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1. Introduction

Within the �eld of computer vision the automatic interpretation of human

movements is one of the most challenging tasks. A central problem in ana-

lyzing such movements is due to the fact that the human body consists of

body parts linked to each other at joints which allows di�erent movements

of the parts. Therefore, the human body generally has to be treated as a

nonrigid or more precisely as an articulated body. In addition, for general

camera positions always some of the body parts are occluded. Although

occlusions can provide important cues in a recognition task, the automatic

interpretation is more di�cult. Another problem that has to be dealt with

is the clothing which can have a large in
uence on the appearence of a per-

son (wide or tight trousers, di�erent jackets, etc.). Clothing can also cause

complex illumination phenomena that, in addition, change during move-

ment (compare with e�orts in the �eld of computer graphics to simulate

cloth objects, e.g., [83]).

Because of these di�culties most existing approaches for analyzing hu-

man movements assume the joints of the human body to be marked (e.g.,

[66],[33],[81],[3],[27],[18],[65],[74]), or they are applied to synthetic images

only (e.g., [61],[78],[76]). When using real-world images often special gym-

nastic movements are analyzed but not locomotion. In this case, the inter-

pretation is generally less di�cult because the e�ect of self-occlusion is di-

minished (e.g., [1],[47],[62]). Other approaches use stereo-images (e.g., [19]),

restrict their analysis to certain parts of the body (e.g., [79],[85],[41],[25]),

or analyze image sequences with more or less homogeneous background to

diminish the segmentation problem (e.g., [49],[45],[28]). Often, image ana-

lysis is not carried out on an incremental basis but uses the entire sequence
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(e.g., [60]). For references, see also [40] and the recent survey on motion-

based recognition in [17].

In this chapter, we describe a motion-based approach for analyzing hu-

man movements in monocular real-world image sequences. We explicitly

represent the human body as well as its movement and use this knowledge

to estimate 3D positions and postures of persons from images. Central to

our approach is the use of an explicit motion model which is based on

analytically given motion curves for the body parts. These motion curves

exploit data from medical motion studies and represent an average over a

relatively large number of test persons. Additionally, we use a Kalman �lter

to incrementally estimate the model parameters from consecutive images.

Since estimates from previous images are taken into account we obtain a

smooth and robust result. Moreover, an initialization phase is performed

to automatically estimate the initial model parameters. Our algorithm is

designed for analyzing the movement of human walking which is the most

frequent type of locomotion of persons. However, a generalization to other

movement types such as, for example, running is straightforward.

Hogg [34],[35] in his pioneering work also has introduced a model-based

approach for determining the 3D positions and postures of walking persons

from real-world images. However, the motion model he uses does not ex-

ploit data from medical motion studies but has been acquired interactively

from one prototype image sequence. Also, the initial model parameters

are not provided completely automatically. Moreover, the estimates of the

model parameters for the current image do not take into account previous

estimates by using a Kalman �lter scheme.

Automatic analysis of human movements has a wide spectrum of po-

tential applications. For example, in street-tra�c scenes it is important to

early recognize situations which might lead to accidents. In the medical

area it is important to analyze abnormal movement patterns.

The organization of this chapter is as follows. First, we give an overview

of our motion-based approach. Then, we describe in more detail the human

body model and the motion model of walking. After that, we show how

this knowledge can be used to incrementally estimate the 3D positions and

postures of persons from image data. The applicability of our approach will

be demonstrated for real-world images. To indicate a possible extension of

our work we �nally describe a model of a cyclist.

2. Overview of our Motion-Based Approach

In our approach to the recognition of human movements from images we

represent the shape of the human body by a volume model which is build

of cylinders connected by joints ([51],[52]). Our motion model consists of
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a set of analytically given motion curves which represent the postures of

a person, i.e., the relative positions of all body parts. A nice property is

that only one parameter, named pose, is needed to fully specify all postures

during walking. Together with the 3D space coordinates ~X = (X;Y;Z) of

the center of the torso (the origin of the person's coordinate system) and

assuming the person to move parallel to the image plane we generally have

to estimate four parameters from consecutive images. This is done using a

Kalman �lter where the system description represents the overall movement

of the person, i.e., the movement of the center of the torso. The system

description together with the motion curves of the body parts constitute

our motion model. The model is explicitly given in an analytic form.

