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Previous work on nonrigid registration of medical images based on thin-plate splines has
concentrated on using interpolation schemes. Such schemes force the corresponding land-
marks to exactly match each other and thus assume that the landmark positions are known
exactly. However, in real applications the localization of landmarks is always prone to
error. Therefore, to cope with these errors, we have investigated the application of an
approximation scheme which is based on reqularization theory. In addition to this study,
we report on investigations into semi-automatic extraction of anatomical point landmarks
of the human brain.
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1 Introduction

Registration (or matching) denotes the process in which two existing representations are
put into correspondence. The aim is to find a transformation that describes the mapping
between these two representations. Particularly, in neurosurgery and radiotherapy plan-
ning it is important to either register images from different modalities, e.g. CT (X-ray
Computed Tomography) and MR, (Magnetic Resonance) images, or to match images to
atlas representations. If only rigid transformations were applied, then the accuracy of the
resulting match often is not satisfactory w.r.t. clinical requirements. In general, nonrigid
transformations are required to cope with the variations between the data sets.

This contribution is concerned with nonrigid registration of medical image data based
on a set of corresponding anatomical point landmarks. Previous work on this topic has
concentrated on i) selecting the corresponding landmarks manually and on ii) using an
interpolating transformation model (Bookstein [1], Evans et al. [3], and Mardia and Little
[6]). The basic approach draws upon thin-plate splines and is computationally efficient,
robust, and general w.r.t. different types of images and atlases. Also, the approach is
well-suited for user-interaction which is important in clinical scenaria. However, an in-
terpolation scheme forces the corresponding landmarks to exactly match each other. The
underlying assumption is that the landmark positions are known exactly. In real appli-
cations, however, the localization of landmarks is always prone to error. This is true for



interactive as well as for automatic landmark localization.

Therefore, to take into account these localization errors, we have investigated the
application of an approximation scheme where the corresponding thin-plate splines result
from regularization theory. Generally, such an approach yields a more accurate and robust
registration result. In particular, outliers do not disturb the registration result as much
as is the case with an interpolation scheme. Also, it is possible to individually weight the
landmarks according to their localization uncertainty. We have applied this approach to
nonrigid registration of tomographic images of the human brain.

Additionally, we report on first investigations toward the semi-automatic extraction
of anatomical point landmarks using differential operators. Algorithms for this task are
important since manual selection of landmarks is time-consuming and often lacks accuracy.

2 Clinical Applications for Nonrigid Registration

One possible application for nonrigid registration is trajectory planning for neurosurgical
intervention. Pain treatment as well as epilepsy treatment sometimes require to localize
a functionally important region not visible in the available image data. There are in-
structions available in the literature how to construct the position of such a region given
landmarks which can be identified in CT or MR images. Hence, it is useful to super-
impose an atlas with a medical image as already proposed by Talairach. Due to the
individual variability of anatomical structures, rigid registration is generally not sufficient
and nonrigid matching should be applied.

Another application is the registration of CT and MR images for the purpose of ra-
diotherapy planning. Additionally, a template atlas can be superimposed on the MR
image to indicate, for example, organs at risk. This superposition result is then over-
layed on the CT image prior to dose calculation and isodose visualization on the MR
image. It is questionable whether rigid registration is suitable for this purpose since MR
images are geometrically distorted. On the one hand, scanner-induced distortions have
to be coped with which are caused by, e.g., inhomogeneities of the main magnetic field,
imperfect slice or volume selection pulses, nonlinearities of the magnetic field gradients,
and eddy currents. These distortions can be reduced by suitable calibration steps: The
inhomogeneities of the main magnetic field are minimized by passive and active shimming
whereas, e.g., the gradient nonlinearities cannot be completely shimmed. Thus, depend-
ing on the scanner protocol, the sum of all remaining distortions leads to a residual error
of a few millimeters (for a spherical field of view of 25 cm). On the other hand, there
are geometrical distortions in MR images that are induced by the patient and cannot
be removed by calibration. Parameters such as susceptibility variations, chemical shift
of non-water protons and flow-induced distortions for vessels are very important. While
the susceptibility difference of tissue and bone is negligible, the susceptibility difference
between tissue and air is approximately 107>, This can result in a field variation of up to
10 ppm and geometrical distortions of more than 5 mm which is most important for the
nasal and aural regions. Consequently, due to the scanner- as well as the patient-induced
distortions of the MR image, CT and MR images in general cannot be satisfactorily
registered using rigid transformations.



3 Thin-Plate Spline Approximation

The use of thin-plate spline interpolation for point-based registration of medical images
was first proposed by Bookstein [1]. In this section, we extend this approach in such a way
that we can take into account landmark localization errors. We achieve this by combining
a quadratic approximation criterion with the original smoothness functional:
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where n is the number of landmarks, d the dimension of the image, and m the order
of derivatives in the smoothness functional (see Wahba [11] for a theoretical study of
such functionals). The first term (data term) measures the distances between the trans-
formed source landmarks p; and the target landmarks q;. The second term measures the
smoothness of the resulting transformation. Hence, the minimization of (1) yields a trans-
formation u, which i) approximates the distance of the source landmarks to the target
landmarks and ii) is sufficiently smooth. The relative weight between the approximation
behavior and the smoothness of the transformation is determined by the regularization
parameter A\ > 0. In the limit of A\ — 0 we obtain an interpolating transformation,
whereas in the limit of A — oo we get a global polynomial of order up to m — 1.

