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Abstract. We present an approach to elastic registration of tomographic
brain images which is based on thin-plate splines and takes into account
landmark errors. The inclusion of error information is important in clin-
ical applications since landmark extraction is always prone to error. In
comparison to previous work, our approach can cope with anisotropic er-
rors, which is significantly more realistic than dealing only with isotropic
errors. In particular, it is now possible to include different types of land-
marks, e.g., quasi-landmarks at the outer contour of the brain. Also, we
introduce an approach to estimate landmark localization uncertainties
directly from the image data. Experimental results are presented for the
registration of 2D and 3D MR images.

1 DMotivation

Image registration is fundamental to computer-assisted neurosurgery. Examples
are the registration of tomographic images and the registration of images with
digital atlases. In either case, the central aim is to increase the accuracy of local-
izing anatomical structures in 3D space. One principal approach to registration
is based on thin-plate splines and anatomical point landmarks.

Previous work on thin-plate spline registration has concentrated on specify-
ing the landmarks manually and on using an interpolating transformation model
(e.g., [2],[6],[11]). The approach is efficient and well-suited for user-interaction
which we consider important in clinical scenaria. However, with an interpolation
scheme the corresponding landmarks are forced to match exactly. It is (implic-
itly) assumed that the landmark positions are known exactly, which, however, is
generally not true in practical applications. Therefore, to take into account land-
mark localization errors, we have recently introduced an approximation scheme
([13]). This scheme is based on a minimizing functional, it uses scalar weights
to represent landmark errors, and it has been described for images of arbitrary
dimensions. The applicability of our approach has been demonstrated for 2D MR
images. Bookstein [3] has proposed a different approach to relax the interpola-
tion conditions. His approach, however, has not been related to a minimizing
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functional, but combines different metrics based on a technique called ‘curve
décolletage’. Also, the approach has only been described for 2D datasets, and
experimental results have been reported for 2D synthetic data (‘simulated PET
images’).

One problem with our approach in [13] is that scalar weights for the land-
marks are only a coarse characterization of the localization errors. Generally,
the errors are different in different directions and thus are anisotropic. Another
problem is how to specify the landmark errors.

In this contribution, we describe an extension of our previous approach [13],
which allows to incorporate full covariance matrices representing landmark po-
sition errors. Although the corresponding minimizing functional is more com-
plicated than in the case of using only scalar weights, we still have an analytic
solution the parameters of which can efficiently be computed by solving an anal-
ogous linear system of equations. Also, we introduce an approach to estimate
the covariance matrices directly from the image data. In our case, these matrices
represent the minimal localization uncertainty at landmark points (Cramér-Rao
bound). An advantage of our approach is that we can now include different
types of 3D point landmarks, e.g., ‘normal’ point landmarks as well as ‘quasi-
landmarks’. Quasi-landmarks are not uniquely definable in all directions (e.g.,
arbitrary edge points) and they are used, for example, in the reference system of
Talairach [15] to define the 3D bounding box of the brain. The incorporation of
such landmarks is important since ‘normal’ point landmarks are hard to define,
for example, at the outer parts of the brain.

The remainder of this contribution is organized as follows. In the next section,
we provide a statistical interpretation of our approach to landmark localization.
This interpretation is also the basis for estimating landmark localization uncer-
tainties directly from the image data as described in Section 3. Section 4 is then
devoted to the thin-plate spline approach using weight matrices, and Section 5
demonstrates the applicability of our approach for 2D as well as 3D tomographic
images of the human brain.

