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Abstract

We describe 3D operators for extracting anatomical landmarks which are based on only first-order partial derivatives
of an image. To improve the predictability of the extraction results we analyze certain properties of the operators. First,
we provide a statistical interpretation in terms of the Cramér—Rao bound representing the minimal localization
uncertainty. Second, we show that the operators can be derived on the basis of invariance principles. It turns out that the
operators form a complete set of principal invariants. Third, we analyze the detection performance using a certain type of
performance visualization and a scalar performance measure. Experimental results are presented for 3D tomographic
images of the human brain. © 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The accuracy and reliability of point-based image reg-
istration in general strongly depends on the detection
and accurate localization of landmarks. In particular,
this holds true in the case of 3D medical image data, e.g.
magnetic resonance (MR) and X-ray computed tomo-
graphy (CT) images or digital atlases. In this context, the
task is to accurately match multimodality images such
that the complementary information of the different
data sets can be combined. In either case, the goal is to
increase the accuracy of localizing anatomical structures
in 3D space which is of fundamental importance in
computer-assisted neurosurgery. To match different data
sets, often corresponding prominent points, also denoted
as landmarks, are identified and used as features to
compute the transformation between the data sets [1-4].
In comparison to fiducial markers placed outside the

human head, anatomical landmarks have the advantage
that they can be located within the relevant inner brain
parts. Therefore, the registration accuracy is generally
increased in these regions. However, usually 3D ana-
tomical landmarks are localized manually which is
time-consuming and often lacks accuracy. Instead, semi-
automatic or automatic procedures promise to improve
this situation.

Currently, there are only a few computational ap-
proaches for extracting point landmarks in 3D to-
mographic images [5,6]. Thirion [5], for example, has
introduced 3D differential operators that consist of
partial derivatives of an image up to the third order to
detect certain points on 3D ridge lines. However, the
computation of high-order partial derivatives generally
is very sensitive to noise. Therefore, additional steps
are necessary to diminish these instabilities [ 7]. Related
operators based on isocontour curvature properties and
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using partial derivatives up to the second order can be
found in Ref. [8] (see also Ref. [9]). In Ref. [6] we have
introduced 3D differential operators which are generaliz-
ations of existing 2D corner detectors. These operators
employ either only first-order partial derivatives or first-
and second-order partial derivatives of an image. There-
fore, these operators are computationally efficient and
they do not suffer from instabilities of computing high-
order partial derivatives. Recently, the 2D versions of
these operators have been evaluated using 2D to-
mographic images of the human brain (see Ref. [10]). It
turned out that the operators based on only first-order
derivatives yield better results than those based on first-
and second-order derivatives.

In this contribution, we consider 3D operators which
employ only first-order partial derivatives of an image.
Whereas in Ref. [6], these operators have been derived
straightforwardly in accordance with the 2D case, we here
provide a sound statistical interpretation of the operators.
This interpretation is given in terms of the minimal local-
ization uncertainty defined by the Cramér—Rao bound.
Moreover, we show that the operators can be derived on
the basis of invariance principles. It turns out that the
operators form a complete set of principal invariants w.r.t.
the covariance matrix of the position estimate. Application
of the operators to 3D tomographic images reveals that
a large number of important 3D anatomical landmarks
can be detected with these operators; however, there are
also a number of false detections. In this contribution, we
therefore analyze the detection performance in more de-
tail. We introduce and apply a certain type of performance
visualization and also use a scalar quantity to measure the
detection capability. Experimental results are presented
for 3D tomographic images of the human brain.