The solution to (1) can be stated analytically as the weighted sum of polynomials ¢,
and certain radial basis functions U, using the coefficient vectors a and w. The compu-
tational scheme to compute a and w then reads as

(K+n\X)w+Pa = v (2)
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where K;; = Ui(p,;), P;j = ¢j(pi), and v represents one component of the coordinates
of the q;. The interesting fact is that this scheme is nearly the same as in the case of
interpolation. We only have to add nA in the diagonal of the matrix K.

A generalization of the approximation scheme can be attained, if information about
the accuracy of the landmarks is available. Then, we can weight each single data term in
(1) by the variance o2 (see [8], [9] for details). Note, that this approach can be applied
to images of arbitrary dimension, i.e. in particular to 2D as well as 3D images.

4 Experimental Results

Within the scenario of CT-MR registration as discussed above we here consider the ap-
plication of correcting patient-induced susceptibility distortions of MR images. To this
end we have acquired two sagittal MR images of a healthy human volunteer brain with
typical susceptibility distortions. In our experiment we used a high-gradient MR image
as “ground truth” (instead of clinically common CT images) to avoid exposure of the
volunteer to radiation. Both turbo-spin echo images have consecutively been acquired on
a modified Philips 1.57" MR scanner with a slice thickness of 4mm without repositioning.
Therefore, we are sure that we actually have identical slicing in space. Using a gradient of



Figure 2: Registration results: Interpolation (left) and approximation (right).

ImT/m and 6mT /m for the first and second image then leads to a shift of ca. 7.5...10mm
and ca. 1.3...1.7mm, respectively.

Within each of the two images we have manually selected 20 point landmarks. To
simulate outliers, one of the landmarks in the first image (No. 3) has been shifted about
15 pixels away from its true position for demonstration purposes (see Fig. 1). Note,
however, that manual localization of landmarks actually can be prone to relatively large
errors. Fig. 2 shows the results of the interpolating vs. the approximating thin-plate spline
approach. Each result represents the transformed first image. It can be seen that the
interpolation scheme yields a rather unrealistic deformation since it forces all landmark
pairs, including the pair with the simulated outlier, to exactly match each other. Using
our approximation scheme instead yields a more accurate registration result.

5 Semi-Automatic Landmark Localization

One main problem with point landmarks is their reliable and accurate extraction from 3D
images. Therefore, 3D point landmarks have usually been selected manually (e.g., Evans
et al. [3], Hill et al. [5]; but see also Thirion [10]). In this section, we briefly describe our
first investigations into semi-automatic localization of 3D anatomical point landmarks.
Semi-automatic means that either a region-of-interest (ROI) or an approximate position
of a specific landmark (or both) is given by the user. Then, an algorithm has to provide
a refined position of the landmark. Alternatively, landmark candidates for a large ROI
or even for the whole data set may be provided automatically from which the final set of
landmarks is selected manually. Such a semi-automatic approach has the advantage that



Figure 3: Right frontal horn in a 3D MR data set (left) and result of computing the 3D
Gaussian curvature (right)

Figure 4: Landmark candidates: Application of a 2D ‘corner’ detector (left) vs. a 3D
extension (right) on a 2D and 3D MR image, respectively.

a user has the possibility to control the results (“keep-the-user-in-the-loop”).

Within a ROI we apply specific 3D differential operators such as to exploit the knowl-
edge about a landmark as far as possible, in particular it’s geometric structure. To localize
curvature extrema we use an operator which estimates Gaussian curvature, i.e. the prod-
uct of the two principal curvatures K = Ay, multiplied with the fourth power of the
gradient magnitude |Vg|. Fig. 3 shows a result of this operator for the right frontal horn
in a 3D MR image. It can be seen that we obtain a strong operator response at the tip
of the frontal horn.

We also investigate 3D differential operators which are extensions of existing 2D ‘corner
detectors’. For a recent analytic study of such 2D operators see Rohr [7]. These operators
have the advantage that only low order partial derivatives of the image function are
necessary (first or first and second order). Therefore, these operators are computationally
efficient. As an example, in Fig. 4 we show the application of the 2D operator of Foérstner
[4] vs. a 3D extension of it: detC,/traceC, — max, where C, = Vg (Vg)T and Vg
denotes the image gradient in 2D and 3D, respectively. Note, that in the 2D case many well
detected landmarks agree with the manually selected landmarks in Bookstein [2]. Note
also, that the 3D operator actually takes into account the 3D structure of the landmarks
and therefore in a single slice of a 3D image only a few of the 3D point landmarks are
visible, i.e., other landmarks according to [2] have been detected in different slices.
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