2 Statistical Interpretation of 3D Landmark Localization

3D anatomical point landmarks are usually localized manually. Generally, this
procedure is difficult, time-consuming, and often lacks accuracy (e.g., [6],[9]). To
improve on this, we use a semi-automatic procedure with the advantage that
the user has the possibility to control the results (see also [13]). Semi-automatic
means that landmark candidates are automatically detected within a specified
region-of-interest (ROI) and then the user selects the most promising candidate.
To simplify the selection, the landmark candidates are ordered based on the
automatically computed operator responses. The anatomical landmarks we use
are located on the skull base (e.g., tip of external protuberance, saddle point on
zygomatic bone) as well as on the ventricular system (e.g., tips of frontal and
occipital horns).
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To extract anatomical point landmarks, we here consider a 3D extension
of a 2D corner operator. In previous work ([13],[12]) this approach has been
motivated by the criterion: ‘Find points with high intensity variations’. This
criterion, however, is rather unspecific. In this contribution, we show that a
statistical interpretation is possible. We consider the 3D differential operator

detC, — maz, (1)

where C, = Vg (Vg)T is a symmetric 3 x 3 matrix which represents the averaged
dyadic product of the 3D intensity gradient Vg = (g, 9y,9:)7, g(z,y,2) is the
image function, and det denotes the determinant of a matrix. Note, that the
operator in (1) requires to compute only first order partial derivatives of an
image. Therefore, the operator is computationally efficient and does not suffer
from instabilities of computing high order partial derivatives. In contrast to that,
other 3D differential operators require partial derivatives up to order two or three
(e.g., [17],[10)).

In the following, let 02 denote the variance of additive white Gaussian image
noise and m the number of voxels in a local 3D window. Then, we can relate the
matrix C4 to the minimal localization uncertainty of the center of the window
x = (z,y, 2). The minimal localization uncertainty is given by the Cramér-Rao
bound (e.g., [18]) and is represented by the covariance matrix

o2
Y, =-=2C, . 2
g m g ( )
We see, that X, is proportional to the inverse of C,. From (2) we can derive
the 3D error ellipsoid of the position estimate with semi-axes o,,0y, and 0,. A
quantitative measure for the localization uncertainty of a landmark is the volume
of the 3D error ellipsoid which is defined as

4
V= gm/det 3, (3)

where detX, = o3020%. The smaller detX, the smaller is the localization un-
certainty. Thus, we can formulate the following criterion for localizing 3D point
landmarks: ‘Find points with minimal localization uncertainty’, i.e., minimal

volume of the 3D error ellipsoid. This requirement can be stated as
det¥, — min. (4)

Since detX¥, =1/ detZJg_1 and with (2) we see that (4) is equivalent to the op-
erator in (1). Thus, this operator extracts 3D points with minimal localization
uncertainty. Note, that in the case we have no Gaussian image noise, we con-
sider (2) as an approximation. Note also, that C, and thus X' can directly be
computed from the image data, and that detC, is invariant w.r.t. translations
and rotations.
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3 Estimation of Landmark Localization Uncertainties

Our aim is to integrate landmark errors in elastic registration of 3D images, and
in the general case we have to deal with anisotropic errors. But how should we
specify these errors 7 One possibility is to exploit error information from anatom-
ical studies concerning the variability of brain structures. However, currently we
are not aware that such anatomical knowledge is available. Alternatively, a user
in a certain registration application may provide confidence levels of how well
localization of single landmarks is possible (e.g., high, middle, low confidence)
as well as may specify certain directions where the uncertainty is extremal. A
disadvantage of this procedure is, however, that it is time-consuming.

Instead, we here propose a different approach which allows to estimate land-
mark localization uncertainties directly from the image data. With this approach
we exploit the minimal stochastic error due to the intensity variations in the
neighborhood of a landmark. The minimal error is determined by the Cramér-
Rao bound stated in (2). This bound depends on the local variation of the image
gradient as well as on the image noise. Note, that since we use a lower bound this
procedure is applicable to any point within an image, independently of how this
point has been localized (manually or automatically). The required first order
image derivatives in (2) in our case are computed by applying Gaussian deriv-
ative filters or Beaudet filters. Averaging is generally performed in a 5 x 5 x 5
neighborhood.

