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1 Introduction
A fundamental problem in medical image analysis, which

recently has well been recognized, is the problem of finding
optimal geometric transformations between corresponding im-
age data. This task is known as image registration (or image
matching) and the aim is to compute spatial transformations,
which map each point of an image onto its (physically) corre-
sponding point of another image. Image registration allows for
image fusion, i.e., to integrate images from different sensors
(multimodal images) and from existing image databases (e.g.,
digital atlases) into one representation, i.e., one coordinate sys-
tem, so that the complementary information in the images can
be accessed more easily and accurately. The main challenge is
that we have to deal with multimodal images, which generally
represent different information, and this raises major difficulties
in finding image correspondences. In addition, the spectrum of
geometric differences between images is very broad, e.g., one
has to cope with nonlinear image distortions, with images of
different persons, and also with time-varying processes. Moreo-
ver, we generally need to register multidimensional images, e.g.,
2D and 3D images.

As an example, we show in Fig.1 (left and middle) corre-
sponding slices of 3D multimodal tomographic images of the
human head. While the MR (Magnetic Resonance) image well
represents soft tissue as well as a tumor visible as a white region
in about the middle/right part, the CT (X-ray Computed Tomog-
raphy) image mainly represents bone. The registration result is
depicted in Fig. 1 on the right and represents the transformed
MR image with overlaid edges extracted from the CT image.
Based on this integrated representation it is now easier to
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judge, for example, the position and extent of the tumor w.r.t.
the bone and to plan a neurosurgical intervention or a radio-
therapy more accurately. Besides MR and CT imaging, other rel-
evant imaging modalities for registration tasks in medicine are,
e.g., conventional X-ray, Ultrasound, PET (Positron Emission To-
mography), SPECT (Single Photon Emission Computed Tomog-
raphy), or fMRI (functional Magnetic Resonance Imaging).

Generally, images to be registered have to be aligned glo-
bally as well as locally. This means that the mapping has to com-
prise, for example, a global rigid transformation (translation, ro-
tation) as well as a locally adaptive transformation which allows
to cope with local geometric differences (cf. Fig. 2). The major
class of locally adaptive nonrigid transformations in medical
image analysis are elastic transformations. These transforma-
tions are based on models from elasticity theory. The clinical
applications for elastic registration can be classified into diag-
nosis, surgery planning and simulation, intraoperative naviga-
tion as well as robot-assisted interventions. Application areas
outside medicine are, e.g., morphometry, remote sensing, car-
tography, geographic information systems (GIS), geology, com-
puter graphics (warping, morphing), and virtual reality (VR).

Note, that the definition of image registration as given at
the beginning of this introduction is very general and actually
subsumes a number of classical tasks in computer vision, e.g.,
motion analysis, stereo reconstruction, and structure-from-mo-
tion. There, typically 2D images of the same modality (monomo-
dal images) are analyzed, and a central task is to determine im-
age correspondences, i.e., also there a geometric transforma-
tion has to be computed in general. Principally, registration
approaches can be distinguished into landmark-based and in-
tensity-based schemes. Landmark-based schemes first extract

Image registration enables to integrate different images into one representation such that the complementary information
can be accessed more easily and accurately. Multimodal images of the same person or of different persons generally differ
by local geometric differences, and to map such images into one coordinate system nonrigid or elastic transformations are
required. Fused image data can improve medical diagnosis, surgery planning and simulation as well as intraoperative
navigation. This contribution reviews existing methods for elastic image registration and emphasizes landmark-based
approaches.

Fig. 1: MR (left) and CT image of the human head (middle), and registration result showing the transformed MR image and the overlaid edges of the CT image (right).
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landmarks (e.g., points, curves, surfaces) from the images and
then compute a transformation based on these features. With
intensity-based schemes the image intensities are directly
exploited to compute the transformation.

