International Journal of Computer Vision, 9:3, 213-230 (1992)

© 1992 Kluwer Academic Publishers, Manufactured in The Netherlands.

Recognizing Corners by Fitting Parametric Models

KARL ROHR

Arbeitsbereich Kognitive Systeme, FB Informatik, Universitat Hamburg, Bodenstedtstr. 16, 2000 Hamburg 50,

FRG

Received January, 1992. Revised June 23, 1992.

Abstract

The parametric model of a certain class of characteristic intensity variations in Rohr (1990, 1992), which is the
superposition of elementary model functions, is employed to identify corners in images. Estimates of the searched
model parameters characterizing completely single grey-value structures are determined by a least-squares fit of
the model to the observed image intensities applying the minimization method of Levenberg-Marquardt. In par-
ticular, we develop an analytical approximation of our model in such a way that function values can be calculated
without numerical integration. Assuming the blur of the imaging system to be describable by Gaussian convolution
our approach permits subpixel localization of the corner position of the unblurred grey-value structures, that is,
to reverse the blur of the imaging system. By fitting our model to the original as well as to the smoothed original-
image cues can be obtained for finding out whether the underlying model is an adequate description or not. Results

are shown for real image data.

1 What Is a Corner?

Because the usage of the term corner is not uniform
in the literature we briefly explain what is meant by
a corner in the current contribution. If in a 3D-scene
at least two surfaces mect then we will speak of a 3D-
edge. A corner in the 3D-scene, that is, a 3D-corner,
is formed when at least two 3D-edges join together.
Analogously, we will speak of 2D-edges (2D-corners)
if at least two surfaces (edges) meet in the (2D-)im-
age, that is, the term corner is uniformly characterized
in 2D and 3D. Corners are always a subset of edges.

Normally, 3D-edges (3D-corners) are transformed
to 2D-edges (2D-corners). However, there are addi-
tional circumstances that may create 2D-edges or 2D-
corners, for example, illumination effects or the
presence of occlusions (e.g., a T-junction is created if
one 3D-edge occludes another). Therefore it may be
advantageous to define a 2D-corner in the image plane
and not by reasons of object constellations in the 3D-
scene. The characterization of corners above is iden-
tical to the definition of junctions as is customary in
the literature, so in the following we will use the terms

junction and corner synonymously. T-, Y-, and
ARROW-junctions are also T-, Y-, ARROW-corners. In
addition, we find it more favorable to define corners
in terms of joining edges as above than in terms of ad-
jacent surfaces, because the number of adjacent sur-
faces in general does not discriminate between normal
edges and corners. Surely, if three or more surfaces
meet then there will always be a corner. However, when
two surfaces meet it is not clear whether there is just
a normal edge or an L-corner. Furthermore, since edges
and corners always have a certain extent, the terms
edges and corners will denote areas of image surfaces
forming such features. In the 3D-scene this is because
transitions cannot be ideally sharp (although here we
will assume that they are ideally sharp or at least very
sharp). Since imaging systems are bandlimited it is even
more true that transitions in the image are extended.
If we mean certain positions of features we will speak
of edge points, edge lines, or corner points. Throughout
this contribution the terms edge and corner will denote
features in the image (i.e., 2D-edges and 2D-corners).
Edges and corners in the 3D-scene are explicitly termed
3D-edges and 3D-corners.
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2 Some Problems in Recognizing Corners

When trying to recognize characteristic (prominent) in-
tensity variations in images with a computer vision
system we are faced with a series of problems. Of
special interest is the accurate determination of the posi-
tion of corncrs, since small crrors in the image plane
in general lead to significant errors in a 3D-
interpretation (c.f. figure 1), that is, the more precisely
prominent features are derived from images the more
rcliably can (in principle) objects in the depicted 3D-
scene be described. Consider for example a Y-junction.
A (local) direct corner detector will perhaps yield the
image position marked by a square in figure 2 which
seems to be reasonable. If we first detect edge points,
link them together on some kind of continuity assump-
tion, and fit them by straight lines (supposing that the
contours of the considered image are essentially straight
lines) we may get the edge lines in figure 3. The first
thing we can observe is that the edges are interrupted.
The reason for the gaps is the underlying ID-model
of the edge detector, which is inadequate when it is ap-
plied to 2D-features. In addition, we see that while the
extension of two of the three edge lines seem to intersect
in one point, which could be considered to be the cor-
ner point, the third edge line (on the left side of the

image) does not support this hypothesis very well. In
order to cope with the uncertainties of the three edge
lines one could determine the position of the corner
point by minimizing the distance of the three edge lines
to the searched intersection point. Although this would
probably also yield a plausible estimate, the informa-
tion of the intensities is not incorporated during the
minimization process. The same holds truc when both
the results of the direct corner detector and of the edge
detector would be combined to evaluate the position of
the corner point.

The problems in determining the position of char-
acteristic intensity variations as illustrated above has
many reasons. One reason is that intensity structures
can be very complex and because of the many factors
having an influcnce on their generation the range of
variations is very broad. Another difficulty stems from
the fact that every imaging system is bandlimited. So,
image structures are always blurred. In addition, reduc-
ing the amount of noise contaminating the recorded
signal by applying filters leads to a further blurring.
Each blurring is in general accompanied by a displace-
ment of prominent structures in the image planc.

Consider for example figurc 4, which shows a
qualitative sketch of localization properties of different
approaches applied to detect L-corners. The locus of

Fig. 1. Transformation of a polyhedral object onto the image plane.
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Fig. 2. Result of a direct corner detector.

