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Abstract. We introduce an approach to elastic registration of tomo-

graphic images based on thin-plate splines. Central to this scheme is a

well-de�ned minimizing functional for which the solution can be stated

analytically. In this work, we consider the integration of anisotropic land-

mark errors as well as additional attributes at landmarks. As attributes

we use orientations at landmarks and we incorporate the corresponding

constraints through scalar products. With our approximation scheme it

is thus possible to integrate statistical as well as geometric information as

additional knowledge in elastic image registration. On the basis of syn-

thetic as well as real tomographic images we show that this additional

knowledge can signi�cantly improve the registration result. In particu-

lar, we demonstrate that our scheme incorporating orientation attributes

can preserve the shape of rigid structures (such as bone) embedded in

an otherwise elastic material. This is achieved without selecting further

landmarks and without a full segmentation of the rigid structures.

1 Introduction

Image registration based on point landmarks plays a major role in, e.g., neuro-
surgery planning and intraoperative navigation. While rigid and aÆne schemes
can only describe global geometric di�erences between images, elastic schemes
can additionally cope with local di�erences. Reasons for local geometric di�er-
ences are di�erent anatomy (or pathology), scanner- or patient-induced distor-
tions, as well as intraoperative deformations due to surgical interventions.

The most widely applied method for point-based elastic image registration
is based on thin-plate splines. This approach has been introduced into medical
image analysis by Bookstein [2]. Evans et al. [9] applied this scheme to 3D med-
ical images. Thin-plate splines have a physical motivation, are mathematically
well-founded, and are moreover computationally eÆcient. Alternative splines
based on the Navier equation, which have been named elastic body splines, have
recently been introduced by Davis et al. [7]. Extensions of point-based elastic
schemes which allow to include additional attributes at landmarks have been
proposed by Bookstein and Green [5] and Mardia and Little [11]. The combina-
tion of thin-plate splines with mutual information as similarity measure for the



purpose of re�ning initially coarsely speci�ed landmarks has been proposed by
Meyer et al. [16].

In all of these approaches from above the interpolation case has been treated.
This means that corresponding landmarks are forced to match exactly and thus
it is (implicitly) assumed that the landmark positions are known exactly. This
assumption, however, is unrealistic since landmark extraction is always prone to
error. Approximation schemes, on the other hand, allow to incorporate landmark
errors. The error information is used to control the in
uence of the landmarks
on the registration result, which is important in clinical applications. Also, the
resulting computational scheme is more robust in comparison to an interpolation
approach. However, it seems that approximation schemes have so far not been
a focus of research (but see Bookstein [3], Rohr et al. [17], and Christensen et
al. [6] for exceptions). A more detailed discussion of these schemes is given in
Section 2 below.

This contribution is concerned with an approximation scheme for point-based
elastic image registration using thin-plate splines. Central to this scheme is a
well-de�ned minimizing functional for which the solution can be stated analyti-
cally. Therefore, we yield an eÆcient computational scheme for determining the
transformation between two images. In earlier work, we have introduced an ap-
proach that allows to incorporate isotropic as well as anisotropic landmark errors
and we have proposed a scheme for estimating landmark localization uncertain-
ties directly from the image data (Rohr et al. [17]{[19]). In this contribution,
we suggest a generalization of our work which allows to integrate additional at-
tributes at point landmarks. By this, additional knowledge is used to further im-
prove the registration result without the necessity of specifying additional land-
marks. In our case, we consider orientation attributes at corresponding points.
Generally, these attributes characterize the local orientation of the contours at
the landmarks. In previous work on the incorporation of additional attributes,
Bookstein and Green [5] have represented orientations by additional points close
to the landmarks, thus they used a �nite di�erence scheme. Mardia and Lit-
tle [11] have proposed a scheme based on the method of kriging where exact
orientations are incorporated. Their scheme requires the orientation vectors to
be unit vectors. This imposes constraints which may not be desired. The ap-
proach we propose also includes exact orientations, however, in comparison to
[11] the orientation vectors need not to be normalized to unit vectors. This is
achieved by representing the constraints due to the orientations through scalar
products. Additionally, we treat the interpolation as well as the approximation
case. In particular, we propose a combined scheme that integrates isotropic as
well as anisotropic errors together with orientation attributes. Also, we extend
the domain of application of our scheme to the important case of preserving rigid
structures (such as bone) embedded in an otherwise elastic material. It seems
that this application has so far not gained much attention in previous work on
point-based registration using attributes (but see Mardia and Little [11]). In
comparison to other schemes such as Little et al. [14] a full segmentation of the
rigid structures is not necessary for our approach.



