lodelling and identification

of characteristic intensity
variations

Karl Rohr

An approach is introduced for the modelling and
identification of a certain class of characteristic intensity
variations resulting essentially from polygonal structures
of a depicted 3D-scene. We develop a general analytical
model for the structural grey-value transitions in an
image which is the superposition of elementary model
functions. Special cases of this general model are the
grey-value variations of step edges, grey-value corners
(L-junctions), T-, Y-, ARROW-junctions, and all other
junction types represented in the labelling system of
Waltz!. It will be shown that this parametric model
agrees fairly well with real image intensities. Estimates of
the unknown model parameters are found by minimiz-
ing the sum of squared differences between the model
and the observed grey values. The approach has been
tested on real image data.
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MOTIVATION

The robust and precise recognition of characteristic (or
prominent) intensity variations, such as grey-value
corners and T-junctions, is important both for the
visual perception of humans and for the automatic
interpretation of images by computers. The more
robustly and precisely those structures are derived from
images, the more reliably can objects in the 3D-scene
be described and recognized, and the 3D-scene be
reconstructed.

Although many image analysis algorithms use
prominent features as picture domain cues, there are
hardly any detailed investigations of the behaviour of
grey-value transitions in the vicinity of such two-
dimensional grey-value structures®. It is well known
that edge detectors incorporating the (implicit or
explicit) assumption of one-dimensional grey-value
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transitions (e.g. Canny®) have difficulties when the
grey-value structure under consideration has variations
in two dimensions (see, for example, Li et al.%). In
many cases, the detected edge contours are inter-
rupted at such positions. Especially these image
features with high content of information are in general
poorly recovered. Often, rather heuristic approaches
are used in a subsequent step to fill in missing contour
points. Local operators for recovering two-dimensional
intensity variations in many cases fail to infer the actual
structure. To overcome this problem Lowe®, for
example, suggests a global search as opposed to local
operations in the neighbourhood of each potential
corner, i.e. to combine local and global information to
recover characteristic intensity variations. Another
problem arises from the usage of a Gaussian filter for
noise reduction. Depending on the width of the filter,
the blurring of the grey-value image leads in general to
a displacement of the prominent structures (in some
cases structures can disappear or new structures can
even be created — see Damon®). To cope with the
tradeoff between noise reduction and localization, one
can take into account the dependency of the displace-
ment on the width of the filter (see, for instance,
Bergholm”#), This can hardly be done without an
explicit model of the characteristic grey-value struc-
tures.

In order to treat the problems mentioned above, we
introduce in this contribution a model-based approach
to recognize a certain class of characteristic grey-value
variations. This class of grey-value transitions can be
characterized in the image by several regions of
constant image intensities joining in one prominent
point, where the contours (grey-value edges) of the
adjacent regions meet. It is supposed that the grey-
value edges of such junctions are approximately
straight lines in the vicinity of this point, i.e. the image
intensities represent essentially polygonal structures of
the scene. Furthermore, we assume symmetric grey-
value transitions between two adjacent regions. This
means that the grey-value transitions are (approxi-
mately) symmetric with respect to the line of steepest
slope (locus of points where the gradient is maximal).
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We also assume the prominent grey-value variations to
be represented by a sufficiently large number of pixels.
This implies a picture function of sufficient resolution.
The considered grey-value structures should also be
well isolated, so that no interaction effects from other
features take place. Specularities in the image are not
considered in the present contribution. It seems that
the assumptions we make are very restrictive. How-
ever, most existing approaches make implicitly use of
them producing inaccurate results when the assump-
tions are not met in the image.

In order to model the proposed class of grey-value
transitions, we develop a general analytical model. It
will be shown that the structural grey-value variations
of step edges, grey-value corners (L-junctions) T-, Y-,
ARROW-]unctlons and all other ]unctlon types repre-
sented in the labelling system of Waltz', which is an
expansion of the labelling system developed by Clowes’
and Huffman'®, are special cases of this general
parametric model. The model will be used for identifi-
cation, that is for the precise recognition of essential
properties of characteristic intensity variations in the
image.