In this contribution, we survey elastic registration methods
for medical images with emphasis on landmark-based
schemes. For other reviews concerning registration we refer to
[7, 17, 40, 32, 57, 30]. In the following, we first introduce a general
registration scheme and classify existing transformation mod-
els. Then, we describe landmark-based and intensity-based
schemes for elastic registration. Finally, we mention recent work
on biomechanical modelling of brain deformations aiming at
integrating additional physical knowledge for registration tasks.

2 General Registration Scheme and
Transformation Models

A general scheme of medical image registration is depicted
in Fig. 3. Generally, the aim is to register multimodal images as
well as digital atlases (e.g., [28, 34]) with each other.

One main question concerns the utilized image (or atlas)
representation, i.e. the kind of used image features. Often, geo-
metric features (e.g., points, curves, surfaces), denoted as land-
marks, are used. Alternatively, one can directly exploit the image
intensities.

Second, we have to specify the class of transformations.
Rigid transformations can only correct for translational and ro-
tational differences. Thus, generally nonrigid transformations are
required. An example are affine transformations, which in addi-
tion to rigid mappings allow for scaling and shear (Fig. 4).
Another class of nonrigid transformations are elastic transfor-
mations. These transformations are based on models from
elasticity theory and describe local deformations. The central
idea behind elastic registration is to consider images as contin-
uous bodies and to model the geometric differences between

images such that they have been caused by an elastic deforma-
tion. This approach has been pioneered by Bajcsy et al. [2]. As an
alternative, models from fluid mechanics have been proposed
by Christensen et al. [9]. Fluid models are much more flexible,
however, a problem is to constrain the mapping. Note, that the
scheme in Fig. 3 also applies to transformations which describe
projections of 3D images onto 2D images (3D-2D registration).
Furthermore, the term registration also includes the finding of
correspondences between image data and non-image data
(e.g., the operation room or a surgical instrument).

Besides image features and transformation models a simi-
larity measure is required to match the image/atlas representa-
tions with each other as well as to quantify the (remaining) regis-
tration error.

3 Landmark-based Elastic Registration
One principal approach to elastic registration of medical

image data is based on corresponding landmarks, i.e. geomet-
ric image features. Such a landmark-based approach comprises
three steps: (1) extraction of landmarks from the different data-
sets, (2) establishing the correspondence between the land-
marks, and (3) computing the transformation between the da-
tasets using the information from (1) and (2).

The different types of landmarks can be classified into
points, curves (lines), surfaces, and volumes. Using curves (e.g.,
ridge or crest lines [51]) or surfaces (e.g., [53, 56, 13]) in compar-
ison to point landmarks (e.g., [4, 18]) has the advantage that
more information of the images is taken into account. However,
a disadvantage is that the segmentation and the finding of cor-
respondences is more difficult. One main advantage of using
point landmarks is that the transformation often can be stated
in analytic form. This leads to efficient computational schemes.
3D point landmarks may be either fiducial markers (e.g., points
at a stereotactic frame, head screws, or skin markers) or anatom-
ical point landmarks, which can be localized manually or by ap-
plying image operators (e.g., [41, 45]). Below, we focus on point-
based elastic registration schemes.

Fig.4: Types of transformations

Fig. 2: Registration problem: Human brain MR images of different persons (left and middle), and overlay of the first image with edges of the second image (right).

Fig. 3: General scheme for registration
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3.1 Point-Based Registration Using Thin-Plate Splines

The most widely applied method for point-based elastic
image registration is based on thin-plate splines. This approach
has been introduced into medical image analysis by Bookstein
[4]. Evans et al. [18] applied this scheme to 3D medical images.
Previously, thin-plate splines have been used in computer vi-
sion for surface interpolation, i.e. mappings u:  , given
sparse scattered data (e.g., [6, 54]). In image registration we
transform images onto each other, thus we deal with mappings
u:   where d denotes the image dimension. For related
work in computer graphics on image warping and morphing,
see [61, 1, 47].