Fig. 3. Result of an edge detector.

points having steepest slope between the two adjacent
regions is characterized by the dashed line. Direct cor-
ner detectors define the corner point at the position of

Fig. 4. Qualitative sketch of results of different approaches for detect-
ing L-corners.

maximal planar curvature in this line (£;). The same
position is searched for by indirect methods that first
detect edge points, link them together, and then iden-
tify the corner point with the local curvature extrema
on this contour chain. Approximating the contour
chains by straight lines and intersecting those lines
yields (gualitatively) the position %} which in general
lies between ¥ and ¥} since the detected edge points
in the vicinity of the corner lie inside the depicted sec-
tor and straight line approximation and intersection
yields a position on the left of xj.

If, instead, we suppose objects in the depicted 3D-
scene to have ideal sharp 3D-edges and we assume the
imaging system not to introduce blur, then the contour
of the L-corner should result in the solid straight line.
In this case, the searched corner point is localized at
the position £. When more complex junctions, such
as -, ¥ or ARROW-corners are considered, the
localization of corner points becomes more difficult.

3 Related Literature

In the previous section we mentioned that edge detec-
tors assuming 1D grey-value transitions (e.g., Canny
1986) in general have difficulties in the vicinity of cor-
ners. An approach to reverse the blur of filter opera-
tions is introduced in Bergholm (1987). He tracks edge
points from coarse to fine image resolution in order
to reduce the noise and at the same time diminish the
displacement of edges. However, at corners there are
still gaps. Other approaches try to improve the edges
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near corners by filling the gaps with additional edge
points (Korn 1988; Lictal. 1989: Beymer 1991) which
is not always satisfactory. All the approaches above rely
on the maximum of the gradient in the direction of the
gradient (“directional gradient”) which for an L.-corner
leads to the position ¥, and not to the position fy we
are searching for (see figure 4), that is. the problem
of the displacement of corners depending on the blur
of the imaging system is not addressed. An alternative
approach for detecting edges is the use of the Laplacian-
of-Gaussian (LoG) (see Marr & Hildreth 1980).
Although this operator leads to edges swinging around
L-corners (see figure 5) the detected edge lines exactly
pass through the corner position o, independently of
the amount of filtering (sec Berzins 1984). Quali-
tatively, the position &3 is found when edge points ex-
tracted with the LoG arc approximated by straight lines.
A comparison of detected edges by the “directional gra-
dient” and the LoG for a Y-corner can be found in De
Micheli et al. (1989).

Fig. 5 Using the Laplacian-of-Gaussian (LoG) for detecting
L-corners.

Direct corner detectors search the position X,
where in general no attempt is made to reverse the blur
of the imaging system in order to find the position .G
(e.g., Dreschler & Nagel 1981; Kitchen & Rosenfeld
1982; Zuniga & Haralick 1983; Forstner 1986; Noble
1987; Rangarajan et al. 1989). Although an L-junction
often serves as the only model for the corner detector
the obtained operator is applied onto the whole image
(i.e., for more complex corners, t00). An approach
combining the properties of direct corner detectors and
the localization behavior of the LoG for L-junctions
can be found in Deriche and Giraudon (1990). In
Giraudon and Deriche (1991) an extension to trihedral
corners is reported. Their approach relies on local max-

ima of the determinant of the Hessian matrix {Beaudet
1978) which are tracked across different image scales.
One problem is that for a trihedral corner the number
of local maxima depends on the heighis of the different
intensity plateaus. For more complex corners (e.g., 4
edge lines joining in onc point) the constellations and
therefore the tracking of local maxima in scale space
will become even more difficult. Thus, this approach
can hardly be gencralized in a straightforward way. The
direct corner detectors above only determine the posi-
tion of corners. In contrast to this, Guiducci (1988)
estimates additional attributes for L-corners (angle of
aperture, height, and smoothness). However, no attempt
is made to estimate the position X for an L-corner nor
to extend this approach to more complex corners.

4 OQutline of Our Approach

Here, we favor an approach, which in order to estimate
the position as well as additional attributes of corners,
fits a parametric model of a certain class of prominent
features directly to observed intensity variations. This
approach is not limited to L-corners but comprises step
edges and morc complex corners, such as T-, Y-,
ARROW-corners, and all other junction types repre-
sented in the labeling system of Waltz (1975). But of
what use is a quantitative model? First of all, in bring-
ing in a-priori knowledge the underlying assumptions
are made explicit, which opens the possibility to check
whether the assumptions are fulfilled in the image (e.g.,
to find out if the model for a single grey-value struc-
ture is inadequate or whether there are interaction ef-
fects from other grey-value structures). On the other
hand, we are able to derive analytical expressions—for
example, for the displacement of the corner position
when applying Gaussian filters of different size (see
section 5.4).

For our investigation we assume polygonal objects
in the depicted scene to have ideal (or very) sharp 3D-
edges. The blur of the imaging system should be de-
scribable by Gaussian convolution, and the noise in-
troduced in the recording process is supposed to be ad-
ditive, independent of the signal, and normally
distributed with zero mean. If we further assume no
specularities and interreflections then the structural in-
tensity variations of corners can be described by
smoothed ideal wedge-shaped structures having sym-
metric transitions between each two adjacent regions.
The considered features should also be well isolated
and taken with sufficient image resolution. Although
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these assumptions at first glance seem to be very restric-
tive it is otherwise not clear that we actually get the
measurements we want. This holds true for most of the
existing approaches for feature extraction. A refaxation
of the restrictions should be the next step.

