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Abstract. The automatic derivation of fiber properties by means of
mass data (image) analysis is a current and interesting research area.
Skeleton-based approaches have already proven to be adequate in paper
pulp quality control [1-3]. However, the derivation for thermo mechan-
ical pulp (TMP) used for the production of medium dense fiberboards
(MDF) is, due to the wide range of fiber lengths and fiber morphol-
ogy, far more challenging. Currently, trained experts are performing the
quality assessment visually and haptically on small samples. Since this
cannot replace an objective measurement, we propose a fast skeleton-
based approach, which is able to derive a variety of fiber characteristics
at sub-pixel precision from images of fibers. The algorithm is supposed
to work automatically under a laboratory environment for fiber sam-
ples, and makes use of concurrency to reduce the processing time and
the memory needed. In practice, one measurement cycle is based on ap-
prox. 1700 single images with usually more than 1,000,000 automatically
measured fibers. Comparisons of the automatically measured fibers with
manual microscopic measurements yield in a high reliability and quality
of the results.

1 Introduction

With a worldwide production of 70 million m? in 2010 [4], medium-density fiber-
board (MDF) is one of the most important wood-based panels in the market.
Manufacturing MDF, wood chips are defibrated into thermo mechanical pulp
(TMP), the fibers are glued up with a thermoset resin, and finally continuously
hot-pressed into flat panels. In respect to panel properties, fiber board is applied
for furniture production, as core material for laminate flooring, as construction
or insulation plate, and a variety of other applications. MDF properties are in-
fluenced by the fiber quality used, whereby fiber quality is determined by the
process parameters applied.



Despite the importance of fiber quality for MDF production, its evaluation
is still just done on a low technical level as a worldwide survey of MDF plants
[5] showed recently. The overall majority of fiber quality control is yet per-
formed by skilled personnel (haptical and visual), followed by the application
of various sieving methods and optical measuring systems with obviously lim-
ited capabilities. Based on this initial situation, an alternative image-based fiber
analysis system was being developed by the Thiinen Institute of Wood Research
(Hamburg, Germany); Hamburg University (Hamburg, Germany), in particular
Department of Wood Science and The Cognitive Systems Laboratory (KOGS);
and Fagus-GreCon Greten GmbH & Co. KG (GreCon) (Alfeld, Germany) in
2009. As a result of the conducted research projects, and on basis of the algo-
rithms presented herein, an offline fiber characterization system has proved to
work stable in two industrial trails, each of several months duration [6].

It is the intention of this paper to present a skeleton based image processing
approach, which has been developed for the fiber analysis system in order to
achieve both, a high computational efficiency and the maximum precision when
measuring the fibers optically (cf. [2]). Skeletonization algorithms have their ori-
gins in the 1970s, where first pixel-based algorithms have been described by [7,
8]. Since then, many different algorithms have been developed and enhanced by
means of morphological image processing ([9-11]). For many applications, the
pixel precision of most algorithms may not be sufficient to achieve reliable mea-
surement results. However, only comparably few sub-pixel skeletonization meth-
ods exist and are often computationally expensive [10, 12]. Due to wide range of
fiber sizes and the varying fiber morphology, a new algorithm for the automatic
measurement of pre-separated fibers will be described herein. To achieve the
largest possible sample set of fibers, high-resolution images need to be analyzed.
While the high resolution is able to monitor even smaller (dust) fibers, these
fibers are quite above the minimal size required by the sampling theorem (see
[13]). To avoid measurement errors, a sub-pixel approach is proposed. To save
both, memory and computation time, the algorithm is designed to be executed
concurrently, which allows a faster processing on modern CPUs.