Thin-plate splines are defined on the basis of an optimiza-
tion problem. The functional to be minimized represents the
bending energy of a thin-plate and thus has a physical interpre-
tation. Although a thin plate is a rather crude model to describe
local differences between images of the same or different
persons, it serves as a flexible deformation model, and such a
physically-motivated approach leads to more intuitive registra-
tion results. This is particularly important in clinical user-interac-
tion scenaria. Another advantage of these splines is that the un-
derlying mathematical theory is well understood ([15, 58]).

In nearly all work on point-based elastic registration an
interpolation approach is applied (e.g., [4, 18]). This means that
corresponding landmarks in the two images are forced to
match exactly. The underlying (implicit) assumption is that the
landmark positions are known exactly. This assumption, how-
ever, is unrealistic since landmark extraction is always prone to
error, independent of whether landmarks are determined man-
ually, semi-automatically, or automatically. To take into account
landmark errors an approximation approach for thin-plate
spline elastic registration has been proposed by Rohr et al. [43,
42, 44]. Using approximating thin-plate splines it is possible to in-
clude isotropic as well as anisotropic landmark errors as briefly
described below.

Given n corresponding point landmarks pi and qi, i =1,..., n, in
two images of dimension d, the aim is to compute a transfor-
mation u = (u1, ..., ud), which maps the two images as good as
possible. In [42, 44], the transformation u results as the solution
of a well-defined functional:

This functional consists of two terms. The first term meas-
ures the distance between the two landmark sets and includes
anisotropic landmark errors represented by the covariance
matrices åi (cf. Fig. 5). The second term  represents the
bending energy of the transformation, i.e. its smoothness, and
can be formulated rather generally as a function of the image
dimension d and the order m of partial derivatives (see [58]). For
the special case of m = d = 2 and for one component uk of u, the
bending energy is

and consists of second order partial derivatives w.r.t. the space
coordinates. The terms in (1) are weighted by a parameter l,
which determines the relative weight between closeness to the
data (the landmark sets) and smoothness of the transformation.
Interestingly, for the functional in (1) there exists a unique ana-
lytic solution, which can be stated as

The solution consists of polynomials represented by
 and a superposition of certain radial basis functions

. For example, setting m = 2, for 2D images (d = 2)
we have U(r) = 1 / (8 p) r2 ln r and for 3D images (d = 3) we ob-
tain U(r) = -1/(8 p) r. An interesting property of this approxima-
tion approach is that interpolating thin-plate splines and opti-
mal affine transformations result as limiting cases. Since we
have an analytic solution, the searched transformation can be
computed very efficiently by solving a relatively small linear
system of equations. The required covariance matrices åi can
be estimated directly from the image data [42].

Fig. 6 shows an application, where 2D MR brain images of
different persons have been registered. Note, that the anatomy
differs largely and that different imaging parameters have been
used. In the images we have specified normal point landmarks
(nr. 1-6 and 8) as well as arbitrary edge points (nr. 9-12), which
are also denoted as quasi-landmarks since their positions are
not uniquely defined. Quasi-landmarks are important since at
the outer parts of the brain normal point landmarks are hard to
define. In Fig. 6 on the bottom/left the registration result is
shown when applying interpolating thin-plate splines (l = 0).
In this case, physically not corresponding points are forced to
match exactly and thus an unrealistic deformation occurs. If we
use only the normal landmarks and approximating thin-plate
splines with isotropic errors (Fig. 6 bottom/middle), the registra-
tion result is quite good within the inner parts of the brain, but
larger deviations occur at the outer parts. If, instead, we use all
landmarks and apply approximating thin-plate splines with an-
isotropic errors, then we can significantly improve the registra-
tion accuracy (Fig. 6 bottom/right).