For recovering corners, our approach explicitly util-
izes a model describing 2D intensity variations. If the
underlying assumptions are fulfilled then we can reverse
the blur of the imaging system. Independent of the com-
plexity of corners—that is, the number of joining
edges—we here have a possibility to find the origin (up
to subpixel resolution) of the unsmoothed ideal grey-
value structures (for the L-corner in figure 4 this is the
position Xp). Moreover, if, in order to reduce the
noise, we first smooth the image with a Gaussian filter
we get this position, too. This localization property in
particular is important when the distances of object
parts to the camera differ very much. Then a corner
in the front, for example, is represented by a relatively
large number of pixels compared to a corner in the rear.
The blur of a corner in the front will be more pro-
nounced and therefore the displacement of the corner
positions in general will be different. If these different
displacements are not compensated, a 3D-reconstruc-
tion incorporating these measurements in general can-
not be supposed to be very reliable. In addition to the
determination of the position of corners to subpixel
resolution we also estimate additional properties of cor-
ners, such as the characterizing angles, the heights of
intensities, and the amount of blur. Initial values for
the model parameters are found by local operators.
Thus, we address both the problem of detection and
localization. Obviously, by fitting thc parametric model
to single features, the structural information of the in-
tensities is taken into account. Moreover, we sketch a
unifying framework for recognizing edges and corners
of a certain class. Extensions of this class are (in
general) straightforward.

An overview of our approach is sketched in figure
6. In order to find corners in the image we first apply
a local operator to detect points of high image varia-
tions. Then, inside an area around each detected cor-
ner we determine straight lines and, depending on the
number of these edge lines, a parametric model is
selected to be fitted to the intensities. Here, the size
of the considered area was chosen interactively to about
25%25 pixels. Our current investigation assumes
straight edges, that is, we do not treat curved edge lines.
Surely, the detection of corner points and the determina-
tion of initial values for the parameters is a very hard

part and we do not claim that we have solved this prob-
lem. But we feel that together with a quantitative model
as ours this problem can be attacked in an effective way.
The least-squares fit to individual features on one hand
yields precise estimates of the searched parameters and
on the other hand opens the possibility to check whether
the identified model is a good description.

5 A General Parametric Model

Let the image coordinates and the set of unknown model
parameters be denoted by £ = (x, y) and 7’ = (p,,

.-, Py, respectively. Our general model g%, ) for
describing intensity variations of a certain class of
corners is the superposition of model functions of the
L-corner g, (¥, 7) (Rohr 1990, 1992).

N-1

T P = D, g P,
=0

N=2(

Each function gu; (¥, p) is obtained by convolution of

an ideal wedge shaped grey-value structure E(X} 5) with
a Gaussian filter G(¥, ) (see later for details).

gmi(T, ) = E(X, p) * G, P) 2

Using (1) we can model arbitrary complex grey-valuc
structures in terms of the number of adjacent regions.
The choice N = 2 specifies the intensity variations of
a step edge or an L-corner. For N = 3 we obtain T,
Y-, and ARROW-corners. In the case of N = 4 we have
PEAK, K-, X-, MULTI-, and XX-corners in the nota-
tion of the labeling system of Waltz (1975). For N =5
KA- and KX-corners are formed, and N = 6 leads to
even more complex grey-value structures. See figure
7 for an example of a K-corner model. The specific
number of model parameters is# = 3 + 2N. The quan-
titative L-corner model of Berzins (1984) and the model
of a trihedral junction of De Micheli et al. (1989) and
Giraudon and Deriche (1991) are special cases of our
general model.

5.1 Model Function of an L-Corner

In the local coordinate system (figure 8) an ideal wedge-
shaped grey-value structure

a ifx=0A
ly| = tan (B/2)x
0 otherwise

Elok(f: 8, a) =
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Fig. 6. Overview of our approach.
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Fig. 7 Model of a K-corner.

y

tan(B/2) x

Fig. 8 L-corner in the local coordinate system.

with angle of aperiure 3 and height a can be character-
ized by two parts, each having an angle of aperture (/2.

The lower part is just a reflection of the upper part with
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respect to the x-axis. Exploiting this symmetry leads
to a model function valid in the whole range of 0° <
B8 < 180° In contrast to this, Berzins (1984) derives
three functions for an L-corner, the first valid for
0° < 8 < 90° the second for 8 = 90° and the third
for 90° < § < 180° Our model comprises these three
functions and is the supcrposition of two of the first
functions of Berzins. Moreover, more complex corners
are also obtained by superposition of model functions
of the L-corner.

Convolution of E (%, 8, a) with a 2D Gaussian
filter

1 e—x1/2

var

teads with £ = (£, ) to the model of the L-corner in
the local coordinate system

gMLh)k(i: B’ (l) = E/()/\'(X-: B, a) * G(./\:.)

G(N) = GGy, G =

- +: i : E(E. 8, )G(x ~ B) df

Integration of G(x) yields the Gaussian error function
¢(x). Using ¢+ = tan(B/2), {, = tx — y and

o0 = [ G d

d(X) = d(x)P(¥)
D) = Gx)¢(y)

it follows for the upper part of the sector (up to the
height a)

M, ) = | :0 i jo G — F) dE

= ¢(X) — m(X; B) 3)

where

me ) = [ DE#-pd @
Finally, with #* = (x, —y) and é(—y) = 1 ~ @),
the model function of an L-corner can be described as
a(M(E, B) + M(F*, B)
a(¢(x) — m(x;, B) — m(¥’, B))
0° < B < 180° (5

il

8ur,, (% B, a)

For 8 = 180° we have the model of a step edge.