RELATED LITERATURE

Examples of characteristic grey-value variations are
grey-value corners (L-junctions; see, for example,
Nagel''). In the present paper, the term grey-value
corner denotes the grey-value transitions in a suffi-
ciently large area around the prominent point of the
grey-value corner. This grey-value corner point is
usually defined as the point of maximal planar curva-
ture in the line of steepest grey-value slope. Corner
detection can simply mean to localize this prominent
point or can, in addition, include the determination of
inherent attributes. For this task, different methods are
described in the literature. One can distinguish
between direct and indirect methods. Indirect methods
first detect edge points in the image. Then the corner
point is taken to be the point of intersection of straight
lines fit to edge points. Alternatively, the corner points
are identified with local curvature extrema on a contour
chain. Methods operating directly on images define the
corner point as local maxima of values, determined
either by combinations of partial derivatives of the
picture function (e.g. see References 12-15), or by
applying other masks directly on the image intensities
(e.g. see References 16 and 17). In most approaches
there is an underlying (implicit or explicit) model of the
grey-value corner.

In order to illustrate why it is difficult to compute a
description of an image with measurements that are not
directionally selective, Marr'® uses a ‘corner-shaped’
mask with aperture of 90°. The model we propose can
be adapted to real corners appearmg in any arbitrar Egy
orientation and is therefore, in the sense of Marr!
directionally selective.

Bergholm’ locates edges by tracking edge pomts
from coarse to fine resolution along the direction in
which they are displaced when blurred with Gaussian
masks of different width. He uses an explicit model of
grey-value corners (L-junction) to evaluate the dis-
placement of the corner point depending on the mask
size. This model is the convolution of an ideal wedge-
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shaped structure (characterized by the aperture of the
sector and the height of the wedge) with a Gaussian
function. The analytical corner model is similar to that
of Berzins'?, who employed his model to analyse the
accuracy of Laplaman edge detectors. The results of
Bergholm’ are superior with respect to Canny’.
However, in the vicinity of grey-value corners and T-
junctions, for example, there are still gaps. Thus,
junctions are not recovered as desired. In the present
contribution we use a similar mathematical model for
grey-value corners to Berzins'’ and Bergholm’. We
compare this model directly with the observed image
intensities to adapt the model to individual grey-value
structures. The result of this process provides not only
an estimate for the position of the corner point, but also
determines all other parameters characterizing the
corner model. Even if the image is smoothed to reduce
the noise, an estimate of the position of the corner
point in the unblurred image is found without explicit
tracking.

In order to derive a corner detector, Rangarajan et
al.'” extend the approach of Canny? for detecting one-
dimensional grey-value transitions to two dimensional
features. They derive two functions, one describing
the corner detector inside and the other outside the
sector of the underlymg corner model. Contrary to
Rangarajan et al.'’, in the present contribution the
analytical description for recognizing grey-value
corners consists of just one function which charac-
terizes the whole area around the corner point. By
choosing suitable model parameters, all corners
belonging to the proposed class can be modelled.

Guiducci®® characterizes corners by three para-
meters: amplitude, aperture and smoothness of the
ideal wedge. Based on the grey- value corner character-
ization of Dreschler and Nagel'® he derives analytical
expressions for these three parameters to estimate
them from image data. In the present paper we
introduce a grey-value corner model which is charac-
terized by seven parameters: position of the corner
point (2); orientation (1); aperture (1); intensities of
the grey-value plateaus (2); and the strength of the
blurring by a Gaussian function (1). All seven para-

‘meters are determined by fitting this parametric model

to the observed image intensities. By this, we have a
measure of how well the estimated model approximates
the actual data. All parameters are assigned real
numbers. So the position of the corner point is
determined to subpixel accuracy and indicates the
origin of the ideal (unsmoothed) grey-value structure.
Moreover, this model is a special case of a more general
model for characteristic grey-value structures intro-
duced in the next section.