Our algorithm can be subdivided into two phases: initialization and

incremental estimation. Whereas in the �rst phase the images are evaluated

in a batch type manner, in the second phase processing is done on an

incremental basis. The main parts can be summarized as follows.

1. Initialization

Independent evaluation of about 10-15 images:

� Detection of image regions corresponding to moving persons

(using a change detection algorithm and binary image operations)

� Estimation of the movement states, i.e., 3D positions and postures

(using a calibration matrix for central projection and matching

contours of the 3D model with grey-value edges)

� Determination of starting values for the Kalman �lter

(using linear regression and the estimates from above)

2. Incremental estimation

After initialization a Kalman �lter scheme is applied to each image:

� Prediction of the movement state

(using estimation results from previous images)

� Determination of measurements

(using matching results of the 3D model to the current image)

� Estimation of the current movement state

(using the predicted movement state and the measurements)

The part of our work which deals with modelling the human body and

its movement is a central subject within the �elds of computer graphics,

computer animation, or image synthesis. Thus, our approach for image se-

quence analysis utilizes methods from image synthesis, and therefore we can

speak of an analysis-by-synthesis approach. The general relation between

image analysis and image synthesis has been depicted in Fig. 1 (see also,
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Figure 1. Relation between image analysis and image synthesis

e.g., [80],[46],[64],[15]). Whereas the aim of image analysis consists in deriv-

ing a symbolic description from real images, it is the aim of image synthesis

to produce realistic images from a symbolic description. By using certain

operations images can be transformed into images (image processing) or

symbolic descriptions may be transformed into new symbolic descriptions.

3. Model of the Human Body

To represent static 3D models for the purpose of e�cient recognition Marr

and Nishihara [51] proposed to use volumetric primitives, an object-centered

coordinate system, and a modular hierarchical organization on the descrip-

tion. As an example, they considered a 3D model of the human body con-

sisting of cylinders.

In our approach we use this representation and describe the human body

by 14 cylinders with elliptic cross-sections (head, torso and three primitives

for each arm and leg) which are connected by joints (see also [23],[8],[6]).

Cylinders are a good compromise between the number of parameters and

the quality of representation of the human body. Each cylinder is described

by three parameters: one for the length and two for the sizes of the semi-

axes. The coordinate systems for the body parts are aligned with the natural

axes. The origin of the coordinate system of the whole body is at the cen-

ter of the torso (see Fig. 2). Transformations between di�erent coordinate

systems are described by homogeneous coordinates ~X = (X;Y;Z; 1)T :

~X
0 = A ~X; A =

 
R ~T

~0T 1

!
; (1)
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Figure 3. Rendered 3D model of the hu-
man body

where R is the 3 � 3 rotation matrix and ~T the translation vector. The

inverse of A is given by

A
�1 =

 
R
T �RT ~T

~0T 1

!
(2)

If several transformations are applied in series then we can multiply the

corresponding matrices Ai, for example,

AiAi+1 =

 
RiRi+1 Ri

~Ti+1 + ~Ti

~0T 1

!
(3)

In our model of the human body we use absolute sizes of the body parts.

Since persons are \in general" dressed, and since clothing can strongly

in
uence the appearance of a person, the usefulness of existing catalogues

of body measurements of unclothed persons (e.g., [21]) is limited. Therefore,

we use sizes of the human body parts obtained by direct measurements of

a normal person with average clothing. A visualization of our 3D model is

displayed in Fig. 3 (see also [46]).

4. Motion Model of Walking

Models of human movements are studied within the �elds of biomechanics,

computer graphics, and robotics. Generally, one can distinguish between

kinematic and dynamic methods for representing movements (e.g., [5],[77]).
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A kinematic description explicitly speci�es the geometry of objects,

i.e., position, orientation, and deformation without taking into account the

cause of the movement (e.g., [30],[14],[86]). If the movement is explicitly

given by time-dependent functions then it is very easy to simulate move-

ments. However, there are hardly any functions known for describing the

complex movements of the human body (but see, for example, the laws of

motion in [82] published early in 1836). Another possibility for simulating

human movements is to interactively provide movement positions at certain

time instants (keyframe-technique). However, this technique is time con-

suming and often does not lead to the desired result. Also, movements can

be reconstructed interactively from recorded image sequences (rotoscopie).