8umsk (K> @) = a ¢(x)

The L-corner model in the absolute coordinate
system (figure 9) is obtained by an additional transla-
tion of the local coordinate system by ¥y = (xq, ) and
a rotation by «. Including a scaling factor ¢ that
characterizes the amount of blur introduced by the
Gaussian filter these steps are defined by the following
transformation. For convenience we explicitly write
only the dependency on «.

[

PHo) = [(x — Xxg) cos(e) + (y — yo) sin(a),

—(x — xg) sin{a) + (v — yg) cos(a)
0

N

X0

an

Fig. 9 L-corner in the absolute coordinate system.

In the general case the local parameters pj,, = (¥,
B, a) are transformed by hE, p) = (hl(f’, J2
hy(x; P)) where each local parameter is substituted by
functions of the global parameters. Using A(¥, §) =
(T*(e), B, @), the L-corner in the absolute coordinate
system can be expressed as

em(%, %o, @, B, a, 0) = gML,Uk(}?(f: J2) IS,
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5.2. Model Functions of General Corners

With (1) and (6) it follows that our gencral parametric
model is describablc by

N-1

Z ST, P

i=0

1l

g%, )
N-1

ay + 2 g (HE M), Nz2 (D

=1

where to the basic plateau @y a number of N — 1
model functions gML[Ok(f_z;(f', p’)) are added. In the
case of 2 adjacent regions (step edge, L-corner) the
model function is determined using

N = 2: ﬁ’: (ff), o, Bl? aOa als U)

hx )y = (¥*@. B, ai — ao)
It is also possible to construct this function by super-
position of two model functions with angle of aperture
8 and 360° — @, respectively. Below, we give the ex-
pressions needed for the cases of 3 adjacent regions
(T-, Y-, ARROW-corners; scc also figure 10) and 4 ad-
jacent regions (PEAK-, K-, X-, MULTI-, and XX-
corners), too. The number of the model parameters in
these cases is 9 and 11.

N =3 é: = ('ﬁ)! &, Bh 62’ agy, ay, ay, U)
hy(x, p) = (F*a — B2 = B/2), B,
a, — a())
p:= (iz)v o, Bla BZ» 637 dg, dy, 4y, 4z, U)
R B) = (F*e — By/2 — By — B3/2),
63’ az — a())

N = 4:

5.3 Partial Derivatives of the General Model

For both fitting the general model to intensity varia-
tions and the evaluation of analytical expressions we
need the partial derivatives of gu(%, ). At the posi-
tion (£°, 7°) these derivatives are calculated using the
generalized chain rule (e.g., Bronstein & Semendja-
jew 1981):

g, p) _ dag
ap; @) ap;
N-1 4 N
+ ZagML[”k(plak)
a -
i=l | I=1 Piok, h(F°F)
X ghy(%, p) )

Fig. 10. 3 adjacent regions.

With the introduction of some symbols—{; = x +
ty, §-2 =__lx =Y g‘?:x — g—g =1x +y’§-: ((2/‘1»
alg), T = (Hg, tlig), g = V1 + 2—and incor-
porating the partial derivatives of m(¥, 8) from (4)

WD - b - 0d

ox
omX, 8) _ 1 o=
L
omx, B8 _ 1 - $opyem
——_35 i [G(x’) + p D(S“)]

we finally get the partial derivatives of gy, (Fiot)
needed in (8).

S8ty Piot) %’ (D) + DEH)

ax
MLy Piok) _ @ pyEty — (T
= (D) ()
08mr,, Plok) _ - ! P
P i) — [G(xv Gl

+ ¢l D(?‘“))] ©)
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Ogmr,, (Fro) _ 1 ~
Sk = g, (Plok)
du a

1t should be noted that all partial derivatives with
the exception of the derivative for the height a are cx-
pressed by the Gaussian function G(x) and the Gaus-
sian error function ¢(x). For computing ¢(x) we use
a rational approximation found in Abramowitz and
Stegun (1965) (sec appendix I).

54. Displacement of the L-Corner Point

Having defined the gencral parametric model and
calculated its partial derivatives we are able to evaluate
the displacement of the L-corner point when blurring
with a Gaussian filter. In figure 4 the position of the
L-corner point was denoted by £ and is searched for
by direct corner detectors and indirect approaches
determining the point of maximum curvature of linked
edge points. It should be mentioned that the estima-
tion of partial derivatives in grey-value images needed
for the corner detectors above is also a filtering step,
which leads to a further displacement of the corner
position. However, assuming Gaussian blur, the filter
effect of the imaging system and of the derivative
operators is describable by an overall blur of ¢’ (see
also section 8); then the following calculations remain
true for this amount of blur.