MODELLING OF CHARACTERISTIC
INTENSITY VARIATIONS

A digital picture, recorded by an imaging sensor, is not
only disturbed by noise but is also band-limited in the
frequency range. Due to the recording process, sharp
transitions (e.g. step edges) are rounded-off and
corrupted by noise. In order to reduce the noise one
can apply a Gaussian filter. The advantages of such an
operation are described elsewhere (see, for example,
Marr and Hildreth?'). However, the application of a
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Figure I (left). Wedge shaped grey-value structure (ideal
grey-value corner)

Figure 2 (right). Grey-value corner model

8
g

Figure 3. Grey-value corner as proposed by Nagel'’

Gaussian filter smooths both the noise and the struc-
tural intensity variations. The blurring leads to a
further rounding-off of the original sharp transitions. If
the signal-to-noise ratio is large, the blurred step edge
can be interpreted as an ideal sharp step edge con-
volved with a Gaussian filter. We can also extend this
interpretation to other grey-value transitions in the
image.

Experimental model

Analogously to the modelling of a step edge described
above, a grey-value corner (L-junction) can be
modelied by convolution of a wedge shaped structure
(ideal grey-value corner, ‘piece of cake’) shown in
Figure 1 with a two-dimensional Gaussian function (see
Figure 2). The aperture of the wedge in this example is
90°. The size of the Gaussian filter, specified by the
parameter o, determines the smoothness of the
blurred wedge. Comparison of Figure 2 with the
qualitative model of Nagel'', depicted in Figure 3,
shows that the two models agree (see also Dreschler??).

Similarly to modelling step edges and grey-value
corners, we can model intensity variations consisting of
three adjacent regions. Figure 5 shows a T-junction
obtained by convolution of the structure in Figure 4
with a Gaussian filter. If we compare this synthetic
T-junction with a real T-junction (Figure 7 is the
original image and Figure 8 shows the 3D-plot belong-
ing to this T-junction), or with the blurred version in
Figure 9, we see that the structures are very similar. In
addition, Figure 8 suggests that the structural grey-
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Figure 4 (left). ldeal T-junction
Figure 5 (right). Blurred ideal T-junction of Figure 4

o

Figure 6 (left). Sketch of a continuous T-junction by
Nagel®

Figure 7 (right). Real T-junction

; | e - ‘
Figure 8 (left). 3D-plot of the T-junction in Figure 7

Figure 9 (right). Blurred real T-junction of Figure 8

value variations of this T-junction are more suitably
described by a continuous function than by discrete
description elements. The qualitative behaviour of this
real T-junction agrees with the sketch of a continuous
T-junction in Nagel** (see Figure 6).

By superposition of a number n of wedge shaped
structures like in Figure 1 (with arbitrary aperture and
intensity) and subsequent Gaussian filtering, we can
model arbitrarily complex structures of the proposed
class of grey-value structures. The models can be
created in any orientation by carrying out an additional
rotation.

Analytical model

In the preceding section, the grey-value structures were
madelled by two separate steps: composition of ideal
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Figure 10. Grey-value corner in the absolute coordinate
system

wedge shaped structures, and subsequent smoothing
with a Gaussian filter. Indeed, these two steps can be
combined by just one analytical function.

Two adjacent regions (step edge, grey-value corner)

An ideal grey-value corner E(x, y) (wedge shaped
structure) can be characterized, as shown in Figure 10,
by three parameters: the aperture B, the amplitude a
and an angle of rotation @ which denotes the orienta-
tion of E(x, y) with respect to the x-axis. Let the local
Cartesian coordinate system (£, ) be aligned in such
a way that the sector of the wedge is symmetric to the
¢-axis. Then this sector is divided into two parts with
aperture B/2. Let the origin of the coordinate system
(origin of the grey-value corner, corner point) be the
point (xo, yo). Convolution of E(x, y) with a two-
dimensional Gaussian function G(x, y) results in the
model] of a grey-value corner (L-junction) given by

gML(X, y) =gML(xa Ys X0, Yo, @, B) a, U'):

gmelx, y)=E(x, y)*G(x, y) =

f”f”E(af, 7 Glx—é y—m)dedn (1)

In the following we derive an analytical expression for
gmr(x, ¥, B, a, o), that means we consider the
problem in the local coordinate system (Xo=yo=«
=0). The grey-value corner in the absolute coordinate
system gps.(x, ¥, Xo, Yo, @, B, a, o) can then be
evaluated by an additional translation (x, Yo) and a
rotation about an angle «. With:

1 )
G(x) = 6 Gy, y)= G(x) G(y)
ar
and = tan (8/2) we hence obtain for the upper part of

vol 10 no 2 march 1992

the sector:

%, I3 .
M(x, y, B)=L“ L“G(x—f, y=m) de dn

Integration of G(x) yields the Gaussian error function
¢(x). Using:

60=[" GOt dr. =0 90
D(x,y) = Gx) 60)

it follows that:

My B =00~ [ DE -0y de @

The lower part of the sector is just a reflection with
respect to the x-axis. So the mode! function of the
whole sector can be obtained by superposition of two
model functions in (2):

gML(x’ b B7 a, cr)':

(5 )n(22)) o

We use the formulation in (3) for describing the
intensity variations of an L-junction because this func-
tion is valid for angles in the whole range of
0°=<B<180°. Moreover, more complex junctions (see
below) can again be obtained by superposition of this
function. The construction of grey-value structures by
superposition of model functions is possible because
the convolution with a Gaussian function is a linear
operation, and linear operations satisfy the superposi-
tion principle?®. The whole grey-value structure can be
decomposed into several elementary components (in
our case wedge shaped structures) in such a way that
the result of an operation (in our case the convolution
with a Gaussian function) can ‘easily’ be calculated.
The result of the operation onto the whole structure is
then the composition of the results obtained for the
elementary components.

In order to compute function values of gmo(x, y), we
chose Romberg’s method® for numerical integration
using rational approximations of the ¢-function in
Abramowitz and Stegun®. The employed limits of
integration can be obtained by estimating the integrand
of (2). Because the ¢-function is monotonically
increasing from 0 to 1 the integrand is surely smaller
than or equal to € if G(§) e, i.e. |¢|=V=2In(V2me).
A synthetic image of a grey-value corner can now be
created by superposition of the model function San(x,
y) with a surface of constant intensity ay. However, we
can also imagine this complete grey-value structure as
the superposition of two model functions with aperture
B and 360°-3:

gmL(x, y, X0, Yo, @, B, aq, a, o)
=8mL,(X, y) +8m(x, y)
=8mrlx, y, X, yo, @, B, a, o)
+8mL(x, Y, X0, Yo, @ +180°, 360°— B, ay, o) @)
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Equation (3) is valid for 0°<B8<180°. The choice 8=
180° defines the model of a step edge:

X
Smsk(X, ¥y, a,0)=ad¢ (——)
o

If B> 180° then gy, (x, y) can be computed using two
model functions with half of the aperture and same
intensity or by superposition of gaysx(x, ¥) and guy.(x,
y). Thus, general intensity variations of two adjacent
regions of the proposed class of grey-value structures,
which will be denoted by gun(x, y), can be created
using the model function of the step edge gusk(x, ¥)
and the L-junction g (x, y). In the general case, the
grey-value structures are specified by seven para-
meters:

gv2(X, ¥) = 2 gumri(x, y) with

i=|
if B = 180°
if B + 180°

gmsk(x, ¥)

gML(x’ Y) = {
gmr{x, y)
Three adjacent regions (T-, Y-, ARROW-Junction)
Grey-value variations which are characterized by three
plateaus of constant intensities joining in one point can
also be modelled by superposition of model Tunctions
gmi{x, y). One possible parametrization of the image
of a trihedral vertex is sketched in Figure 11. Each
wedge is described by an angle of rotation, an aperture
and an amplitude. Because the angle of rotation of the
second sector a, can be expressed by @, =a;— B/
2—B,/2, the number of parameters characterizing

Figure 11. Three adjacent regions
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such a grey-value structure is 9. Analogously to the
realization of synthetic grey-value corners, we can
model the intensity variations of three adjacent regions
gma(x, y) by the superposition of two model functions
gme(x, y) and one plateau of constant intensities.
Likewise, we can create such a grey-value structure by
superposing three model functions gas.(x, y):

gm(x. ¥, X0, Yo, @, Bis Ba, 4y, ay, Az, o)

= Z gurLi(xs ¥)

i=1

=gur(X, ¥, Xo, Yo, @, By, ay, o)+
gmi(x, ¥y Xa, Yo, @ —B1/2—Ba/2, Ba, a,,
o)+ gurlx, ¥s Xo, Yo, 180°+a —B,/2,
360°— B, — B2, g, 7) (5