By this approach it is only possible to model such movements which have

previously been performed. If, however, data from motion studies is already

available then it is advantageous to use this data for simulation.

Dynamic methods, in contrast to kinematic schemes, take into account

forces and torques (e.g., [84],[13]). These methods have the potential to

produce realistic motions, however, they are computationally expensive and

specifying forces and torques can be di�cult. In addition, the resulting

movements are not always satisfying and sometimes they are improved by

kinematic adjustment (see also [44]).

In our approach to the recognition of human movements in real-world

image sequences the agreement of the model with actual movements is

important. Also, the number of parameters needed for specifying the model

should be kept small in order to facilitate their estimation from images.

Therefore, we decided to use a kinematic approach which exploits data from

human motion studies. Studies of the human motion have a long tradition

(see [2],[82]). At the end of the 19th century, photographic methods have

been developed ([56],[50],[11]). For medical purposes Murray et al. [55],[54]

have analyzed the movements of sixty normal men ranging in age from

twenty to sixty-�ve years to obtain the basic elements of walking. In this

study it is demonstrated that the motion curves of the body parts for

di�erent persons are very similar. Note, however, that this similarity is

very astonishing if one imagines that it is often possible to identify persons

by their gait. The fact that the motion curves are very similar opens us the

possibility to use this data as knowledge source.

To represent the movement of walking in our motion model we have

taken the average data from [55],[54]. For each of the joints at the shoulder,

elbow, hip, and knee within one walking cycle we have taken function values

which measure the relative angles between connected body parts, e.g., for

the knee-joint the angle between the thigh and the lower leg. Additionally,

we have used the values for the vertical displacement of the whole body

which describe the periodic ups and downs of the center of the torso during
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walking (see also [70]). Note, that with our motion model the overall move-

ment is simpli�ed in such a way that we have only modelled the movement

of four joints and only considered joint rotations within the sagittal plane

(which is spanned by the walking direction and the vertical direction). Since

the joint movements of one side of the human body agree with those on

the other side but are displaced about half of the walking cycle, we only

need four (plus one) 1D motion curves for describing the overall movement

of walking.

The motion curves of the joints at the shoulder, elbow, hip, and knee

as well as for the vertical displacement of the whole body are based on

the function values y� at certain points of time t� ; � = 0; ::; N � 1. Since

walking is a periodic movement these values have been interpolated by

periodic cubic splines B(t) (see [73] and also [35]). Each interval [t� ; t�+1]

is described by

B�(t) = b1�(t� t�)
3 + b2�(t� t�)

2 + b3�(t� t�) + b4� : (4)

For periodic splines there is tN = t0 + T (with T being the period). At the

boundaries the function values as well as the �rst and the second derivatives

agree, i.e., y0 = yN , y
0

0
= y

0

N and y
00

0
= y

00

N . In the resulting system of N

linear equations with the N unknowns ~y
00

= (y
00

0
; ::; y

00

N�1
):

H ~y
00

+ ~d = ~0; (5)

the matrix H represents the intervals h� = t�+1 � t� between consecutive

points of time t� , and the vector ~d represents the function values y� in

conjunction with the h� . H is symmetric, diagonal dominant and positive

de�nite. We solve (5) by Cholesky decomposition. With ~y
00

we can compute

b1� , b2� , b3� , b4� and therefore B�(t) for each interval. In our case we took

N = 10 function values at equidistant points of time and standardized the

walking cycle to T = 1. The interval between two consecutive points of

time therefore is h� = 0:1.

The resulting motion curves of the joints and the vertical displacement

are shown in Figs. 4 and 5, respectively. We use the parameter pose as

some kind of time parameter which speci�es the relative positions of all

body parts within one walking cycle. A nice property is that we only need

one parameter for this speci�cation. Movement states for half of the walking

cycle are shown in Fig. 6 (pose = 0; 0:1; 0:2; 0:3; 0:4; 0:5). Depicted are the

contours of the cylinders under central projection. Hidden contours have

been removed (see, e.g., [59],[29]). Fast reproduction of these motion states

on a screen reveals that our motion model appears to be fairly realistic.
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Figure 4. Motion curves of the shoulder, elbow, hip and knee joints

5. Incremental Estimation of the Model Parameters

In this section, we describe how our model of the human body and its

motion is used to incrementally estimate the 3D positions and postures

of persons from image sequences. Before applying a Kalman �lter scheme

we �rst perform an initialization phase. The main parts of this phase are

change detection, 3D position estimation, and contour matching.