2. Statistical interpretation

2D differential corner detectors have usually been de-
signed to extract grey-value corners; however, in many
applications they have been used to find general points of
high-intensity variations. Therefore, we can summarize the
general extraction criterion of these operators as finding
“points with high intensity variations”. This criterion mo-
tivated the 3D generalizations in Ref. [6] and their use for
localizing anatomical point landmarks in 3D tomographic
images. Whereas the criterion is rather general and un-
specific, in this section we provide a statistical interpreta-
tion of the 3D operators. We consider the following three
operators which are based only on first-order partial
derivatives of an image and which represent 3D general-
izations of the 2D corner detectorsin Refs. [11] and [12]:

O3 detC, OpY
P - C > P -

tr

Op4 = detC,,

—1°
9 g9

(1)

where
C,=Vg (Vg )

is a symmetric 3 x 3 matrix which represents the averaged
dyadic product of the 3D intensity gradient Vg =
(G 9,5 g.)%, g(x, y, z) is the image function, and det and tr
denote the determinant and the trace of a matrix, respec-
tively. If C, has full rank, then C, is positive-definite and
all eigenvalues of C, as well as those of it’s inverse are
larger than zero. Therefore, the operators in Eq. (1) yield
positive values, and landmark points can be found by
computing local maxima of the expressions in Eq. (1).

In the following, let af denote the variance of additive
white Gaussian image noise and m the number of voxels
in a local 3D window. Then, we can relate the matrix C,,
which captures the intensity variations inside the win-
dow, to the minimal localization uncertainty of the center
of the window x =(x, y,z). The minimal localization
uncertainty is given by the Cramér—Rao bound [13] and
is represented by the covariance matrix

0.2

L= Eﬂ C, . (3)
We see that X is proportional to the inverse of C,. From
Eq. (3) we can derive the 3D error ellipsoid of the position
estimate with semi-axes 7,,0,, and o.. A quantitative
measure for the localization uncertainty of a landmark is
the volume of the 3D error ellipsoid which is defined as

4
V= 3™ /detX,, 4

where
detL, = gioiol. (3)

The smaller the value of det X, the smaller is the localiza-
tion uncertainty. Thus, we can formulate the following
criterion for localizing 3D point landmarks: Find those
points with “minimal localization uncertainty”, i.e. min-
imal volume of the 3D error ellipsoid. This requirement
can be stated as

det X, — min. (6)

Since det X, = 1/det X, * and X, is the inverse of C, (up to
a factor) we see that Eq. (6) is equivalent to

det C;, — max, (7

which indeed is the operator Op4 in Eq. (1). Thus, this
operator extracts 3D points with “minimal localization
uncertainty”, i.e. ‘“highest possible localization pre-
cision”. Note that C, and thus X, can directly be com-
puted from the image data. Analogous, with Egs. (1) and
(3), we see that the operator Op3’ minimizes tr X, which is
the sum of the squared semi-axes of the 3D error ellipsoid
(for the 2D case see also Ref. [11]),

tr¥, = oz + g7 + ol (8)



K. Rohr | Pattern Recognition 32 (1999) 3—15 5

If the semi-axes are small, then generally also the error
ellipsoid is small and vice versa. Therefore, this operator
can be seen as an approximate measure for the volume of
the ellipsoid. Finally, Op3 is equivalent to (see also Sec-
tion 3 below)

3 ((tr2)* — r¥d) = oo + oio? + olol, 9)

which can further be written as
1 2 2 2
P ((TCO'xO'y) + (TEO’xO'z) + (TL’O'yO'z) ) (10)

Now we can see, that the three terms in the paren-
theses represent the areas of three (2D) ellipses with
corresponding semi-axes, and the total expression is the
sum of the squared areas of the ellipses. Actually, these
ellipses are the three orthogonal sections of the 3D
error ellipsoid determined through the directions of the
eigenvectors of X,. Thus, also Op3 represents an approxi-
mation to the volume of the 3D error ellipsoid. In sum-
mary, all three operators Op3, Op3’, and Op4 can be
interpreted as measures for the size of the 3D error
ellipsoid, using either the sum of (squared) sectional
ellipse areas, the sum of the (squared) lengths of the
semi-axes, or the (squared) volume of the ellipsoid, re-
spectively.

As an example, in Fig. 1, we show the estimated 3D
error ellipsoid for the landmark ‘genu of corpus callosum’
within a 3D MR data set of the human brain. The 3D
error ellipsoid has been displayed by three orthogonal

Fig. 1. Estimated 3D error ellipsoid (enlarged by a factor of 30)
for the landmark genu of corpus callosum within a 3D MR data
set of the human brain (orthogonal views: sagittal, axial, co-
ronal).