The position % is located on the line with steepest
grey-value slope given by g%, + 22,88y T 88y
= ( (see, e.g., Canny 1986), where the subscripts to
the picture function g = g(¥) stand for the partial
derivatives in x- and y-direction. The second partial
derivatives of our model according to (9) are

8 gy, Pio) _ @t o o
wPiok) — ¥ oGy - (6D
e o [20600 — 12 (s‘)

+ ¢ DEM)]
Ferr, o) _ at N e it
%kyi == (D) - & DY)
&g, Piok) at -
Z 2V ok O = — | 2GR

6% q [

+ (D@ + D(E“‘))J (10)

Since our L-corner model is symmetric to the x-axis
the corner point is displaced along the line y = 0. We
can now (numerically) calculate the position X = (xg,
0) as the solution of the following implicit equation

setting x' = x/g (remember that + = tan(B/2) and
qg=+1+ 1)

Gix) — t*%x'p(x") =0 (an

From this cquation we sec that since G(x’) > 0 and
$(x’) > 0 the solution will always be x;, > 0. For the
displacement of the L-corner point in dependence of
the model parameters 8, a, o, tollows:

— x;(B) is given by a nonlinear relationship (see
figure 11). For small angles of aperture § the varia-
tion of the displacement is larger than for large
values of B. Theoretically there is no upper bound
for the displacement. If 8 = 90°, for example, the
calculated position is x; = 0.71567. For § = 180°
(step edge) the displacement is zero.

— x;(a) = const; the position of the corner point is
independent of the heights of grey-value plateaus.

— x;(0) = const - ¢; there exists a linear relationship.
Doubling the value of ¢, for cxample, leads to twice
the displacement of the position. For ¢ — 0, the
solution is x; — O and for ¢ = oo we have x; = oo.

Bergholm (1987), De Micheli et al. (1989), and
Deriche and Giraudon (1990) also studied the displace-
ment of the L-corner point. However, they did not
derive an expression like the one in (11). Since our
model is valid for 0° < 8 < 180°, the derived results
hold for this whole range, too.

L

0.0 90° 180°

Fig. 11. Displacement of the L-corner point in dependence of the
angle of aperture 8.
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6 An Approximation of the Parametric Model

In order to compute function values of the L-corner
model gy, (X3 B, @) in (5) we use a rational approx-
imation of the ¢-function. Still, there is an integral that
cannot be evaluated in closed form. In our previous
investigation, Rohr (1990, 1992), we integrated
numerically. In this section, we introduce an approx-
imation of the L-corner model in such a way that func-
tion values of the model can be calculated without
numerical integration. This approximation exploits the
fact that the Gaussian function G(x) can very well be
approximated by a cubic spline B(x). Using the two aux-
iliary functions

-y o0
Y 6-9))
o=t (-]

the cubic spline is defined by B(—x) = B(x) and

B(x) 0<x=<h
B(x) = < By(x) h < x =< 2h
0 x = 2h (12)

Minimizing the squared difference between G(x) and
B(x) (distance between the two functions with respect
to the norm of L,) for ¢ = 1 we found a value of
h = 1.67668. For this value the difference function be-
tween G(x) and B(x) is displayed in figure 12. The
magnitude of the largest deviation is smaller than
8 - 10>, Between general values of o and & exists a
linear relationship (see Rohr & Schnorr 1992). For x]
> 2k, B(x) is equal to zero and for |x| < 2k, B(x) is
described by third-order polynomials. The cubic spline
is now used to substitute the Gaussian function under
the integral in (4). For each interval in [x| < 2k the
integrand then consists of the multiplication of a third-
order polynomial with the ¢-function. This integral,
however, can be evaluated in closed form (¢5 = ¢ +
2¢y; ¢ = ¢ + 3¢)

Jler + 208 + 36,8 + 4cEHS®) d
= (cs + cef + cE’ + cs£)G(E)
+ (=g + e f + 2+ o+ eatHed)  (13)

0.0 F RN

8107 |

Fig. I2. Difference between Gaussian function and cubic spline.

With (13) we have explicit expressions for m(¥; 8) and
gur,, (X, 8, a) in (4) and (5). The coefficients ¢; for
each of the four intervals are listed in appendix 1I. Us-
ing this approximation the general model function as
well as all partial derivatives of it are given in terms
of polynomials, G(x) and ¢(x).

Another approximation of the model function has
been derived by Rohr and Schnorr (1992) whereby both
Gaussian functions in (3) were replaced, each by a
cubic spline. In our experiments it turned out that both
approximations reduce the computation time to nearly
the same extent. However, the approximation intro-
duced in the current contribution is easier to handle
since here we have to distinguish only between four
cases whereas with the approximation of Rohr &
Schnorr (1992) there are 16 cases.

7 Identification

For recovering corners in images we fit our parametric
model directly to image intensities. Estimates for the
model parameters 5 = (py, ..., p,) € K" are found
by minimizing the squared differences between the
(nonlinear) model function and the considered grey
values:

min S (14)
13’6 \7‘7”
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where the objective function is given by
S¢) = 17 = 2wl

m

2.0 (8 — gul®. )’
i=1

|

i

The intensities and the function values of the model
in the considered image area are § = (g(f]), .
g(x;n)) and g;vl(ﬁ) = (gM(x)la [3’)9 ces gM(x-;rl’ [7)) €
F", respectively. For getting first experimental
results, in Rohr (1990, 1992) we used the downhill
method of Powell (1964) utilizing only function values.
Here, in order to reduce the computation time, we apply
the method of Levenberg-Marquardt (Marquardt 1963)
incorporating partial derivatives of the mode] function
in (8). An initial parameter vector j for the iteration
is determined using local operations (see Rohr 1990,
1992). It should be noted that the identification result
relies on the initial parameter values and as usual with
nonlinear cost functions in general we cannot guarantee
to find the global minimum. However, in our experi-
ments the initial values turned out to be sufficiently
good.