5.1. INITIALIZATION

5.1.1. Change detection

We assume the image sequences to be recorded with a stationary camera. To

segment the images into regions corresponding to moving and nonmoving

objects we apply a change detection algorithm. In each image point the

intensities are approximated locally by a polynomial of second order and
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Figure 5. Vertical displacement of the whole body

Figure 6. Movement states of walking

these polynomial �ts are compared for consecutive images (see [10],[9]). Let

X be the matrix representing the image coordinates within a 5� 5 window

and ~� the parameters of the �t. The n grey values within the window

are given by ~gk = X~�k and we can estimate ~̂�k = X
#
~gk by using the

generalized inverse X# = (XT
X)�1XT . We consider a point of an image

k to represent systematic changes, if

1p
n
kX~̂�k �X~̂�jk2 =

1p
n
kX X

#(~gk � ~gj)k2 > T (6)

holds for the preceding (j = k � 1) or for the following (j = k + 1) image,

where k � k2 denotes the Euclidean norm and T is a threshold. Experi-

mentally we have found that this procedure yields better results than the

approach in [36]. To remove false detections due to noise as well as to �ll
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Figure 7. Image of a walking person
Figure 8. Result after change detection
and applying binary image operations

in falsely nondetected image points we subsequently apply binary image

operations. The result for the image in Fig. 7 can be seen in Fig. 8. The ap-

plicability of this approach has also been demonstrated in [10]. There, the

trajectories of several simultaneously moving objects observed from bird's-

eye view (namely, cars, pedestrians, and cyclists) have automatically been

derived without using explicit models.

5.1.2. 3D position estimation

To estimate the 3D position of an observed person we compute the enclosing

rectangle of the detected object candidate (see Fig. 8) and make an assump-

tion about the absolute height of the person. The camera is supposed to

be upright w.r.t. gravity and a 4 � 4 calibration matrix T is assumed to

be available (e.g., [69],[24],[67]). Using homogeneous coordinates the pro-

jection of a 3D point ~X = (X;Y;Z; 1)T onto the image plane is then given

by

h ~x = T ~X; (7)

where ~x = (x; y; �; 1), � denotes an arbitrary value, and h being nonzero

(Fig. 9). The midpoints of the bottom and the top edges of the detected

rectangle ~xu and ~xo represent the sole and the top of the human body,

respectively. The connection line between the corresponding 3D positions

is supposed to lie perpendicular to the plane upon which the person moves.

With H denoting the assumed height of the person and ~H = (0;H; 0; 0)T

we can write

hu~xu = T ~Xu (8)
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Figure 9. Coordinate systems
Figure 10. Enclosing rectangle and ex-
tracted grey-value edge lines

ho~xo = T ( ~Xu + ~H): (9)

Based on (8) and (9) we can derive a linear system of equations which is

solved to obtain the 3D position of the person (for details, see [72]).

5.1.3. Contour matching

After change detection and 3D position estimation we then apply a con-

tour matching algorithm to estimate the posture of the person. Since the

contours of our model consist of straight lines we decided to compare them

with edge lines. In comparison to edge points the number of image fea-

tures is smaller and the in
uence of noise is reduced. Since we compute

the edges only within the detected rectangle the search space for matching

has been considerably reduced. Edge detection is done using the approach

in [43] which is similar to that in [16]. After that, we use an edge linking

procedure followed by an Eigenvector line �tting as described in [22] (see

Fig. 10).