Fig. 1. (Continued).

views (sagittal, axial, coronal) and corresponds to the 1o
confidence regions. Note that the ellipsoid has been en-
larged by a factor of 30 for visualization purposes. We
have used a region-of-interest (ROI) of 21 x 21 x21
voxels centered around the detected landmark position,
and ¢2 =25 has been chosen for the variance of the
image noise. In Fig. 1, we see within the sagittal plane
that the localization uncertainty along the edge of the
object is much larger than the localization uncertainty
perpendicular to the edge. This is what we expect
from the local intensity structure of this landmark. The
axial and coronal views of the 3D error ellipsoid indi-
cate an approximately isotropic localization uncertainty,
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where the uncertainty within the coronal plane is larger
than in the axial plane. Another example is given in
Fig. 2 which shows the estimated 3D error ellipsoid for
the landmark “lower cusp between pons and medulla
oblongata”.

3. Relation to principal invariants

In this section, we show that the 3D differential
operators described above can be derived by applying
invariance principles. Invariance (absolute or relative

Fig. 2. Same as Fig. 1 but for the landmark lower cusp between
pons and medulla oblongata.

Fig. 2. (Continued).

invariance) is an important property which indicates
preservation under certain types of transformations
(e.g. rotations). Our analysis is based on the co-
variance matrix X, as introduced above and which rep-
resents the minimal positional uncertainty (Cramér—Rao
bound). We will consider the principal invariants of this
matrix.

3.1. Principal invariants of a matrix

Generally, the principal invariants of a d x d matrix
B = (b;;) are the coefficients 1y, ...,1; also denoted
11(B), ..., 14(B) if we wish to make the dependence on
B explicit. These coefficients appear in the characteristic
polynomial of B:

det(B — ) = (— %4 + (— 1) 1, (B)A* 1 + -
— ta-1(B)4 + 14(B), (11)

where I is a d xd unity matrix, such that 1;(B) = trB,
14— 1(B) = tr(cof B) ( = det BtrB~ ! if B is invertible), and
14(B) = det B [14]. The complete set of the principal in-
variants can be abbreviated as iz = (11(B), ..., 14(B)). The
1;(B) are invariant under similarity transformations
(translation, rotation, scale) and they are independent of
each other.

In the case of a 3 x 3 matrix we have the coefficients
13 = (11(B), 12(B), 13(B)) which appear in the characteristic
polynomial

det(B — A1) = — 73 + 1,(B)A% — 1,(B)/ + 13(B). (12)
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If we denote the eigenvalues of B by 4y, 4,, 13 then the
following relations can be deduced:

1 B)=trB=A4; + 4, + 43,
1L,(B) =1 ((tr B)?> — tr B?) = A1 Ay + Axl3 + 2423,
13(B) = det B = 47575 (13)

Other examples of invariants are tr B2 or tr B3; however,
these invariants are not principal invariants. In the 2D
case, i.e. for a 2x2 matrix, we have det(B — ) =
42 —11(B)A + 1,(B) with the two principal invariants
1;(B) = tr B and 1,(B) = det B.

3.2. Interpretation of the 3D differential operators

The covariance matrix X, given in Eq. (3) transforms
under similarity transformations € = Ax as £, = AL AT,
In the 3D case, according to Eq. (13), the three principal
invariants are

W(E) = rE, 1) =3 (rE,? — L),
13(E,) = det X, (14)