Based on (2) we can distinguish different types of 3D landmark points. Land-
marks with locally high intensity variations in all directions have low localization
uncertainties in all directions and we refer to them as ‘normal’ point landmarks.
Arbitrary points on image edges have low localization uncertainties perpendic-
ular to the edge but high localization uncertainties along the edge. Such land-
marks will be denoted as ‘quasi-landmarks’ since they are not uniquely definable
in all directions (e.g., the 3D bounding box landmarks of Talairach [15]). Finally,
normal landmarks and quasi-landmarks can be distinguished from points in ho-
mogeneous regions where we have high localization uncertainties in all directions
(see [7] for an analogous classification in the case of 2D aerial images).

Note, that our error characterization is based on the minimal errors, which
are generally different from the errors obtained by an anatomical study or spec-
ified by a user. However, in either case we suspect that the localization errors
depend on the geometry of the landmark, e.g., for an edge point we have large
uncertainties along the edge but low uncertainties perpendicular to the edge.
Also, all approaches should share the property that increasing the image noise
generally leads to larger localization errors, which is the case with our scheme.

As an example, we show in Fig. 1 the estimated error ellipses (68.3% probabil-
ity corresponding to 1o regions) for the tip of the frontal horn of the ventricular
system as well as for an arbitrary edge point at the outer contour of the head
within a 2D MR dataset. The selected points are examples for normal landmarks
and quasi-landmarks. Note, that the error ellipses have been enlarged by a factor
of 30 for visualization purposes. It can be seen that the error ellipse of the tip is
small and close to a circle which means that the localization uncertainty for this
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Fig. 1. Estimated 2D error ellipses (enlarged by a factor of 30) for a 2D MR, dataset:
tip of ventricular system (left) and edge point at the outer contour of the head (right).

point is low in arbitrary directions. For the edge point, however, the error el-
lipse is largely elongated and indicates a large localization uncertainty along the
contour and a low localization uncertainty perpendicular to the contour. This is
what we expect from the local intensity structure at the considered points.

4 Thin-Plate Splines with Anisotropic Errors

In [13] we have introduced an approach for nonrigid matching of medical images
using approximating thin-plate splines. This approach is based on the mathe-
matical work in [19] and is an extension of the original interpolating thin-plate
spline approach [2]. For related approaches in the context of surface approxima-
tion and modification of facial expressions, see, e.g., [8],[5],[16],[1].

To find the transformation u between two images of dimension d we assume
to have two sets of n landmarks p; and q;, s = 1...n, in the first and second
image, resp., as well as information about the landmark localization errors in
terms of scalar weights o7. Then, u results as the solution of a minimizing
functional which measures the distance between the two landmark sets and the
smoothness of the transformation:

INCEED gi L VN Q

where m is the order of the involved derivatives of u, and the parameter A > 0
weights the two terms. This functional can be separated into a sum of functionals
which only depend on one component of u. The solution to the single functionals
can be stated analytically as

n

M
u(x) =Y avdy(x) + > wiU(x,pi), (6)

i=1
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with polynomials ¢ up to order m — 1 and suitable radial basis functions U as
defined in [19]. For example, in the case m = d = 2 we have the well-known
function U(x,p) = 1/(87)|x — p|* In|x — p|.

The coefficients a = (ay,...,ap)" and w = (wy,...,w,)T of the transfor-
mation can be computed through the following system of linear equations:

(K+n\W)w+Pa=v (7)
Plw =0,

where v is a vector of one component of the coordinates of the landmarks q;,
K;; =U(pi,pj), and P;; = ¢;(p;). The matrix

W = diag{o?,...,02} (8)

contains the scalar weights representing isotropic landmark localization errors.

This approach can further be extended when replacing the scalar weights
o? by covariance matrices X; representing anisotropic landmark errors. With
€; = q; — u(p;) now our functional reads as

1 n
Ta(u) =~ D el T e + AL (n). (9)

i=1

Although this generalized functional can no longer be separated into the compo-
nents of u, the solution can still be stated in analytic form with the same basis
functions and the same structure of the computational scheme as in (7), see also
[20],[14]. In our case, the weight matrix in (7) is given by

W = diag{>,..., X} (10)

and is a block-diagonal matrix. Note, that the X; represent the localization
errors of two corresponding landmarks. Thus, to end up with one matrix we have
to combine the covariance matrices of corresponding landmarks. If we assume
that the two covariance matrices depend only slightly on the elastic part of
the transformation, then we can combine these matrices by applying a linear
transformation (rotation, scaling) to one of the matrices before adding them.
The other matrices in (7) are given by K = (K;;1;), where K;; = U(p;, p;) and
I, is the d x d unity matrix, and P = (P;;14), where P;; = ¢;(ps).