For matching the model with the detected grey-value edges we compute

a search window for each visible model contour. The size of the search

window depends on the length of the model contour (Figs. 11, 12). If a

grey-value edge overlaps a window we �rst cut this edge to the portion

inside the window. Then, we compute a measure of similarity between the

grey-value edge and the model contour. This measure takes into account

the length li as the projection of the grey-value edge onto the model contour

lMi, second, the distance di between the midpoint of the grey-value edge and

its corresponding projection onto the model contour, and third, the angle

between the two edges �'i. The larger li and the smaller (lMi� li), di and
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Figure 11. Search windows for the model
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Figure 12. Comparison between grey-
value edge and model contour

�'i the more similar are the two edges. We use the following measure of

similarity:

si = li e

�
1
2

 
(lMi � li)

2

�
2

li

+
d
2

i

�
2

di

+
�'2i
�
2

�'

!
(10)

With

�i =

0
@ �

2

li 0 0

0 �
2

di 0

0 0 �
2

�'

1
A ; ~ki =

0
@ lMi � li

di

�'i

1
A (11)

the measure can also be written as

si = li e
�

1

2

~k
T
i �

�1

i
~ki : (12)

The parameters �li and �di of the measure are determined in dependence

of the length of the model contour: �li = cl lMi and �di = cd ri = cd cr lMi,

where cl, cd and cr are constant for all model contours; ��' is constant, too.

Therefore, the exponent in (12) is independent of scaling the model. Since

we want grey-value edges with larger values li to have a larger in
uence

on the overall similarity we weight the exponential function by this value.

Alternatively, we could weight by lMi.

Many approaches for line matching compare the midpoints or the start-

ing and endpoints of model contours with the grey-value edge lines sup-

posing that the two edges are similar in length (e.g., [48],[53],[75],[7]). In
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our application the grey-value edges of the lower and upper part of the

arms and the legs often are connected to one grey-value edge. Then, a com-

parison between midpoints or starting and endpoints would lead to large

discrepancies. Therefore, we �rst cut the grey-value edges and then use the

quantities of similarity as described above. The use of the exponential func-

tion in (12) has the advantage that the resulting expression is de�ned for

all values and decreases fast to zero for less similar edges. If several grey-

value edges overlap the search window, then we take the one with highest

similarity value. The overall measure of similarity s(~p) in dependence of

the model parameters ~p is the sum of the values si for all visible contours

of the human body model normalized by the sum of their lengths lMi:

s(~p) =

nX
i=1

wi si

nX
i=1

lMi

�! max: (13)

The parameters wi can be used to weight the values si by other information,

e.g., by the magnitude of the grey-value gradient at the matched grey-value

edge or by values derived from prior knowledge about the recognition sig-

ni�cance of the body parts. With (13) we search those parameters ~p which

maximize s(~p). To obtain a more stable recognition result we remove hidden

model contours. However, one disadvantage is that no analytic relation be-

tween s(~p) and ~p can be determined. Therefore, for maximizing s(~p) we use

a grid search method with equally spaced points and take those parameters

which yield the highest similarity value.

The procedure decribed above has been tested on single images. We

have �xed the 3D position of the model and have varied the posture pa-

rameter pose within the whole walking cycle (see [72]). It turned out, that

the estimated postures generally agree with the observation. However, the

similarity curve has several secondary maxima and therefore it is no good

choice to use a downhill optimization procedure. Also, we obtained rela-

tively large similarity values for values of pose displaced about half of the

walking cycle from the correct posture. However, this is what we expect if

we imagine that walking is a symmetric movement w.r.t. to time. Even for

a human observer it is generally hard to decide which of the two legs is in

front of the other when seeing a walking person in some distance. In either

case, to make the estimation result more robust it seems to be important

to take into account information derived from several consecutive images.

5.1.4. Starting values for the Kalman �lter

In the initialization phase of the Kalman �lter we apply the procedures

described above for each image independently. We use a number of 10-15
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images which represent about half of a walking cycle. In comparison to that,

a human observer only needs 0:2s (less than a quarter of a walking cycle) to

recognize a walking human represented by moving light displays ([38],[63]).

Starting values for the model parameters are obtained by applying linear

regression to the estimated values from the initialization phase. Since the

estimates of pose for real images often are displaced by about half of the

walking cycle, some preprocessing is necessary for this parameter. The val-

ues of pose in dependence of the image number approximately lie on two

lines. Therefore, to exclude systematic errors, we �rst group those values

together which approximately lie on the two lines, and then apply linear

regression. The selection of one of the two lines is then done by taking into

account the overall number of estimates as well as the mean value of si-

milarity. In our experiments, it was possible to automatically estimate the

correct initial posture with this procedure. However, it should be noted,

that generally this is a very hard problem which should be investigated

further.