3.2 Thin-Plate Spline Extensions and Other Spline-Based
Approaches

Besides landmark errors, additional attributes can be incor-
porated in point-based elastic registration, e.g., the orientation
of contours at landmarks or curvature information. This allows
to further improve the registration accuracy without selecting
additional landmarks [5, 33, 19, 44]. In [19, 44] a minimizing func-
tional has been formulated which includes orientation at-
tributes, while still an analytic solution can be stated. An impor-
tant application is the preservation of the shape of rigid struc-
tures such as bone within otherwise elastic material. This is
demonstrated by Fig. 7, where we have simulated the rotation
of a rigid structure within otherwise elastic material. If we use
point landmarks only (four landmarks at the corners of the rigid
structure and four landmarks at the image corners), then the
whole image is elastically deformed (Fig. 7 left). However, by

(2)

(1)

Fig.5: Point landmarks and corresponding anisotropic errors as input data for
landmark-based elastic registration.

(3)
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incorporating two orientations at each corner of the rigid struc-
ture (which are aligned with the contours), we can well pre-
serve the shape of the rigid object (Fig. 7 right). Note, that a full
segmentation of the rigid structure as required in [31] is not
necessary here.

Another main direction towards generalization of point-
based elastic registration is to include more general types of
landmarks, in particular, curves or surfaces (e.g., [10, 21]). Related
to these spline-based approaches are curve- or surface-based
schemes for elastic image registration, e.g., [53, 51, 13, 38]. There
the underlying elasticity equations are solved numerically, e.g.,
by applying finite differences (FD) or the finite element method
(FEM), which is computationally more expensive (see also the
survey of deformable models in [35]). For work combining elas-
ticity models with statistical deformation models based on
training examples, see [11].

Thin-plate spline based image registration has also been
combined with intensity information (mutual information) [36].
In [46] thin-plate splines have been applied for the analysis of
spatio-temporal medical images (cardiac images). Alternative
splines based on analytic solutions of the Navier equation (elastic
body splines) have been proposed in [14]. For splines based on a
functional involving the linear elasticity operator, see [10]. Splines
with compact support (Wendland functions), which are particu-
larly suited to increase the local influence in elastic registration,
have recently been proposed in [20] (see also [45] in this issue).

4 Intensity-Based Elastic Registration
Intensity-based approaches for elastic registration of medi-

cal images directly exploit the image intensities (e.g., [2, 23, 9, 49,
55]). The main advantage of these schemes is that an explicit
segmentation of the images is not required. Disadvantages are
the generally much higher computation time and the larger
dependence on image modality and imaging parameters. Pio-
neering work on intensity-based elastic registration has been
done by Bajcsy et al. [2]. This work is based on the Navier equa-
tion in elasticity theory and describes the deformation of ho-
mogeneous 3D bodies under applied forces. Assuming small
deformations, which is the case of linear elasticity theory, we
have for the (elastostatic) equilibrium

where u = (u1, u2, u3) is the displacement vector field,  the La-
placian operator,  the Nabla operator,  • u the divergence of
u , and f = (f1, f2, f3) the vector of force density. The Lamé

Fig. 6: 2D MR images of different persons with specified point landmarks (top) and registration result using thin-plate splines: interpolation (bottom/left),
approximation with normal landmarks and isotropic errors (bottom/middle), and approximation with anisotropic errors (bottom/right).

Fig. 7: 2D synthetic images simulating the rotation of a rigid structure within
otherwise elastic material: Registration results with interpolating thin-plate
splines using only point landmarks (left) and incorporation of orientations at
landmarks (right).

(4)
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constants l, m > 0 describe material properties. Prior to elastic
registration, in [2] a global affine transformation is determined
in a preprocessing step.

Intensity-based approaches to elastic registration are close-
ly related to optic flow estimation algorithms in computer vision,
where typically monomodal 2D video images are analyzed
(e.g., [52, 55, 59]). Since the intensities are directly used to com-
pute a similarity measure between images, often by computing
the sum of the squared differences, these approaches generally
depend rather strongly on the image modality and the chosen
imaging parameters. A current trend to reduce this depend-
ence is to use some kind of entropy measure, e.g. mutual infor-
mation, for intensity-based elastic registration (e.g., [22, 36]).
Previously, entropy measures have successfully been applied
for rigid registration (see the evaluation study of West et al. [60]).
Hybrid approaches, which combine landmark-based and inten-
sity-based schemes, have been suggested in [23, 36, 10, 12].

