically and in such a
way that we obtain reasonable values for automatically
controlling the search spaces for the parameters. With
the intervals 2AX = 40 ¢cm, 2 AY = 20 cm, and 2Apose =
0.4 we have ohy = 400 cm’/image’, oky = 100 cm?/
image?, and o %,,,. = 0.04/image’. For the corresponding
elements of the initial covariance matrix we chose the
same values, such that at the beginning the initial values
and the new measurements have the same uncertainties.
If we subdivide the search intervals for X and Y every 2
cm and the interval for pose every (.02 then the number
of space points are given by ny = [AX], ny = [AY], and
Moese= [100 Aposel, where [ ] denotes rounded natural
(odd) number.

The application of our approach for a synthetic image
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FIG. 26.

sequence leads to the results for X, Y, and pose (in depen-
dence of the image number) in Fig. 26. On the left side
are the determined parameter values for the best fit and
on the right side is the estimation result of the Kalman
filter. The pedestrian has been tracked over the whole
sequence. For some of the original images we have super-
imposed the estimated models. The agreement is fairly
good (Fig. 27).

For the real scene named f2 we obtain the diagrams in
Fig. 28. The pedestrian also has been tracked over the
whole sequence, although the image portion covered by
the pedestrian is relatively small. Since real images in
contrast to synthetic images are disturbed by noise, here
the smoothing properties of the Kalman filter can be seen
more clearly (see especially the result for Y). The esti-
mated models in Fig. 29 agree with the observation. How-
ever, in some images the model deviates a bit from the
imaged pedestrian.

Estimation result (X, ¥, pose} for a synthetic image
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sequence: left, measurements; right, Kalman filter estimates.

The results for the real image sequence f3 are similar
(Figs. 30 and 31). Since for this sequence the image portion
covered by the pedestrian is larger, the deviations be-
tween the model and the imaged pedestrian are easier
to recognize. In order to analyze more precisely these
deviations, the estimated motion curves of the hip- and
knee-joint for the right and left sides are depicted in Figs.
32 and 33 (solid lines). For comparison, we also displayed
corresponding curves obtained by interactively adjusting
the model such that for a human observer the agreement
is good (dashed lines). It should be noted that such an
adjustment is not very easy since even small changes of
the angle at the hip-joint (e.g., 3°-5°) lead to relatively
large changes when superimposing the model onto the
image. Nevertheless, from the figures we see that the
estimated curves generally agree with the interactively
obtained curves. However, at the hip-joint, especially for
positive angle values, there are larger deviations which
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result in the overall difference between the model con-
tours and the image data. For comparison, in Figs. 32 and
33 we also draw those curves which for the corresponding
velocity represent the optimal movement with our motion
model. These curves also generally agree with the other
motion curves.

7. CONCLUSION AND FUTURE WORK

Toward the long-term goal of recognizing and describ-
ing human movements in image sequences we introduced
an approach for the recognition of pedestrians. For a
synthetic as well as for real image sequences we were able
to track the imaged pedestrian over the whole sequences.
Starting values are determined automatically. Incremen-
tally we estimate the 3D-position and the posture, assum-

Estimated models for a synthetic image sequence {(image numbers 20, 30, 40, and 50).

ing that the observed person waiks parallel to the image
plane, By applying a Kalman filter we obtain smooth esti-
mation results.

Whereas for synthetic images (generated with the same
model as used for interpretation) the agreement between
the estimated models and the image data is fairly good,
in real-world images differences can be observed. These
differences are due to individual deviations of the ana-
lyzed pedestrian from our movement model which repre-
sents an average over arelatively large number of persons
walking at about the same velocity. An important point
is that the motion curves of the body parts in general
depend on the speed of movement.

One possibility for improvement is to start the algorithm
with the predefined motien curves as in our approach but
then to continue the evaluation by adaptively estimating
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FIG. 28. Same as Fig. 26 for a real image sequence (f2).
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FIG. 29. Estimated models for a real image sequence (£2) (image numbers 20, 40, 60, and 80).
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FIG. 31.

MODEL-BASED RECOGNITION

Estimated models for a real image sequence (f3) (image numbers 20, 40, 60, and 80).
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FIG. 34. Moving pedestrian and cyclist.

these curves. Also, additional image features could be
taken into account; e.g., one could compare the image
velocity field with the model velocity field. For estimating
the posture more precisely it is also possible to introduce
additional parameters for the body model. In either case
a good compromise between the quality of representation
and the number of parameters has to be found. A very
hard problem is the decision which of the two legs is in
front of the other and in our case the incremental estima-
tion with the Kalman filter depends on this decision. With
the extensions above it is perhaps possible to determine
the initial posture more robustly.

In order to match more efficiently the modei to the
image data a view graph for the model of the pedestrian
could be used (see, e.g., [31, 39]).

¢

FIG. 35.

Moving pedestrian and car.
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Further investigations should also analyze movements
that are not parallel to the image plane and movements
with changing orientations. A possible extension of our
approach is the recognition of simultancously moving
(rigid and nonrigid) bodies (single images from simulations
are shown in Figs. 5, 34, and 35). When analyzing these
scenes the occlusion problem has to be treated explicitly.
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