5.2. INCREMENTAL ESTIMATION

After initialization we apply a Kalman �lter scheme ([39],[26]) to incremen-

tally estimate the model parameters in consecutive images. In the �eld of

computer vision, Kalman �lter approaches have been introduced, for ex-

ample, in [12] and [20]. In [12] an approach is described for incrementally

estimating the model parameters of rigid objects from measured image

points, whereas in [20] grey-value edge lines are tracked in the image plane.

Our aim is to analyze walking persons. Since for general camera positions

the body parts during walking often are occluded by one another (self-

occlusion) tracking of single grey-value edge lines in general would lead to

severe problems. Therefore, to cope with the problem of self-occlusion, in

our case we �t the model as a whole and use a hidden-line algorithm to

remove occluded model contours.

In the following, we assume the observed person to walk with constant

velocity. By interpreting the parameter values for the best �t of the model

contours with the grey-value edges as measurements for the corresponding

time instant, the system description as well as the measurement model of

the Kalman �lter approach can be expressed by a linear relation. Therefore,

we use a discrete linear Kalman �lter.

The general discrete linear model is given by:

~pk = �k;k�1 ~pk�1 + �k�1 ~wk�1 (14)

~zk = Hk ~pk + ~vk; (15)
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where the searched parameters are repesented by the state vector ~pk at

the time instant k, and �k;k�1 is the transition matrix. �k ~wk represents

modelling errors, where �k often is chosen to be the unity matrix and ~wk

is assumed to be Gaussian distributed with expected value Ef~wkg = ~0

and covariance matrix Ef~wk ~w
T
k g = Q

k
, i.e., ~wk � N(~0; Q

k
). The current

measurements are represented by ~zk. Hk denotes the measurement matrix

and ~vk � N(~0; Rk) the measurement errors. Often it is reasonable to assume

that the errors ~wk and ~vj are uncorrelated, i.e., Ef~wk~v
T
j g = 0 for all j; k.

The prediction of the parameters and the covariance matrix is given by:

~p
�

k = �k;k�1 ~̂pk�1 (16)

P
�

k = �k;k�1 P̂ k�1�
T
k;k�1 +Q

k�1
(17)

With these predictions and the current measurement ~zk the estimates ~̂pk
and P̂ k in the current image can be computed by

~̂pk = ~p
�

k + K̂k(~zk �Hk ~p
�

k ) (18)

P̂ k = (I � K̂kHk)P
�

k (19)

K̂k = P
�

kH
T
k (HkP

�

kH
T
k +Rk)

�1
; (20)

where I is the unity matrix.

In our application, we want to estimate the 3D position ~X = (X;Y;Z)

and the posture pose of walking persons. The state vector is ~pk = (Xk;
_Xk;

Yk;
_Yk; Zk; _Zk; posek; _posek)

T , where _Xk;
_Yk; _Zk; and _posek are the veloci-

ties. The time di�erence between two succesive images is denoted by �t.

Supposing constant velocities we have

�k;k�1 =

0
BBBBBBBBBBB@

1 �t 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 �t 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 �t 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 �t

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCA

(21)

Errors for the velocities are taken into account by the covariance matrix

Q
k
. At the beginning, cross-correlations between the single parameters are
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set to zero.

Q
k
=

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 �
2

Q _X
0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 �
2

Q _Y
0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 �
2

Q _Z
0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 �
2

Q _pose

1
CCCCCCCCCCCCA

(22)

In our case, we have measurements for ~X = (X;Y;Z) and pose. The

measurement matrix is given by

Hk =

0
BB@

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

1
CCA (23)

and uncertainties of the measurements are characterized by

Rk =

0
BB@

�
2

RX 0 0 0

0 �
2

RY 0 0

0 0 �
2

RZ 0

0 0 0 �
2

Rpose

1
CCA (24)

6. Experimental Results

Our approach has been tested on synthetic as well as on real-world image

sequences. To reduce the complexity of the recognition task we assume the

observed pedestrian to move parallel to the image plane. Therefore, the

scene coordinate Z describing the depth of the walking person is supposed

to remain constant and we take over the value from the initialization phase.