Particular choices of the parameters of gys(x, y) yield
the grey-value variations of a T-, Y- or ARROW-
junction. The T-junction is specified by B,+p,=
180°. A Y- and ARROW-junction is given by 8, +
B.>180° and B;+8,<180°, respectively, if 8, and
B> are the two smaller angles. The model of the
Y-junction proposed in De Micheli et al.?’ is a special
case of (5) if we choose, for example, xp =y, =0, a=
90°, B, =180°-26, pB,=90°+0, ay=A, a =0
and a,=B. In De Micheli et al?’, this model is
employed to compare existing edge detection algor-
ithms according to their accuracy of localization and
sensitivity to noise.

n adjacent regions

The validity of the superposition principle is the reason
why we can model grey-value structures by superimpos-
ing an arbitrary number n of wedge shaped structures
(elementary components). Conversely, we can derive
from the general case of n adjacent regions gu,.(x, ¥)
the grey-value structures for n=2 and n =3 intro-
duced in the preceding sections:

gt 9 = > B, 2)* G )
- é(E,-(x, WG, )

= 2 gmri(x,y) n=2 (6)
=1

The choice n = 2 specifies the intensity variations of
a step edge or a L-junction. For n =3 we obtain T-, Y-
and ARROW-junctions. In the case of n =4 we have
PEAK-, K-, X-, MULTI- and XX-junctions in the
notation of the labelling system of Waltz'. For n =5 we

have KA- and KX-junctions, and n=6 leads to even .

more complex grey-value structures. The specific
number of model parameters is m =3+ 2n. For illus-
tration the 3D-plot of a K-junction is depicted in
Figure 12.

IDENTIFICATION OF CHARACTERISTIC
INTENSITY VARIATIONS

The aim of identification is to find a suitable description
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for a real object. The task is to determine a mathemati-
cal model which reflects the essential properties of the
real object sufficiently well®® . First it is necessary to
sclect a certain model class, and second to choose a
representative of this class by fixing the model para-
meters. The model class is chosen by using a priori
knowledge, and the estimation of the parameters takes
into account current empirical observations (measure-
ments). For the identification of grey-value variations
in images, i.e. the precise recognition of grey-value
structures with respect to their characteristics, the
analytical model introduced above is selected as model
class. Let us simplify the notation by denoting the
image plane coordinates with x = (x, y) and the model
parameters we wish to estimate with p= (p,, . . ., p,,).
The function gu(x, p), the model description, should
be chosen in such a way that the agreement with the
grey values in the image g(x) is as close as possible. We
require the sum of the squared differences between the
model function and the grey values in an area Q
around the origin of the grey-value structure to be as
small as possible. Then the nonlinear cost function S
depending on the parameters p is as follows:

S = | G p) =g () x> min )
O
and one discrete version of the above is:

S(p) = 3 (gm(x:, p) —g(x))*— min ®)

We search the values for p where S(p) takes a (local)
minimum. In order to get first experimental results we
use the descent method of Powell®®, Reducing the
computation time will be the subject of future work.
After choosing an initial starting vector py, the iteration
process proceeds until the differences of the values of
the function S(p) in subsequent iteration steps normal-
ized by the absolute values of the function, drop below
a predefined threshold.

EXPERIMENTAL RESULTS

This section demonstrates the behaviour of the pro-
posed method for real image data. We show identifica-
tion results for the image depicted in Figure 13, which
was recorded with a HDTV-camera (1024 x 1024
pixels) and the image in Figure 26 taken with an
ordinary camera (512Xx512 pixels). The considered
features are marked in Figures 15 and 28. Preliminary
results are described by Rohr?'.