Regarding the first principal invariant and knowing from
Eq. (3) that C, is the inverse of X, (up to a factor) it
follows that 1;(X,) is equivalent to Op3’ = 1/tr C; ! in Eq.
(1). Note that for localizing landmarks, we compute local
maxima of the operator values. Thus, constant factors
of the operators are not relevant. Also note, that maxi-
mizing an expression is equivalent to minimizing the
inverse of it. Considering 1,(X,) in order to derive a
relation to our 3D operators, we first rewrite the sec-
ond principal invariant as 1,(X,) = detXtrX, . Since
detL, = 1/detL; ' we have 1,(X,) =X, /detX; .
Thus, 1,(£,) is equivalent to Op3 = det C,/tr C,. Finally,
again since detX, = 1/detX; ' and due to Eq. (3), it
follows that the third principal invariant 13(X,) is equiva-
lent to Op4 = det C,. In summary, the 3D operators Op3,
Op3', and Op4 in Eq. (1) are equivalent to the principal
invariants of the covariance matrix X, The operators
represent the complete set of principal invariants of this
matrix. With oc denoting proportional or inverse pro-
portional, we can write

det C,
trC,’

g

1
D -
11( g)OCtVCJI’

1,(X,) oc 13(X,) ocdet C,,.

(15)
Note, that 1;(X,) can also be expressed exclusively in
terms of the matrix C, as 1(X,)cc 2derC,/((tr C,)*
—trC).
If instead, we take the matrix C, as the basis of our
analysis and consider the principal invariants of this
matrix, then we obtain

11(C,) = trC,, 1,(Cy) = L((tr Cg)2 —tr Cg),
13(C,) = det C,. (16)

We immediately see that 13(C,) is equivalent to 13(X,),
while the other two invariants are different from the
invariants of X,. Thus, we have two additional invariants
and in total there are five different principal invariants.
All invariants are given in terms of the matrix C, which is
easier to implement in comparison to using the matrix
X, However, since only X, has a sound statistical inter-
pretation in terms of the minimal uncertainty of the
position estimate, we favor those operators which are
based on this matrix, i.e. 11(X,), 12(X,), and 13(X,).

In the 2D case, we have the principal invariants
11(X,) = tr X, and 1,(X,) = det X, which are indeed equiv-
alent to the 2D corner detectors in Refs. [11] and [12]:

, 12(X,) oc det C,,. (17)

Considering the matrix C, we have

11(Cy) = trC,, 1,(C,) = det C,, (18)
where 1,(C,) is equivalent to 1,(X,). Thus, overall we have
three different principal invariants of £, and C, in the 2D
case.

As an example for the 3D case, we show an application
of the invariant 1,(X,) which is equivalent to the operator
Op3. We have used a 3D MR image of the human brain
consisting of 68 slices of 165 x 210 resolution. The total
number of detected points is about 1000. The result for
a number of slices is shown in Fig. 3 (slices 7, 20, 36, 37,
38, and 48). It can be seen that significant structures have
been detected. For example, in slices 7, 20, and 48 tips of
the ventricular horns (see the dark elongated structure in
the middle of the brain) and certain characteristic points
on the sulci have been found. Additional detected land-
marks are, for example, in slice 36 the anterior commis-
sure and the genu of the corpus callosum, in slice 37 the
tips between the midbrain and the pons, the posterior
commissure, and the splenium of the corpus callosum,
and in slice 38 the inferior colliculus (for the names of
these landmarks see a standard book on human anat-
omy, e.g., Ref. [15]). Note, that each of these landmarks
have been detected only in single slices which indicates
that we have actually determined 3D points (to clearly
see this behavior was the reason why we selected the
three adjacent slices 36, 37, and 38). On the other hand,
we also obtain some points which we cannot directly
relate to points of anatomical relevance, e.g. in slices 37
and 38 in the upper and right part of the brain. Here, the
problem may be the gap between the two hemispheres of
the brain which is partly visible as dark areas in these
slices. Anyway, in general the detection performance is
very important, since the reliability and accuracy of the
registration result strongly depends on this criterion.
Therefore, we analyze the detection performance of the
operators in more detail below.
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Fig. 3. Detected point landmarks for a 3D MR image of a human brain using the 3D operator Op3 (slices 7, 20, 36, 37, 38, and 48).