Incrementally we estimate the height Y of the person above the plane of

movement taking into account the vertical displacements of the whole body

as represented by the motion curve in Fig. 5. Note, that since we normalize

the values for Y to the height of a standing person we can assume that the

velocity for this parameter is zero and also the velocity's uncertainty can be

set to zero. In addition to Y , we estimate the coordinate X in the direction

of the movement as well as the posture pose. The initial uncertainties for

the velocities of these parameters are derived from prior known average ve-

locities of pedestrians. We assume 1s time duration for a walking cycle and
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Figure 13. Estimation result of X;Y and pose; left: measurements; right: Kalman �lter
estimates

the covered distance to be 1:6m (e.g., [55],[54],[37]). The other elements for

the covariance matrices have been chosen heuristically in such a way that

we get reasonable values for automatically controlling the search spaces for

the parameters. Note, that for incrementally estimating the model param-

eters we only exploit the matching results of the model contours with the

grey-value edges. In this phase, we do not use the change detection and 3D

position estimation procedures as described in Section 5.1. Note also, that

based on the predictions of the Kalman �lter the search space for match-

ing the model contours with grey-value edges is considerably be reduced in

comparison to the initialization phase.

Application of our approach to a real-world image sequence consisting of
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Figure 14. Estimated movement states superimposed onto the original images (images
number 20, 40, 60 and 80)

80 images yields the estimation results shown in Fig. 13. For the similarity

measure in (13) we have used equal weights wi = 1; i = 1; :::; n: On the

left side are the measurements for X;Y and pose due to contour matching,

whereX and Y specify the center of the person's torso. On the right side are

the Kalman �lter estimates. Especially for Y the smoothing properties of

the Kalman �lter can clearly be seen. Although the image portion covered

by the pedestrian is relatively small, the person has been tracked over the

whole sequence. Estimated movement states superimposed onto some of

the original images are shown in Fig. 14. Generally, the agreement is fairly

well. However, in some images we can observe slight deviations.

To analyze these deviations more precisely we have investigated the re-
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Figure 15. Motion curves for hip and knee joints on the right side of the human body

sult of our approach for another real-world image sequence where the image

portion covered by the pedestrian is larger and therefore the deviations are

easier to recognize. We have used the same parameter setting as before (see

also [72]). For this image sequence the estimated motion curves of the hip

and knee joint for the right side of the human body can be seen in Fig. 15

(solid lines). Since we have no ground truth for these images we have inter-

actively determined reference values which we regard as ground truth. This

has been done by manually adjusting the model for each image in such a

way that for a human observer the agreement is best (see the dashed lines

in Fig. 15). Note, that such an adjustment is not very easy since even small

changes of the angle at the hip-joint (e.g., 3o � 5o) lead to relatively large

posture changes of the whole model. Nevertheless, from Fig. 15 we see that

the estimated curves generally agree with the interactively obtained curves.

However, at the hip-joint especially for positive angles there are larger de-

viations which result in the overall di�erence between the model and the

image data. For a further comparison we have also drawn those curves



20 K. ROHR

Figure 16. Visualization of the geometrical scene description (GSD) for images number
20, 40, 60 and 80 of the image sequence shown in Fig. 14

which represent the optimal movement according to our motion model for

the corresponding velocity. These curves also generally agree with the other

motion curves.

Recently, we have also investigated our approach in conjunction with

the natural language access system VITRA [32] to derive natural language

descriptions such as \The pedestrian walks across the street" (see [31]).

As intermediate representation between our computer vision system and

the natural language access system we have used the `geometrical scene

description' (GSD) as proposed in [58],[57]. Generally, the GSD represents

all available information about the visible objects and their locations over

time. In our case, the GSD consists of the 3D positions and postures of the

pedestrian for each image. Additionally, we have coarsely represented the

stationary background. The GSD corresponding to the real image sequence

in Fig. 14 has been visualized in Fig. 16.

7. Model of a Cyclist

In this section, we indicate a possible extension of our work dealing with

articulated movements in street-tra�c scenes. We consider cyclists which,

besides pedestrians and cars, belong to the most often occuring class of

objects in this kind of domain.