The remainder of this contribution is organized as follows. In the next section,
we discuss in more detail related work on approximation schemes for point-based
nonrigid image registration. Then, we describe our approach based on thin-plate
splines which integrates anisotropic landmark errors and orientation attributes.
The applicability of the approach is demonstrated for synthetic data as well as
real tomographic images of the human brain.

2 Related Work

In this section, we discuss approximation schemes for point-based nonrigid image
registration. For other approaches to medical image registration we refer to a
recent review by Maintz and Viergever [15].

In [3], Bookstein proposed an approach to relaxing the original interpolating
thin-plate spline approach [2] by straightforward combination of di�erent energy
terms, where one term represents the bending energy of interpolating thin-plate
splines and the other the distance of the landmark con�gurations (note, that in
total four di�erent energy terms have been proposed which may be combined).
The basis of the approach is a linear regression model and the technique is
referred to as `curve d�ecolletage' (Leamer [13]). With this approach it is possible
to incorporate isotropic and anisotropic errors. However, since the approach has
not been related to a minimizing functional w.r.t. the searched transformation
it is generally not clear whether all solutions in the whole function space are
obtained. The approach has been described for 2D datasets and experimental
results have been reported for 2D synthetic data. The landmarks as well as the
corresponding errors have been speci�ed manually.

In [17], we have introduced approximating thin-plate splines for elastic image
registration. Our approach is based on the mathematical work of Duchon [8]
and Wahba [21] which is a di�erent mathematical framework in comparison to
that in Bookstein [3]. The basis is a minimizing functional w.r.t. the searched
transformation. The solution in the whole function space can be shown to be
unique and can be stated analytically. While in [17] we have treated the case of
isotropic errors, in [18],[19] we have recently incorporated anisotropic errors for
the landmarks in both of the images to be registered. Also, we have proposed to
estimate the landmark localization uncertainties directly from the image data
utilizing the Cram�er-Rao bound (see [19]). The approach has been applied to 2D
as well as 3D tomographic images of the human brain and the landmarks have
been localized semi-automatically using di�erential operators.

Recently, Christensen et al. [6] introduced a hierarchical approach to im-
age registration combining a landmark-based scheme with an intensity-based
approach using a 
uid model. The landmark scheme is based on the linear elas-
ticity operator, thus the resulting splines are di�erent from thin-plate splines.
Another di�erence to our approach is that the nonaÆne part of the transforma-
tion is separated from the aÆne part in their functional. The approach has been
applied to the registration of 3D cryosection data of a macaque monkey brain
as well to MR images of the human brain. Isotropic landmark errors have been



included in one of the two images to be registered. Since no further details have
been given on how the errors have been determined, it seems that equal isotropic
errors have been used in their application.

As already mentioned above, Bookstein and Green [5] as well as Mardia and
Little [11] introduced nonrigid registration schemes incorporating orientation
attributes. These schemes are based on a �nite di�erence scheme and the method
of kriging, resp. In both of these works the interpolation case has been treated
only, although a generalization to approximation is principally possible.

3 Thin-Plate Splines with Landmark Errors and

Additional Attributes

We now describe our approach to elastic image registration based on thin-plate
splines. This approach incorporates landmark errors as well as orientation at-
tributes at landmarks. While the landmark errors represent statistical informa-
tion about the uncertainty of landmark localization, the orientation attributes
represent geometric information about the contours at the landmarks. Below,
we �rst brie
y review our scheme incorporating anisotropic landmark errors and
then describe an extension for incorporating orientation attributes.