8 Recognition of Deviations from the Model

The foregoing identification procedure is applied dir-
ectly to the original image as well as—for reasons of
noise reduction—to the image smoothed with a Gaus-
sian filter, where we choose the filter values as op =
0 (no filtering) and o = 0.5, 1.0, and 1.5. Smoothing
the original image increases the widths of the grey-value
transitions. If we assume the transitions in the image
to be describable by an amount of blur of o, then the
blur of the smoothed original image is given by o =
~a? 4+ o} Thus, the width of the grey-value transi-
tions in the original image can be evaluated by

g = No? — ag (15)

If the considered grey-value structure in the image
agrees with the model then the estimated model
parameters should be (nearly) independent of
smoothing the image beforehand. The mean values of
the determined parameters for the different values of
o could be taken as estimates for the parameters. On
the other hand, observing large variations in the
parameter values for different amounts of Gaussian
smoothing suggests that the employed model is inade-
quate. This can be due to interaction effects from other

prominent features or for reasons that a single grey-
value structure deviates from the assumed model.
Whereas in the first case the considered area should
be decreased, a different model should be used in the
second case. Another cue for checking the validity of
the model is the mean-squared difference between the
model and the intensities.

Fig. 13. Grey-value image of a cut cube.

Fig. 4. Detected corners of figure 13.

9 Experimental Results

In this section we show identification results of our ap-
proach for real image data. Since the general model
also comprises straight step edges we show experimen-
tal results of such edges, too. Model fitting approaches
for straight step edges are also introduced by Hueckel
(1971, 1973) and Nalwa and Binford (1986). However,
these approaches have been designed for straight edges
but not for corners. Applying our approach to an ap-
proximately 2020 portion of the image of the step
edge marked in figure 15 (the profile of this step edge
is displayed in figure 16) we get the identification results
shown in table 1 which approximate the original step
edge fairly well. The estimated model parameters, the
mean error ¢ (positive root of the mean squared error),
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Fig. 15. Considered features of figure 13.

Fig. 16. Profile of the step edge marked in figure 15.

and the estimates for the blur in the unfiltered image
0g using (15) are given in this table, where the value
of o characterizes the amount of smoothing of the
original image with a Gaussian filter before the model
is fit to the intensities. We see that the more we smooth
(increasing o) the better is the agrecment of the im-
age with the model function (decreasing ¢€). This is
becausc smoothing the original image reduces the noise.

Tuble 1. identification result of the step edge in figures 15 and 16.

It can also be obsend Lo fin a7 the
expected nereise of o, the cwim sneters
are nearly independent of oy that i i siible to

first smooth the original nupe morder @ reduce the
noise before applying the identification procedure.

For some further tests of our approach on other im-
ages we refer to Bergholm and Rohr (1991}, where the
estimates for the width and height of step edges were
compared with the estimates of the approach of Zhang
and Bergholm (1991). One interesting example is the
asymmetric step edge shown in figure 17 for which the
two approaches yielded different results. For both ap-
proaches the assumptions are violated. Considering the
identification results of our approach in table 2, we can
observe that some of the estimated model parameters
vary in dependence of the amount of filtering op.
Especially, the paramter dy, which characterizes the
width of the transition, increases very much. This is
an indication that the underlying model is not adequate.
We also see that the mean error ¢ for this asymmetric
step edge is much larger than the one of the nearly sym-
metric step edge in table 1. This observation gives an
idea of how our approach can be used to check the
validity of the parametric modcl. When verifying this
for a larger number of experiments a statistical test
should be used.

Next we discuss the identifcation results of the L-
corner in figure 15 (figure 13 is the original image and
the detected corner positions used as starting values for
the minimization proccdure are shown in figure 14).
For the identification of step edges the model function
is explicitly given by ¢(x). For corners, however, we
use the approximation of the model developed in section
6. Applying the minimization method of Levenberg-
Marquardt (Marquardt 1963) in a 25%25 image area,
we get the results listed in table 3. As for the step cdge
in our first example it can be observed that the estimated
parameters are nearly independent of smoothing the im-
age beforehand. This is also true for the position & of
the corner, because & indicates the origin of the grey-
value structure, that is, the position of the unsmoothed

oy Xy a ag a; 0 € 0
0.0 11.87 3.87 16.15 115.09 1.52 2.48 1.52
0.5 11.87 3.97 16.13 114.92 1.59 1.98 1.51
1.0 11.86 4.27 16.25 114.03 1.82 1.02 1.52
1.5 11.89 4.24 16.08 114.66 2.13 0.60 1.52
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U o e

Fig. 17 Asymmetric step cdge.

corner (for the model parameter ¢ = 0). Under the
assumption that 3D-edges are very sharp and that the
blur of the imaging system is approximately describable
by Gaussian convolution our approach helps to reduce
the influence of the blur of the imaging system. This
is especially important for determining the position of
features when the distances of objects in the scene to
the recording camera differ very much or when the
camera is not well focused. The estimate for the width
of the grey-value transitions is o =~ 1.0 and is much
smaller than the one for the step edge (5o = 1.5) in
the first example. This is plausible since the L-corner

Table 2. 1dentification result of the asymmetric step edge in figure 17.

is in the rear of the recorded object and therefore the
transitions are represented by a smaller number of pix-
els than the transitions of the step edge which is closer
to the recording camera. For comparison we also show
the identification results for this L-corner with our
previous approach Rohr (1990, 1992) (numerical in-
tegration to compute the model and minimization with
the method of Powell (1964)) in table 4. With the new
approach, which reduces the computation time from
several hours to a few minutes on a DEC Station 2000
(implemented in Ada), the estimated parameters are
nearly the same. The differences of the results 10 our
previous approach lie within the parameter variations
in dependence of of.