To model a cyclist we combine the representation of the human body to-

gether with a geometric description of a bicycle. As with our motion model
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Figure 17. Movement states of a cyclist

of walking the movement of the cyclist is modelled by using a kinematic

method. However, for the cyclist we do not need any data from motion

studies. This is possible because the geometric relations of the person and

the bicycle fully constrain the movement if we consider \normal" driving

straight ahead. With the movement of walking there are more degrees of

freedom. For the cyclist we assume that the person sits on the saddle and

that the upper part of the body remains unchanged during the movement.

Note, however, that this model is a strong simpli�cation in comparison to

the complex movements that can be observed, for example, in a �nish of

a bicycle race. Anyway, the relative positions of the human legs are gener-

ally determined by the positions of the pedals of the bicycle. If we assume

that the ankle-joint does not move, then the positions of the legs can be

computed by intersecting two circles. Since only one solution is physically

possible we thus obtain a unique position for the legs. This is because for

the knee-joint only positive angles can occur (compare with the motion

curves of walking in Fig. 4). The overall movement of the cyclist is periodic

and symmetric w.r.t. the di�erent body sides. Therefore, we can apply the

same kinematic scheme as we have used before for modelling human walk-

ing. For the motion model of the cyclist we have evaluated ten positions of

the pedals within one cycle to obtain function values for the joints. These

values have been interpolated by periodic cubic splines as described in Sec-

tion 4 above. Movement states of the cyclist for about half of the cycle are

shown in Fig. 17. In Fig. 18 some images from an animated sequence of the

cyclist together with a walking person can be seen.

Analogously to our approach for recognizing walking persons, the model

of the cyclist, i.e., the geometric and the motion model, could be used

to analyze the movements of cyclists in image sequences. To e�ciently

recognize the wheels of the bicycle a matching algorithm for circles (or

ellipses) seems to be necessary.
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Figure 18. Moving cyclist and pedestrian

8. Summary and Future Work

The movement of articulated bodies such as the human body is enabled

by the coordinated movement of its rigid body parts. The body parts are

connected by joints and, in general, move di�erently. For interpreting these

movements as the movement of one single body, it seems to be necessary

to incorporate knowledge in the image analysis process.

In our approach for analyzing human movements in real-world image

sequences we exploit knowledge about the human body as well as its move-

ment. Central to this approach is the use of an explicit motion model which

is based on analytically given motion curves for the body parts. These mo-

tion curves represent data from medical motion studies. The fact that the
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Figure 19. Several walking persons Figure 20. Crossing pedestrian and car

motion curves are very similar for di�erent persons opens us the possi-

bility to use this data as knowledge source. A nice property is that only

one parameter is needed to fully specify the relative positions of all body

part. To incrementally estimate the 3D positions and postures of a walking

person in consecutive images we have applied a Kalman �lter scheme yield-

ing smooth and robust results. We have assumed that the person moves

parallel to the image plane with constant velocity. Starting values for the

Kalman �lter have automatically been determined through an initialization

phase. Additionally, we have described a model of a cyclist to give an idea

of extending our work for more complex street-tra�c scences. Estimation

on an incremental basis rather than using the entire sequence is important,

for example, in street-tra�c scenes for the purpose of early recognition of

situations which might lead to accidents, followed by giving a warning to

the involved driver.

Future work on the recognition of walking persons should address the

problem of reducing the deviations between the observed individual move-

ments and those of our motion model which represents an average over a

relatively large number of test persons walking at about the same velocity.

An important point is that the motion curves of the body parts in gen-

eral depend on the speed of movement. One possibility for improvement is

to start the algorithm with the prede�ned motion curves and then try to

adapt those curves to the observed movement. In this way, an incremental

update of the model curves would be used for further evaluation. Also, to

make the estimation result more robust, additional features could be taken

into account, e.g., one could compare the model velocity �elds with image

velocity �elds. A more e�cient match of the model to the image data could

possibly be achieved by using an aspect graph (view graph) for the model

(e.g., [42],[68]).

In further investigations also other human movement types, such as run-
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ning, should be analyzed. Additionally, one should investigate the recog-

nition of several simultaneously moving bodies as well as the classi�cation

between di�erent movement types (see Figs. 18, 19, and 20 for simulations

of such scenes). Another future challenge is the automatic natural language

description of observed human movements. Recently, investigations towards

this long-term goal have been reported in [31].
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