3.1 Anisotropic Landmark Errors

We denote the sets of landmarks in two images by pi and qi, i = 1 : : : n, and
the transformation that maps two images by u with components uk; k = 1 : : : d,
where d is the image dimension. The bending energy of thin-plate splines can
be written as a function of the order m of derivatives in the functional as well
as the image dimension d as

Jdm(u) =

dX
k=1

Jdm(uk); (1)

where

Jdm(uk) =
X

�1+:::+�d=m

m!

�1! � � ��d!

Z
IRd

�
@muk

@x�11 � � � @x�d

d

�2
dx (2)

according to Duchon [8], Wahba [21]. Under the necessary and suÆcient condi-
tion of 2m� d > 0 the functional is bounded.

Anisotropic landmark errors are represented by covariance matrices �i. In
this case the minimizing functional reads as

J�(u) =
1

n

nX
i=1

(qi � u(pi))
T
�
�1
i (qi � u(pi)) + �Jdm(u) (3)

and consists of two terms (see Rohr et al. [18],[19]). The �rst term measures
the distance between the two landmark sets weighted by the covariance matrices



�i. The second term represents the smoothness of the transformation, and the
parameter � weights the two terms. Special cases of this approximation scheme
are interpolating thin-plate splines and optimal aÆne transformations. The ap-
proach is applicable to arbitrary image dimensions d, e.g., 2D and 3D images.
For the functional in (3) there exists a unique analytic solution, which can be
stated as

uk(x) =

MX
�=1

ak;���(x) +

nX
i=1

wk;iU(x;pi); k = 1; :::; d; (4)

with monomials � up to order m � 1 and suitable radial basis functions U

(see Wahba [21],[22], Wang [23]). The coeÆcients a = (aT1 ; :::; a
T
M )T , aTi =

(a1;i; :::; ad;i), andw = (wT
1 ; :::;w

T
n )

T ,wT
i = (w1;i; :::; wd;i) of the transformation

u can eÆciently be computed through the following system of linear equations:

(K+ n�W�1)w +Pa = v (5)

PTw = 0;

where W represents the landmark errors by W�1 = diagf�1; : : : ;�ng and is
a block-diagonal matrix. The other matrices in (5) are given by K = (KijId),
where Kij = U(pi;pj) and Id is the d � d unity matrix, and P = (PijId),
where Pij = �j(pi). The vector v can be written as v = (vT1 ; :::;v

T
n )

T , vTi =
(qi;1; :::; qi;d).

Note, that our approximation scheme using covariance matrices is also a
generalization of the work in Bookstein [4], where the interpolation case is solved
while the landmarks are allowed to slip along straight lines within a 2D image.
Actually, this is a special case of our approximation scheme since for straight
lines the variance in one direction is zero whereas in the perpendicular direction
it is in�nite.

3.2 Landmark Errors and Orientation Attributes

The approach described above can further be generalized for inclusion of addi-
tional attributes at landmarks. In our case, we incorporate orientation attributes.
These attributes characterize the local orientation of the contours at the land-
marks and represent additional knowledge for elastic image registration.

At corresponding landmarks we assume to have orientations which we want
to match (note, that these landmarks are generally a subset of the overall land-
marks). We denote those landmarks in the �rst and second image by p�i and
q�i and the corresponding orientations by di and ei, resp. To de�ne a matching
criterion between the orientations, we need the transformed vector of di. This
vector can be stated as (dTi r)u(p�i). Now we require that this transformed
vector is perpendicular to e?i;k, which are the k-th orthogonal vectors to the ori-
entation vector ei in the second image. In this case, the scalar product between
the vectors is zero, otherwise it is di�erent from zero. Choosing vectors from
the orthogonal space has the advantage that the corresponding scalar product



is zero independently of the length of the vectors. This is an advantage over the
approach in Mardia and Little [11] (see also Mardia et al. [12]), where the orien-
tation vectors are required to be unit vectors and where the interpolation case
has been treated only. In our work, we both treat the interpolation as well as
the approximation case. Note, however, that the property of length independence
only holds in the case of interpolation, but not for approximation. In general we
have d� 1 perpendicular orientations e?i;k which constrain the orientation of the
transformed orientation vector of the �rst image to lie on a line. If the number
of perpendicular orientations is smaller, i.e., the number of constraints is lower,
then the orientation of the transformed orientation vector is not constrained
w.r.t. a line, but w.r.t. a plane, for example (see also Fornefett et al. [10]).