Initial values for the optimization process

The initial values p, needed for the optimization
process should be chosen automatically. One possibility
is to construct prototypes, representing certain grey-
value variations, by using the analytical model outlined
above. By applying these prototypes we would get a
rough indication of the individual grey-value structure
being observed. The analysis of the grey-value varia-
tions could then be refined by the proposed identifica-
tion approach. Here, we suggest another possibility.
Initial values for the position of the grey-value struc-
tures are determined by applying the approach of
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Figure 12 (left). 3D-plot of an analytical K-junction
Figure 13 (right). Original image of a cut cube

Figure 14 (left). Detected features of Figure 13
Figure 15 (right). Considered features of Figure 13

Rohr’? which detects image points indicating high
intensity variations. This local approach operates
directly on the image utilizing the matrix Csuggested in
Nagel*. The elements of C are combinations of partial
derivatives of the picture function. In Rohr3? local
maxima of the determinant of C are identified with
points of high intensity variations. In order to suppress
local maxima in homogeneous regions due to noise
det(C) is compared with a threshold. Edge points
outside corners are removed using det(C)/(Vatrace(C))*
by Nagel and Enkelman®. After estimating the partial
derivatives with 5 X 5-masks®®, the localization of the
corner points are refined by applying 3 x 3-masks.
Figure 14 shows the result of this approach for the
image in Figure 13.

Initial values for the angles are evaluated using
straight lines fit to linked edge points in the vicinity of
the examined grey-value structure. Single edge points
are localized by the approach of Korn®. The mean
values of the intensities in the sectors (bounded by the
straight lines) are taken as an estimate for the
amplitude of the grey-value plateaus. For illustration
we determine initial values for the Y-junction in Figure
16 appearing in the centre of the image shown in Figure
13. The. initial position of this grey-value structure is
marked by a square (see Figure 17). The straight lines
indicate the boundaries of the sectors and the marked
points inside the sectors contribute to the estimation of
the mean values for the grey-value plateaus. Only those
points are considered where det(C) is smaller than a
threshold.

Identification results

We start with the identification of a step edge (see
Figures 15 and 18). Because an edge point is only
determined uniquely in one direction, i.e. the direction
of the grey-value gradient belonging to it, we restrict
the position of the edge point during the optimization
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Figure 16. Original image of a Y-junction
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Figure 17. lllustration of the initial data for the
Y-junction in Figure 16: position, angles and grey values
of the plateaus

process by an add tional requirement. In our case, we
can choose a certain row in the image (fixing the value
of yo). Then the number of the remaining unknown
parameters is 5: (xp, a, a,, a, o). Applying the
identification approach to a ca. 20 X 20 portion of the
original image, we get the parameters shown in the first
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Figure I8 (left). Original step edge

Figure 19 (right). ldentified model of the step edge in
Figure 18

Table 1. Identification result of the step edge in
Figure 18

or Xy «@ ay a o é (o)

0.0 11.87  3.87 16.15 11509  1.52 2.48 1.52
0.5 11.87 3.97 16.13 114.92 1.59 1.98 1.51
1.0 11.86 4.27 16.25 114.03 1.82 1.02 1.52
1.5 11.89 4.24 16.08 114.66 2.13 0.60 1.52

row in Table 1. The mean error é (positive root of the
mean squared error) between the original image
and the model function is 2.48. The model function
approximates the original step edge fairly well (see
Figures 18 and 19). The estimated value for o is 1.52
and represents a measure for the width of the grey-
value tranmsition.

In order to reduce the noise we will now smooth the
original image with a Gaussian filter o before
applying the optimization method. For values o=
0.5, 1.0 and 1.5 we get the estimated parameters as
shown in Table 1. The mean error € gets smaller with
increasing oy Obviously, the more we smooth the
image beforehand the better is the agreement of the
image with the model function. In addition, we see that
the parameters, with exception of o, remain nearly
constant, i.e. they are (nearly) independent of op.
However, the changes of o are to be expected because
filtering the image increases the width of the grey-value
transitions. Imagine the original step edge to be a
smoothed ideal step edge, then the filtered original step
edge is the result of two Gaussian filters o (the
optimal value for the unfiltered original image) and o
applied successively to the ideal step edge. Equally, an
ideal step edge can be smoothed with just one Gaussian
filter of & = Vo§+cok. This is not only true for step
edges but for arbitrary grey-value structures g(x):

[e(x)*G(x, 00)]*G(x, o p)
= g(X) * [G(X’ O-()) e G(X7 O-F)]
=g(0)*G(x, Voi+o}) 9

Thus, the width of a grey-value transition in the
original image o can be evaluated using:

Ty = Vo'z_a'% (10)