The application of the approach in the current dis-
tribution for the Y-corner in figure 15 yields the values
in table 5. The estimates are also ncarly independent
of smoothing the image before fitting the model. Espe-
cially the determination of the position X is very
stable. The original grey-value structure in figure 18
is fairly well approximated by the identified model in
figure 19. From the estimated model parameters the
edges of the depicted image can be reconstructed (sce
figure 20). In contrast to the original grey-value edges
(see figure 3 and the dashed lines in figure 21), the
reconstructed edges are closed, that is, there are no
gaps, and the corner point is uniquely determined. No-
tice, that the highest plateau of the Y-corner is corrupted
with a more or less elliptic region. Since our approach
acts rather globally (i.e., we fit a model to the whole
grey-value structure) such “microstructures” as well as
noise do not affect the result very much. Local opera-
tors, however, in general have more difficulties with
such influences.

ar X « ag a, o e g
0.0 138.62 59.10 200.26 64.06 1.08 9.19 .08
0.5 138.53 59.20 201.05 63.69 1.31 7.34 1.21
1.0 138.40 59.01 201.97 62.90 1.75 4.40 1.44
1.5 138.33 58.91 203.70 61.60 2.22 2.61 1.63
Table 3. Identification result of the L-corner in figure 15.

IF X0 Yo a 8y a4 a4 o e 4y

0.0 27.19 28.60 267.71 158.64 15.30 64.10 0.99 1.61 0.99
0.5 27.22 28.60 267.68 159.28 15.30 63.99 1.09 1.04 0.97
1.0 27.24 28.46 267.87 159.86 15.33 63.84 1.42 0.42 1.01
1.5 27.24 28.40 267.96 159.83 15.28 63.91 1.78 0.24 0.95
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Tuble 4. Tdentification result of the L-corner in figure 15 with our previous approach.

of Xp Yo o By ag ay I 13 oy

0.0 27.18 28.60 267.72 158.33 15.33 64.12 0.96 1.60 0.96
0.5 27.22 28.64 267.63 159.17 15.32 64.01 1.09 1.03 0.97
1.0 27.24 28.50 267.82 159.65 15.35 63.87 1.42 0.43 1.01
1.5 27.23 28.39 267.96 159.34 15.30 63.95 1.78 0.26 0.96

Table 5. Tdentification result of the Y-corner in figure 13.

aF ) Yo o B B, ) a @ g e 4]
0.0 29.66 26.26 91.17 58.85 145.76 124.41 177.62 59.66 1.48 2.90 1.48
0.5 29.70 26.21 90.96 58.41 145.18 124.33 178.06 59.83 1.56 2.44 1.48
1.0 29.72 26.20 91.27 58.67 144.81 124.07 178.87 59.71 1.88 1.75 1.59
1.5 29.79 26.17 91.02 57.87 144.58 124.13 179.84 59.35 2.20 1.20 1.62

Fig. 18 3D-plot of the Y-corner marked in figure 15.

) Fig. 19. 1dentified model of the Y-corner in figure 18.
For the ARROW-corner marked in figure 15 the

estimates in table 7 are also nearly independent of We also show identification results for the features
smoothing with the exception of the slight decrease of marked in figure 24 (see also figures 22 and 23). The
B, and g,. This indicates that the underlying model in estimates for the considered L-, Y-, and ARROW-corner
this case deviates a bit. However, by increasing the area are listed in tables 9, 10, 11 and again demonstrate the
where the model is fit to the image, the variation of efficiency of our approach.

the two parameters can be reduced which also means
that this area was not chosen carefully. The choice of

the window size is a crucial problem especially when 10 Conclusion and Further Work

other image features are very close to the considered

grey-value structure. Automatically choosing the win- Starting from the parametric model of Rohr (1990,
dow size is still an open question. For comparison the 1992), we have introduced here an approach for the
estimates with our previous approach are given, too identification of a certain class of prominent features

(see tables 6 and 8). in grey-value images comprising step edges, L-corners,



Recognizing Corners by Fitting Parametric Models 227

Fig. 21. Comparison of reconstructed edges (solid lines) and grey-

Fig. 20. Reconstructed edges for the Y-corner in figure 18. .
value cdges (dashed lines).

Table 6. Ydentification result of the Y-corner in figure 15 with our previous approach.

op Xy Yo « I 3, ag a; a 4 e oy
0.0 29.60 26.30 91.42 59.31 146.00 124.41 177.50 59.66 1.46 2.87 1.46
0.5 29.65 26.25 91.19 58.88 145.40 124.32 177.97 59.82 1.55 2.41 1.46
1.0 29.69 26.20 91.17 58.70 144.56 124.09 179.05 59.66 1.87 1.69 1.58
1.5 29.68 26.23 91.30 58.50 145.17 124.15 179.72 59.38 2.18 1.15 1.58
Table 7 Identification result of the ARROW-corner in figure 15.

oF Xy Yo « By B> a ay a, 0 e 0
0.0 21.84 32.01 230.21 68.66 30.99 12.92 42.13 68.98 1.01 2.48 1.01
0.5 21.84 32.07 229.65 67.14 31.09 12.86 42.14 69.08 1.10 2.16 0.99
1.0 21.81 32.15 228.63 64.18 31.41 12.72 42.29 69.08 1.40 1.75 0.98
1.5 21.76 32.22 228.39 63.34 31.34 12.69 42.36 68.91 1.72 1.44 0.84
Tuble 8. Identification result of the ARROW-corner in figure 15 with our previous approach.