Having de�ned the matching criterion between orientations we can now state
the generalized minimizing functional using �i = qi � u(pi) as

J�(u) =
1

n

nX
i=1

�
T
i �

�1

i �i +
1

n02

n�X
i=1

d�1X
k=1

�
(dTi r)uT (p�i)e

?

i;k

�2
+ �Jdm(u); (6)

where n02 = n2=c, c > 0, and n2 = n�(d � 1). In comparison to the functional
(3) from above we have an additional term that incorporates the orientation
constraints. n� is the total number of orientations in each of the images. The pa-
rameter c weights the orientation term w.r.t. the term representing the landmark
errors and also determines (besides �) whether we interpolate or approximate the
orientations. Note, that we can incorporate an arbitrary number of orientations
at each landmark. As described above, the orientation constraints are incorpo-
rated by scalar products between the transformed orientations of the �rst image
and orientations perpendicular to the orientations in the second image. The
solution to the functional in (6) can be stated as

u(x) =

MX
�=1

dX
k=1

ak;���(x)"k +

nX
i=1

dX
k=1

w1;k;iU(x;pi)"k

�

n�X
i=1

d�1X
k=1

w2;k;i(d
T
i r)U(x;p�i)e

?

i;k; (7)

with monomials � up to order m� 1 and radial basis functions U as above. "k,
k = 1 : : : d, are the canonical basis vectors of the IRd. The solution is analogous to
(4) from above, but additionally we have a term that represents the orientation
constraints. Note, that in order to obtain bounded functionals the used function
space has to be constrained. Choosing m = 2 for the order of derivatives of the
smoothness term, then for both cases of 2D and 3D images (d = 2; 3) incorporat-
ing orientations, we have the basis function U(x) = jxj3. The parameter vectors
a = (aT1 ; :::; a

T
M )T , aTi = (a1;i; :::; ad;i), and w = (wT

1;1; :::;w
T
1;n;w

T
2;1; :::;w

T
2;n�

)T ,

wT
1;i = (w1;1;i; :::; w1;d;i), w

T
2;i = (w2;1;i; :::; w2;d�1;i) of the transformation u can

be computed by solving the linear system of equations

Kw +Pa = v (8)

PTw = 0;



with

K =

�
K1 + n�W�1 K2

K3 K4 + n02�In2

�
and P =

�
P1

P2

�
; (9)

where W�1 = diagf�1; : : : ;�ng as in (5) and In2 is the n2 � n2 unity matrix
with n2 = n�(d�1). The other matrices in (9) are given byK1 = (K1;ijId), where
K1;ij = U(pi;pj) and Id is the d�d unity matrix;K2 = (K2;ijFj), whereK2;ij =
�(dTj r)U(pi;p�j ), Fj;kl = "

T
k e

?

j;l, and Fj are d � (d � 1) matrices; K3 = KT
2 ;

K4 = (K4;ijEij), where K4;ij = �(dTj r)(dTi r)U(p�i ;p�j ), Eij;kl = (e?i;k)
T e?j;l,

and Eij are (d � 1) � (d � 1) matrices; P1 = (P1;ijId), where P1;ij = �j(pi),
and P2 = (P2;ijF

T
i ), where P2;ij = (dTi r)�j(p�i). K and P are of dimension

n0 � n0 and n0 � dM , resp., with n0 = nd+ n�(d � 1). The vector v is given by
v = (vT1 ; :::;v

T
n ; 0; :::; 0)

T , vTi = (qi;1; :::; qi;d), with n2 zeros at the end.