Most approaches to elastic registration assume small defor-
mations. To cope with large deformations a fluid model has
been proposed in [9]. An incremental elastic approach, which is
landmark-based, has been introduced in [37]. Criteria to distin-
guish between small and large deformations have been sug-
gested in [3, 37].

5 Biomechanical Modelling of Brain
Deformations

A recent trend in medical image registration is to model
biomechanical properties of anatomical structures more pre-
cisely. A central topic in developing such physically-based ap-
proaches is to deal with nonhomogeneous tissue properties. In
the case of the human head one principally has to distinguish
between rigid (e.g., bone), elastic (e.g., brain tissue), and fluid
parts (e.g., the ventricular system). Besides surgical simulation
and training, an important application for biomechanical models
is the prediction of brain deformations for intraoperative navi-
gation tasks. Image-guided surgical navigation in most cases
relies on preoperatively acquired image data (e.g., MR images).
During an intervention, however, generally brain deformations
occur. For example, when opening the skull and the dura mater,
liquor flows off which generally leads to a brain shift (see Fig. 8
as well as [8, 27]). Anatomy changes also result from surgical in-
terventions such as the (incremental) resection of a tumor. To
continue accurate navigation it is then necessary to correct the
preoperative image by registering it with the current anatomi-
cal situation, e.g., based on intraoperative measurements from a
portable CT scanner or from an Ultrasound device.

The first approaches introduced for intraoperative image
correction have been based on a mass-spring model [8] and a
combination of different energy terms [16]. In both models,
however, real physical material parameters have not been in-
cluded. Approaches dealing with nonhomogeneous tissues
based on elasticity theory which incorporate real physical ma-
terial parameters and apply the finite element method (FEM),
have been proposed in [29, 24] (see also [45] in this issue). In
other work, homogeneous material is assumed or deforma-
tions are restricted by imposing certain boundary conditions
(e.g., [50, 37, 39]). Brain models for simulation purposes but not
for registration have been described, e.g., in [48, 26]. An ap-
proach, where different physical models (an elastic and fluid
model) have been coupled, has recently been proposed in [25].

6 Conclusion
As can be learned from the literature, the work on elastic

and nonrigid registration has increased tremendously in recent
years. While here we mainly considered images of the human
head, elastic registration is also important for other organs, e.g.,
human liver, breast, and heart. A problem with elastic registra-
tion is that currently it is not possible to judge which approach-
es perform better than others. A systematic evaluation study as
in the case of rigid registration [60] has not yet been performed.
However, one has to note, that performance characterization of
elastic schemes is also very difficult. On the one hand, a prereq-
uisite would be the quantification of typical deformations of
anatomical structures as well as the provision of ‘ground truth’.
On the other hand, one should note, that elastic registration of
multimodality images is still a relatively young research field,
and the current focus is on exploring principal models and ap-
proaches. Actually, the task of elastic registration is rather diffi-
cult, and the mathematical level for understanding existing
work or developing new approaches is generally rather high.
Nevertheless, theoretical soundness is important to guarantee
required properties and to end up with algorithms of predicta-
ble performance.

Important topics for further research are, for example, the
integration of more physics in form of biomechanical models,
the combination of physical and statistical deformation models,
the combination of landmark-based and intensity-based
schemes, the treatment of large deformations, the integration
of uncertainties and error information, the investigation of sim-
ilarity measures between images, as well as the development of
efficient computational schemes. In comparison to traditional
monomodal 2D image analysis, a clear challenge is the analysis
of multimodal 3D or even higher-dimensional image data.
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