If we now consider the values for o (last column in
Table 1), we see that (10) is confirmed. Consequently,
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Figure 20 (left). Original grey-value corner

Figure 21 (right). Identified model of the grey-value
corner in Figure 20

Table 2. Identification result of the grey-value corner in
Figure 20

Or Xy Yo 44 B dg a a é oy

0.0 {27.18 28.60 267.72 158.33 15.33 64.12 0.96 | 1.60 0.96
0.5 | 27.22 28.64 267.63 159.17 15.32 64.01 1.09 | 1.03 0.97
1.0 | 27.24 28.50 267.82 159.65 15.35 63.87 1.42 | 0.43 1.01
1.5 | 27.23 28.39 267.96 159.34 15.30 63.95 1.78 | 0.26 0.96

all parameters are nearly independent of smoothing the
original image beforehand. However, if the image is
smoothed too much, the obtained parameters will be
inaccurate. The position of the prominent point of the
grey-value structure is determined (nearly) indepen-
dently of the width of the grey-value structure and of
the amount of filtering, because the estimated position
is the origin of the grey-value structure, i.e. the position
for the model parameter o = 0. Hence, the influence
of, for example, a badly focused camera or of different
sharpness of the grey-value structures due to variations
of the distances of objects in the scene to the camera is
reduced. The application of the identification method
for ideal synthetic images (sharp transitions and no
noise) also yielded good results. The step edges were
identified almost exactly. The mean error would be
approximately zero. If, for example, the jump of the

Figure 22 (left). Original Y-junction

Figure 23 (right). Identified model of the Y-junction in
Figure 22

Table 3. Identification result of the Y-junction in Figure 22

step edge was located between columns 9 and 10, then
the optimal position of the identified model would be
9.5.

For some further tests of our approach on other
images we refer to Bergholm and Rohr*’, where the
estimates for the width and height of step edges were
compared with the estimates of the approach of Zhang
and Bergholm®®. The comparison showed that the two
different approaches (assuming the same step edge
model) yield similar results if the step edge model is
valid. If, however, the width of the transitions is large
the approach described in the current contribution
seems to be more precise.

Nalwa and Binford* also fit an explicit model to step
edges. They use the ranh. However, they did not
extend their approach to two-dimensional features such
as grey-value corners and more complex junctions.

Next we want to identify the grey-value corner (see
Figure 20) in the rear of the cube in Figure 13. The
aperture of the sector is very big. Consequently, the
recognition of this grey-value structure is difficult
because the position of the corner point is not very well
defined. The estimated model parameters p are shown
in Table 2. The identified model is depicted in Figure
21. Similar to the example of the step edge, the
deviation between the image and the model gets
smaller with increasing values of o The obtained
parameters are (nearly) independent of op.

The identification result of the Y-junction in Figure
22 appearing in the middle of the image in Figure 13 is
displayed in Figure 23. The values for the estimated
parameter vectors p are presented in Table 3. Qualita-
tively, we recognize the same behaviour as for the step
edge and the grey-value corner. For this more complex
recognition problem, the parameters obtained are
(nearly) independent of o, too. The same holds for
the identification of the ARROW-junction (see Figures
24 and 25, and Table 4).

We also show identification results for the image in
Figure 26. The detected features can be seen in Figure
27. For the features marked in Figure 28 (L-, Y- and
ARROW-junction) the identification results are shown

Figure 24 (left). Original ARROW-junction

Figure 25 (right). Identified model of the ARROW-
junction in Figure 24

o X Yo o B B ay a a o é oy

0.0 29.60 26.30 91.42 59.31 146.00 124.41 177.50 59.66 1,46 2.87 1.46
0.5 29.65 26.25 91.19 58.88 145.40 124.32 177.97 59.82 1.55 2.41 1.46
1.0 29.69 26.20 91.17 58.70 144.56 124.09 179.05 59.66 1.87 1.69 1.58
1.5 29.68 26.23 91.30 58.50 145.17 124.15 179.72 59.38 2.18 1.15 1.58
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Table 4. Identification result of the ARROW-junction in Figure 24

ar Xy Yu @ B B2 Ty ¢ a: o é o

0.0 21.85 32.00 230.15 68.53 31.01 12.93 210 0001 :11)8 gg 5.00
: 2l .03 229.80 67.36 31.16 12.88 18 9. § _ o8
o e ERT 228.58 64.14 31.43 12.76 42.30 69.10 1,40 1.73 0.97
15 2177 32.16 228.51 63.56 31.45 12.76 42.34 68.95 1.72 1.41 0.83

Figure 26, Original image

Figure 27. Detected features of Figure 26

Table 5. Identifcation result of the L-junction in Figure 28

Figure 28. Considered features of Figure 26

in Tables 5, 6 and 7. Again, these examples illustrate
the properties of our approach mentioned above.