4 Experimental Results

We demonstrate the applicability of our approach using synthetic data as well as
real tomographic images of the human brain. In the �rst two experiments we have
incorporated either anisotropic landmark errors only or orientation attributes
only. For the last two experiments we have integrated both landmark errors
(isotropic as well as anisotropic errors) and orientation attributes.

In the �rst example, we register the 2D MR brain images of di�erent patients
displayed in Fig. 1. We have used normal landmarks and quasi-landmarks. The
quasi-landmarks have no unique position in comparison to normal landmarks,
e.g., arbitrary edge points. The incorporation of quasi-landmarks is important
since normal point landmarks are hard to de�ne at the outer parts of the human
head. For all landmarks the covariance matrices have been estimated directly
from the image data by utilizing the Cram�er-Rao bound

�g =
�2n
m
C�1
g ; (10)

where �2n denotes the variance of additive white Gaussian image noise, m the

number of voxels in a local 3D window, and Cg = rg (rg)T is the averaged
dyadic product of the image gradient (Rohr [19], van Trees [20]). Note, that the
Gaussian noise model is an approximation and that we assume that the depen-
dence of the noise on the signal can be neglected (but see Abbey et al. [1]). In
Fig. 1 the landmark localization uncertainties are represented by error ellipses
(note, that the ellipses have been enlarged by a factor of 7 for visualization pur-
poses). It can clearly be seen that for the normal landmarks the localization
uncertainty is small in all directions, while for the quasi-landmarks (landmarks
Nr. 9-12) the localization uncertainty is large along the edge but small perpen-
dicular to it. Fig. 2 on the left shows the registration result when using only
the normal landmarks for elastic image registration (landmarks Nr. 1-6 and 8).
Here, we have applied our approximating thin-plate spline approach while in-
corporating isotropic errors and setting m = d = 2 in (3). We have transformed
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Fig. 1. MR data sets of di�erent patients: normal landmarks, quasi-landmarks, and

estimated error ellipses (enlarged by a factor of 7).
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Fig. 2. Registration results: Thin-plate spline approximation using normal landmarks

along with equal scalar weights (left), and using normal landmarks, quasi-landmarks

and estimated covariance matrices (right).

the �rst image and have overlayed it onto the computed edges of the second
image. While the registration accuracy within the inner parts of the brain is
quite good, at the outer parts there are larger errors. If instead we use both
the normal landmarks and the quasi-landmarks while incorporating anisotropic
errors, then we can signi�cantly improve the registration accuracy as shown in
Fig. 2 on the right.

With the second example we demonstrate the usefulness of incorporating
orientation attributes at landmarks. With the two synthetic images in Fig. 3
we simulate the rotation of a rigid structure (such as bone) embedded in an
otherwise elastic material. If we use point landmarks only (four landmarks at
the rigid structure and four landmarks at the image corners), then we obtain
the result shown in Fig. 4 on the left. We see that the whole image including the
rigid structure is elastically deformed. Next, we have incorporated orientations



Fig. 3. Synthetic images simulating the rotation of a rigid structure in an otherwise

elastic material.

Fig. 4. Registration results: Interpolating thin-plate splines using only point landmarks

(left) and incorporation of orientations at landmarks (right).

at the landmarks of the rigid structure. In all our experiments incorporating
orientations we used c = 1 andm = 2 for the functional in (6). At each of the four
landmarks of the rigid object in Fig. 3 we have speci�ed two orientations which
are aligned with the contours of the object. Using this additional knowledge for
image registration signi�cantly improves the result, i.e., the shape of the rigid
object is well preserved (Fig. 4 on the right). Previously, Little et al. [14] have
considered the problem of preserving rigid structures within elastic material.
However, in their approach a full segmentation of the rigid structures is necessary.
With our scheme we neither needed a full segmentation nor have we needed
additional point landmarks.