With the extended registration scheme it is now possible to include ‘quasi-
landmarks’. Note, that our approximation scheme using weight matrices is also
a generalization of the work in [4], where the interpolation problem is solved
while the landmarks are allowed to slip along straight lines within a 2D image.
Actually, this is a special case of our approximation scheme since for straight
lines the variance in one direction is zero whereas in the perpendicular direction
it is infinity.
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5 Experimental Results

5.1 2D Data

We have applied our approach to the registration of 2D MR brain images of
different patients shown in Fig. 2. In this 2D example we have manually selected
normal landmarks and quasi-landmarks and have automatically estimated the
error ellipses at these points (note, that the ellipses drawn in Fig. 2 have been
enlarged by a factor of 7 for visualization purposes). Fig. 3 on the left shows the
registration result when applying interpolating thin-plate splines while using
all landmarks. The edges of the second image have been overlayed onto the
transformed first image. We see that an unrealistic deformation towards the
top left is obtained since corresponding landmarks are forced to match exactly
although they are generally not homologous points. Using instead approximating
thin-plate splines and equal scalar weights (m = d = 2 in (5)) the registration
result is improved but it is still not satisfactory (Fig. 3 on the right). A further
improvement is obtained if we apply this procedure only to the normal landmarks
(numbers 1-6 and 8) in the inner parts of the brain (Fig. 4 on the left). However,
the best result is achieved if we use both the normal landmarks and the quasi-
landmarks together with the estimated ellipses, and apply approximating thin-
plate splines with anisotropic errors (Fig. 4 on the right). It can be seen that the
combination of both types of landmarks significantly improves the registration
accuracy, particularly at the outer contour of the brain.

5.2 3D Data

We also demonstrate the applicability of our approach for the registration of 3D
MR images of different patients. The datasets consist of 179 x 236 x 165 and
177 x 245 x 114 voxels, resp. (see Fig. 5). We have used normal landmarks as
well as quasi-landmarks while setting m = 2 and d = 3 in (9). The normal point
landmarks have semi-automatically been localized using the 3D differential oper-
ator in (1). As quasi-landmarks we have used the 3D bounding box landmarks of
the brain (Talairach [15]) as well as two landmarks at the top of the ventricular
system. The quasi-landmarks have been localized manually. For all landmarks
the weight matrices have automatically been estimated from the image data ac-
cording to (2). Fig. 6 shows that we generally obtain a good registration result
(see slices 29, 41, and 67), while some deviations can be observed at the bottom
left of the slices 41 and 67.

6 Conclusion

We have introduced a thin-plate spline approach to elastic image registration
which can cope with anisotropic landmark errors. The covariance matrices of
landmark errors are directly estimated from the image data and represent the
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Fig. 2. 2D MR datasets of different patients: normal landmarks, quasi-landmarks, and
estimated error ellipses (enlarged by a factor of 7).

Fig. 3. Registration result: Thin-plate spline interpolation (left), and approximation
with equal scalar weights (right) using normal landmarks and quasi-landmarks.

Fig. 4. Registration result: Thin-plate spline approximation using normal landmarks
and equal scalar weights (left), and normal landmarks, quasi-landmarks and estimated
error ellipses (right).

minimal stochastic localization uncertainties. Besides the handling of error in-
formation an additional advantage is that we can include different types of land-
marks, e.g., quasi-landmarks. Our experiments for 2D and 3D tomographic im-
ages of the human brain have shown that the incorporation of quasi-landmarks
significantly improves the registration result.
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Fig. 6. 3D registration result using approximating thin-plate splines, normal land-
marks, quasi-landmarks and estimated 3D weight matrices (slices 29, 41, and 67).
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