4. Detection performance

To localize anatomical landmarks in 3D tomographic
images, we use a semi-automatic procedure on the basis
of the 3D differential operators described above. In com-

parison to a fully automatic scheme such a semi-auto-
matic approach has the advantage that the user has the
possibility to control the results, which is important
in clinical scenaria. In our case, we rely on the follow-
ing semi-automatic procedure for localizing a certain
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landmark (see also Ref. [16]. First, the user specifies
a region-of-interest (ROI) together with an approximate
position (e.g. the center of the ROI), and second, a 3D
operator is applied yielding landmark candidates within
the selected ROI. Ideally, there should be only one (cor-
rect) landmark candidate. However, due to noise and
interaction effects with neighboring anatomical struc-
tures there are generally also false detections. In either
case, the user should have the possiblility to accept or
reject detected candidates.

4.1. Performance visualization

The described semi-automatic procedure can be ap-
plied most reliably and efficiently if the number of
false detections is small and moreover if the operator
response of the correct detection is much larger than
the operator responses corresponding to the false de-
tections. Note that landmark candidates with very low
operator responses can be excluded by applying a low
threshold. However, since still there would be false
detections left such a procedure would not principally
solve the problem. Also note that since we deal with 3D
images which are displayed on a slice-by-slice basis in
practice, it is generally very difficult to distinguish false
detections from correct detections. In the 2D case, the
selection is generally no problem since, for example, we
can mark all detections in the original image and display
the whole result on the screen. To improve the situation
for 3D images, we suggest to use a certain performance
visualization which gives an indication of the detection
performance. With this visualization we first compute the
Euclidean distances ||x; — Xgo;|» between the positions
x; of the detected candidates and the specified center
of the ROI abbreviated by Xxze;. Then, the computed
distances are represented together with the operator
responses (cf. Figs. 4-6). Thus, this representation com-
bines the information of the number of false detections
with the significance of the detections. Also, we obtain an
indication of how the locations of the detections are
distributed w.r.t. xgo;. However, a disadvantage is that
we lose the full information of the distribution in 3D
space.

4.2. A performance measure

Whereas the performance visualization described
above gives a visual impression, we are also interested
in quantitative measures for the detection performance.
One measure is the number of false detections; however,
with this measure the strength of the operator responses
is not taken into account. Instead, we suggest using
another measure. Suppose we have a number of n detec-
tions within a ROI and the operator responses are de-
noted by R; = Op(x;), i =1, ...,n, where the maximal

operator response iS R, = Op(X,..). The candidates
may or may not be the result after applying a threshold

Q= {X,‘ ‘ Ri = ngax}s (19)

where ¢ is user-defined, e.g. ¢ = 0.01. For this set we can
compute the following measure:

0, n=0,

Y=q 2 R, (20)
nz=l1.

i= 1Rmax

If there are no detections at all then we have = 0.
Alternatively, if there is only one detection we obtain
Y = 1, and additional false detections with low operator
responses yield a value of  ~ 1. In this case, the correct
detection can clearly be distinguished from the false
detections. On the other hand, if there are operator
responses with similar values as the maximal operator
response, then ¥ is much larger than 1. Thus, in summary
we here have a scalar quantity which gives an indication
of the detection performance. Additionally, we can em-
ploy the mean value Y = y/n. In the case of several
exclusively similar operator values, where we have > 1,
we obtain Y ~ 1. In the case of one strong response and
a large number of low responses which also sum up to
> 1, we instead obtain < 1. Note, that for our oper-
ators the responses R; are always larger or equal to zero.
Thus, when computing s for other operators which pos-
sibly yield positive as well as negative responses, then
absolute values of R; should be used.

5. Experimental results

In this section, we report on experimental results con-
cerning the detection performance and the registration
accuracy.

5.1. Detection performance

The plots on the left side of Fig. 4 show an application
of the detection performance visualization described in
Section 4.1 above. We have used three different anatom-
ical landmarks within a 3D MR image of the human
brain (on the right side are the results for another 3D MR
data set). The landmarks are located on the ventricular
system and on the skull base. We have used the operator
Op3 and Gaussian derivative filters of ¢ = 1.5 to com-
pute the partial derivatives of the image. The size of the
ROI has been chosen to 21 x21x21 voxels and the
center of the ROI is the position due to best manual
localization. Thus, we take the manually selected posi-
tion as “ground truth”, although we know that this
position may be prone to error. In our case, we have
alleviated this problem by using landmark positions
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Fig. 4. Operator responses of Op3 for landmarks external occipital protuberance (top), left frontal ventricular horn (middle), and left
occipital ventricular horn (bottom) in two different 3D MR data sets (left and right).

which have been specified in agreement with the judge-
ment of three to four persons. To further reduce the
subjectivity in our experiments we have used no thre-
sholds at all. For the landmark on the top left of Fig.