In the third example we treat the case of several rigid structures embedded
in elastic material. Fig. 5 shows two synthetic images that simulate the bending
of a spine which is represented by �ve rigid components (see also [14]). The
registration result in Fig. 6 on the left is obtained if we apply interpolating thin-
plate splines while using four landmarks for each rigid component as well as four
image border landmarks. In Fig. 6 in the middle the result is shown if we include



two orientations at each landmark of the rigid components, while still applying
an interpolation scheme. It can be seen that the shape of the rigid structures is
better preserved, particularly the outer contours of the rigid components are not
curved as in the case of using point landmarks only. A further improvement is
obtained if we use both the point landmarks and the orientations but apply an
approximation scheme (Fig. 6 on the right). Here we have used equal isotropic
landmarks errors in the functional in (6). From the result it can be seen that the
contours of the rigid components are straight and now also the gridlines within
the rigid components are nearly straight. Thus the shape of the rigid structures
is better preserved.

With the last example we show an application where we have integrated
both anisotropic landmark errors and orientation attributes. In Fig. 7 two MR
images of di�erent patients are shown. We have selected normal point land-
marks and quasi-landmarks, and we have estimated the error ellipses directly
from the image data. If we use only the normal landmarks (9 landmarks; Nr.
1,2,4,7,10,11,16,17,18) and apply interpolating thin-plate splines, then we obtain
the result shown in Fig. 8 on the left. Deviations can be observed in the regions
where no landmarks have been speci�ed, particularly at the upper part of the
brain and at the corpus callosum. Next, we have used the normal landmarks
from above together with three quasi-landmarks at the skin contour (landmarks
Nr. 25,26,27). For all landmarks we have automatically estimated the covariance
matrices and we have applied the approximating thin-plate spline approach in-
corporating anisotropic errors. From Fig. 8 on the right it can be seen that the
registration accuracy at the upper part of the brain is now much better while at
the corpus callosum there is still a larger deviation. We can further improve the
result in this region if we additionally integrate orientations at landmarks. In this
example, we have included one orientation at landmark Nr. 1 (genu of corpus
callosum). In both images this orientation points to the top of the corpus callo-
sum. From Fig. 9 we see, that we now obtain a signi�cantly better registration
accuracy of the whole corpus callosum.

5 Summary and Future Work

In this contribution, we have proposed an approach to elastic registration of
medical images that is based on point landmarks and additional attributes. Our
scheme is based on a minimizing functional which covers the full range from
interpolation to approximation. Since the solution can be stated analytically we
yield an eÆcient computational scheme. Central to this work is the integration of
anisotropic landmark errors and orientation attributes at landmarks. By this we
incorporate statistical as well as geometric information as additional knowledge
in elastic image registration. We have demonstrated that this additional knowl-
edge can signi�cantly improve the registration result. In particular, we have
shown that by incorporating orientation attributes it is possible to preserve the
shape of rigid structures (such as bone) in an otherwise elastic material. This can



Fig. 5. Synthetic images simulating a spine that is bended.

Fig. 6. Registration results: Interpolating thin-plate splines using only point landmarks

(left), integration of two orientations at each object landmark (middle), and approxi-

mating thin-plate splines using point landmarks and orientations (right).
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Fig. 7. MR images of di�erent patients: normal landmarks, quasi-landmarks, and es-

timated error ellipses.
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Fig. 8. Registration results: Interpolating thin-plate splines using normal landmarks

(left), and approximating thin-plate splines using normal landmarks, quasi-landmarks

and estimated covariance matrices (right).
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Fig. 9. Registration result: Approximating thin-plate splines using normal landmarks,

quasi-landmarks, estimated covariance matrices, and orientations.



be achieved without selecting further landmarks and without a full segmentation
of the rigid structures.

One problem with our approach is that the in
uence of incorporated orien-
tations is rather global, i.e., image parts farer away from the positions of added
orientations are often strongly a�ected, which is generally not desired. This ob-
servation has already been made earlier (see Mardia et al. [12]). In future work,
means have to be found to constrain this global in
uence. Another topic for
further research is the automatic estimation of the orientation attributes. While
for rigid structures within elastic material the local orientation of the contour
seems to be quite appropriate, for elastic material other choices which rather
re
ect the global geometry of anatomical structures, seem to be better suited.
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