0F X0 Yo o By B, o @ @ o e %
0.0 21.85 32.00 230.15 68.53 31.01 12.93 42.10 69.01 1.00 2.47 1.00
0.5 21.84 32.03 229.80 67.36 31.16 12.88 42.15 69.10 1.10 2.15 0.98
1.0 21.82 32.13 228.58 64.14 31.43 12.76 42.30 69.10 1.40 1.73 0.97
1.5 21.77 32.16 228.51 63.56 31.45 12.76 42.34 68.95 1.72 1.41 0.83
T-, Y-, ARROW-corners, and more complex junction tions. By fitting our model directly to image intensities
types. With this two-dimensional model the underlying this approach not only determines the position of grey-
assumptions are made explicit, while most existing ap- value structures to subpixel resolution but also yields

proaches implicitly suppose special grey-value func- additional attributes such as the width of the grey-value
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Fig. 22. Grey-value image. Fig. 24. Considered features of figure 22.

transitions. Assuming ideal sharp 3D-edges and Gaus-
sian blur of the imaging system we here have a possibil-
ity to cstimate as corner position the origin of the ideal
unsmoothed grey-value structures, that is, to reverse the
blur. Therefore, when the underlying assumptions of
the model are fulfilled our approach does not suffer
from the displacement of the corner position caused
by the blur of the imaging system and by other smooth-
ing operations. This is an advantage over approaches
that define the L-corner position as the point of maxi-
mal planar curvature in the line with steepest slope.
For those approaches we have derived an implicit
Fig. 23. Detected corners of figure 22. equation describing their localization error compared

Tuble 9. Identification result of the L-corner in figure 24.

gy Xy Yo @ B ap a g e 9
0.0 166.69 204.89 147.50 121.72 15.24 136.12 1.49 3.32 1.49
0.5 166.71 204.87 147.37 122.08 15.22 136.12 1.57 2.98 1.49
1.0 166.75 204.79 146.98 123.55 15.05 136.24 1.83 2.11 1.54
1.5 166.77 204.81 147.06 123.44 14.69 136.44 2.14 1.61 1.53

Table 10. Identification result of the Y-corner in figure 24.

of Xy Yo o 8, B, gy a; y g e ag
0.0 165.48 99.45 329.61 118.61 104.15 93.69 138.90 54.17 1.52 2.35 1.52
0.5 165.48 99.45 329.80 118.74 103.91 93.66 138.88 54.33 1.60 2.14 1.52
1.0 165.49 99.43 330.48 118.66 103.94 93.46 138.78 54.61 1.84 1.62 1.55
1.5 165.48 99.42 330.49 118.45 104.15 93.46 139.01 54.29 2.16 1.22 1.56

Tuble 11. dentification result of the ARROW-corner in figure 24.

OF Xp Yo @ B B a0 a d g e 9
0.0 59.13 83.60 2.57 48.02 68.91 11.28 83.08 56.72 1.24 1.46 1.24
0.5 59.12 83.62 2.35 48.36 68.72 11.30 83.10 56.57 1.33 1.25 1.23
1.0 59.08 83.62 1.91 48.84 68.03 11.30 83.12 56.24 1.63 0.88 1.29

1.5 59.05 83.63 1.81 48.63 68.00 11.20 83.53 56.44 1.97 0.67 1.28
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to the origin of the ideal unsmoothed grey-value struc-
ture. Another advantage of our approach is that it acts
rather globally which mcans that small deformations
of the image surface (in general) do not affect the
estimation result as much as mere local approaches do.

When an analytical approximation to the model
function is used and thc minimization method of Leven-
berg-Marquardt is applied, the computational expense
in comparison to that of our previous approach is re-
duced remarkably while nearly the same experimental
results for real image data are obtained. Tn addition,
we indicated that by fitting our model to the original
as well as to the smoothed original image cues can be
obtained for recognizing deviations from the model.
This observation has to be verified experimentally in
a larger number of experiments. Another issue that re-
quires further attention is the automatic choice of the
window size for the fit. In summary, we have sketched
a unifying framework for the recognition of step edges
and corners of a certain class. Extensions of this class
are the gencralization to curved edges and increasing
(decreasing) plateaus of the ideal grey-value structures.
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Appendix I

Approximation of ¢x) for 0 = x = oo

b)) = | — (byr + byt® + byt + byt

+ btHGE) + elx) 1= !
1+ px
le@)) < 7.5+ 107"
1530 3782
7937 5978
4429 19
b, = 031938 by = —0.35656
by =  1.78147 by = —1.82125
bs =  1.33027 p = 023164

Appendix 11

Coefficients for (13) using d = (ht)*:
—2h < x £ —h

c = 2ht + ?2’

¢, = cl6d,
Ccy = Alad,
cy = ¢/6d,
cq = 1/24d

—h < x =0

¢ = 2ht + g-z,

o = hD’ ~ 5

o= 2L
2d

o = — &6 + 20)

2 T e

4d

¢ = 2ht - {5,
() = BAD’ = 5
2d
oy = Pl — 26)
4d
=8¢
6d
Cy = L
8d
h<x=2h
¢ =2t — (.
o = éd,
¢ = — Al4d,
¢y = ¢/6d,
o = — 124d.