4 (external occipital protuberance) we see that we have
a detected landmark candidate close to the manually
specified position. However, we also have a number of
false detections with relatively large responses. Thus, the
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Fig. 5. Same as Fig. 4 but for operator Op3'.

detection performance for this landmark is relatively bad
and it will be difficult and time-consuming for a user
to select the correct candidate. Instead, for the land-
mark in the middle left of Fig. 4 (tip of left frontal

ventricular horn) we have a perfect detection result with
only one strong candidate within the whole 3D ROI.
For the landmark on the bottom left of Fig. 4 (tip of
left occipital ventricular horn), we essentially have two
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strong operator responses of similar values, where one person. Here, the occipital ventricular horn of this person
of them is closer to the manually specified position. actually is a ‘double horn’ consisting of two tips. There-
Inspection of the original image reveals that the double fore, in this case both landmarks are suited for use in

detection due to the individual anatomy of the imaged registration and the user has to decide which of the
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landmarks should be used. In Fig. 4 on the right are the
results for the same landmarks as before but for a differ-
ent 3D MR data set. Here, we see that for the first
landmark (top right of Fig. 4) the detection result is
much better in comparison to the previous data set.
We have one strong detection close to the manually
specified position. The additional false detections have
lower operator responses and are farer away from the
landmark position. For the second landmark (middle
right) the detection result is good but it is worse in
comparison to the previous data set, since here we have
one false detection with a relatively large operator re-
sponse. For the third landmark (bottom right), we have
a perfect detection result up to some false detections with
extremely low operator responses. Comparison with the
previous data set shows that we here have a unique tip of
the occipital ventricular horn corresponding to “normal”
anatomy.

We have also applied the operators Op3’ and Op4 for
the same landmarks and the same data sets as above (see
Figs. 5 and 6, respectively). It turns out that the results of
Op3' are somewhat worse than those of Op3. For the
landmark on the top left in Fig. 5 there is no strong
detection close to the manually selected position, and for
the landmark on the bottom left the detection closest to
the manually selected position has a lower operator re-
sponse than the one farer away. Additionally, for Op3’ the
operator responses of the false detections with relatively
low reponses are larger than those for Op3. Thus, the
discrimination power of Op3’ is worse (e.g. compare the
results on the bottom right of the Figs. 4 and 5). Consid-
ering the results of Op4 in Fig. 6 we see that this operator
yields similar results as Op3. We have nearly the same
strong detections and also the discrimination power be-
tween strong and weak detections is comparable.

For all examples above we have also computed the
performance measure i as defined in Eq. (20). The results
in Tables 1 and 2 correspond to the left and right sides of
the Figs. 4-6, respectively. It turns out that the computed
quantities are in well agreement with our observations in
Figs. 4-6. First of all, we see that the detection perfor-
mance for the first landmark is much worse in compari-
son to the other landmarks. Second, the operator Op3’
generally yields larger values of y than Op3 as well as
Op4 and thus the detection performance of this operator
is worse. Third, it can also be seen that Op3 and Op4 yield
very similar results. We also note, that the measure
is a much better performance characterization than the
number of false detections alone. For example, for Op3 in
Table 2 we have for the first and third landmark exactly
the same number of false detections (7 false detections).
However, the detection performance for the third land-
mark is much better than that for the first one, since for
the third landmark the false detections have much lower
operator reponses. This fact is clearly quantified by the
corresponding values of yy which are in accordance with

Table 1
Performance measure ¥ for landmarks in a 3D MR data set

Landmark op3 op3' Op4
External occipital protuberance 4.82 6.38 5.17
Frontal ventricular horn 1.01 1.31 1.04
Occipital ventricular horn 2.14 2.93 1.81
Table 2

Same as Table 1 but for a different 3D MR data set

Landmark op3 op3' Op4
External occipital protuberance 2.58 4.84 1.93
Frontal ventricular horn 1.56 1.60 1.63
Occipital ventricular horn 1.06 1.62 1.01

the performance visualizations on the top and bottom
right of Fig. 4.