CONCLUSION AND FUTURE WORK

We have proposed an approach for the modelling and
identification of a certain class of characteristic inten-
sity variations. Although the underlying assumptions of
the model class (see the first section) seem to be very
restrictive, most existing approaches make implicit
use of them producing inaccurate results when the
assumptions are not met in the image. For modelling
this class of intensity variations, we have derived a
parametric model which is the superposition of elemen-

or Xo Yo @ B g a o é a0y
0.0 166.68 204.87 147.51 121.78 15.28 136.19 1.47 3.21 1.47
0.5 166.69 204.86 147.40 122.06 15.29 136.20 1.55 2.86 1.47
1.0 166.74 204.78 146.98 123.37 15.17 136.35 1.81 2.02 .51
1.5 166.77 204,79 147,04 123.23 14.81 136.57 2.13 1.52 1.51
Table 6. Identification result of the Y-junction in Figure 28

o Xy Yo o Bi B> a, a, s o I4 oy
0.0 165.51 99.45 329.67 118.64 104.40 93.72 138.92 54,22 1.50 2.32 1.50
0.5 165.50 99.45 329.83 118.63 104.05 93.69 138.91 54:36 1.58 2.11 1.49
1.0 165.51 99,43 330.52 118.67 103.99 93.48 138.78 54.72 1.82 1.60 1.52
1.5 165.53 99.43 330.56 118.70 104.22 93.47 139.00 54.38 2.14 1.20 1.52

Table 7. Identification result of the ARROW.-junction in Figure 28

e X Yo 43 ﬂl ﬁz a, a as o é o0
82 > 13 83.62 2.55 48.05 68.96 11.31 83.10 56.70 1.24 1.48 1.24
0.5 59.02 83.64 2.33 48.42 68.83 11.34 83.13 56.53 1.34 1.26 1.24
15 59'02 83'66 1.87 48.99 68.17 11.36 83.10 56.18 1.63 0.90 1.29

. 59. 83.68 1.77 48.83 68.15 11.27 83 .48 56.35 1.97 0.68 1.28
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tary model functions. By this it is possible to describe
step edges, grey-value corners (L-junctions) T-, Y-,
ARROW-junctions and all other junction types repre-
sented in the labelling system of Waltz'. Each grey-
value structure can be expressed by just one analytical
function and is a special case of the proposed general
model. The identification of real intensity variations is
done by minimizing the squared difference between the
image intensities and the model. By this, we have a
measure of how well the estimated model describes the
actual data. All parameters can be assigned real values.
So the position of the prominent point is determined up
to subpixel accuracy and indicates the origin of the
ideal (unsmoothed) grey-value structure. We also
obtain a measure for the width of the grey-value
transitions. Moreover, the estimated parameters are
(nearly) independent of smoothing the original image
beforehand in order to reduce the noise. The applica-
tion of the proposed method to real image data
demonstrates that the identified model functions agree
fairly well with the original grey-value structures.
Because of the relatively large size of the grey-value
structures being considered (approximately 20 x 20
pixels), the approach is computationally expensive.
But, in our opinion, it is necessary to examine such
large neighbourhoods of each grey-value structure in
order to restore prominent features with high accuracy.
The high precision we achieve with our approach
should increase the reliability of evaluated properties of
the 3D-scene and should consequently justify the
greater cost. Reducing the computation time will be the
subject of future work. One possibility is to perform the
algorithm within a pyramid structure of images. A
possible extension of our work is the utilization of
linearly increasing (descending) grey-value plateaus
instead of constant plateaus. Another generalization
could be the modelling of curved edges joining in the
prominent point of the grey-value structure.
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