5.2. Registration accuracy

We have also used the semi-automatically localized
landmarks as features for the registration of 3D MR and
CT images of the human brain. In the following experi-
ment, we have applied the operator Op3 and Gaussian
derivative filters of ¢ = 1.5. The investigated MR data set
consists of 120 axial slices of 256 x 256 resolution, and the
CT data set consists of 87 axial slices of 320 x 320 resolu-
tion. The images represent the brain of the same person.
We have used the following anatomical point landmarks:
topmost concavity of fourth ventricle roof, external oc-
cipital protuberance, tip of frontal ventricular horn, tip
of occipital ventricular horn, tip of temporal ventricular
horn, saddle point at zygomatic bone, as well as saddle
point at processus mastoideus. The last five landmarks
can be found in both hemispheres of the human brain.
Note, that for the used CT data set the tip of the temporal
ventricular horn was siginificantly worse pronounced in
comparison to the other landmarks, therefore, we did not
include this landmark. In total, we thus have a number
of 11 homologous landmarks. To assess the registration
accuracy of the localized landmarks we have applied an
optimal affine transformation model. We hereby assume
that an affine transformation model well approximates
the true transformation. Note also that the registration
accuracy only checks the global consistency of the land-
marks according to the applied transformation model.
Anyway, using 11 landmarks and an optimal affine trans-
formation model we obtained a good registration result
with a mean Euclidean error at the landmarks of ¢ ~ 1.5
voxels, where the individual errors at the landmarks
varied between 0.4 and 2.6 voxels.
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6. Summary and future work

We have investigated 3D differential operators for
extracting anatomical point landmarks in 3D tomo-
graphic images of the human brain. These operators only
employ first-order partial derivatives of an image and are
therefore computationally efficient and do not suffer
from instabilities of computing high order partial deriva-
tives. To improve the predictability of the operators
we have analyzed certain properties of them. It has been
shown that the operators can be interpreted in terms of
the Cramér—Rao bound which represents the minimal
localization uncertainty. All operators can be related to
the geometry of the 3D error ellipsoid and they essential-
ly represent the size of the ellipsoid. Moreover, we have
shown that the operators can be derived on the basis of
invariance principles. It turned out, that the operators
form a complete set of principal invariants under sim-
ilarity transformations. As a basis of our analysis we have
used the covariance matrix of the position estimate due
to the Cramér—Rao bound. Taking the inverse of that
matrix as a basis, we additionally obtained two invari-
ants in the 3D case and one in the 2D case.

We have also analyzed the detection performance of
the operators. We have introduced and applied a certain
type of performance visualization which combines the
number of false detections with the significance of the
detections. Also, we have suggested a scalar measure
of the detection performance. It turned out, that this
measure gives a good indication of the detection capabil-
ity and that it is more appropriate than using the number
of false detections alone as a detection performance cri-
terion. Note that both the performance visualization as
well as the performance measure can be applied within
a semi-automatic procedure to guide the user in selecting
the correct landmark candidates. Investigation of the
different operators revealed that two operators, namely
Op3 and Op4, yield superior results. We also saw that the
detection performance is generally different for different
landmarks.

Besides the detection performance, the localization ac-
curacy is of primary interest. Recently, an extension of
our operators has been reported in Ref. [17] which
allows for subvoxel localization using multi-step differen-
tial approaches. The extracted landmarks serve as fea-
tures for a point-based registration scheme. Note, that
the information of the landmark error ellipsoids can also
be incorporated as input for registration [18]. In future
work, it will be important to analyze in detail the influ-
ence of landmark extraction on the registration result.
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