2 Mechanical fiber separation and image acquisition

The technical set-up of the measuring device hardware component can be roughly
partitioned into three sections: (a) mechanical fiber separation, (b) image acqui-
sition, and (c) cleaning (Fig. 1). The mechanical fiber separation is arranged by
means of specially tuned airflows, and completes when the fibers land as a fine
scattered film on the continuously rotating glass plate, which can be considered
as the objective plate. Passing the photo unit, a large subsample of the fibers on
the objective plate is imaged with an industrial high-resolution grayscale camera
(GE4000, Allied Vision Technologies GmbH, Stadtroda, Germany). Each image
corresponds to a size of 93 x 62 mm on the objective plate, with a reference size
of 23.2 um per pixel.
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Fig. 1: Structural diagram of the experimental setup. The fibers are pre-separated
(left) before they fall on the objective plate and are being imaged (center). After
acquisition, the fibers are removed from the plate by vacuum. (modified Fig.
from [5]).

The image recording is arranged with a frequency of approximately 82 pho-
tographs per minute, resulting in approx. 1700 photographs per measuring cycle.
Each measurement cycle is divided into three sub cycles, where new fibers are
inserted into the separation unit’s container. This is necessary, since the sepa-
ration has a capacity of about 0.5g. Usually, fiber samples of millions of MDF
fibers correspond to a weight of approx. 1.5g. A complete cycle is currently per-
formed in less than 30 minutes. This includes the time, which is necessary for
stopping the machine, refilling fibers, restarting the machine, and resuming the
measurements. The resulting count of fibers depends on the fibers’ types and
characteristics (Fig. 2).

To achieve the best contrast between fibers and the empty objective plate in
each image, the images are taken using an area-flashlight, which is triggered in
conjunction with the camera and emits light in the red spectral range. Thus, the
fibers are imaged darker than the surrounding (empty) background. After each
image acquisition the glass plate is rotated and cleaned up by a vacuum cleaner.
Parallel to its acquisition, images are grabbed and a scheduled for concurrent
processing by the software algorithm presented in this paper (see Fig. 3).
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Fig. 2: Count of measured fibers for different sample test cycles with MDF fibers.
The count has a range of 150750 — 2637385 fibers, with a mean of 1142550.4 and
a standard deviation of 465016.9 fibers.

3 Image Processing

The experimental setup directly influences the choice of the applicable image
processing methods. The images of the fibers are taken on a transparent (glass)
surface, which is backlit using are area flash at each acquisition. Since the fibers
on the glass shut off light, they are imaged using darker image intensities when
compared to the uncovered objective plate. Additionally, we expect an intensity
gradient from the fibers center to the surrounding areas.

3.1 Preprocessing

The camera is grabbing 16bit grey-scale images, thus the first step is to pre-
process the images by means of noise reduction and the decision if a pixel of
the acquired image is representing a fiber. To estimate a bias or control image,
the clean object plate is firstly rotated without fibers applied to calibrate for n
empty images C = {CI,...CI,}.

After this calibration run, the acquired images are aggregated to a mean ref-
erence image for the preprocessing during the measurements. Before the decision
whether a pixel is covered a fiber, the current image is (absolutely) subtracted
from this reference image:

I,=C L]



Based on this absolute difference image a user-selected threshold is applied
to derive the so-called fiber mask of the image I,,, which assigns a pixel either
to represent a fiber or the (former brighter) background.

[ 1 if I, >ty
" 0 else.

The next processing step is the application of a fast union-find labeling al-
gorithm to the mask to detect 4-connected regions of fiber pixels. We use an
efficient implementation of the algorithm proposed by Roerdink in [14]. Based
on the derived connected components a pre-filtering takes place. a region will be
dismissed if its bounding box touches the image boundary as the image func-
tion is unreliable at boundaries and fibers may be partially excluded from the
acquisition field.

The processing of each region is then performed in a concurrently manner.
To allow a correct processing of shive regions, another classification step is in-
troduced for each region. Pixels representing dark and thick areas are classified
by using a minimal thickness threshold ¢s4 and a minimal intensity value s are
marked in I;. The thickness estimation is based on a distance transform of the
fiber mask for each region.

I 1 ifI, <t, and dist(I,) > tsq/2
s 0 else.

In order to compute valid sub-pixel fiber skeletons, each region with an as-
sociated shive classification will be smoothed before the next processing step to
generate less sub-pixel extrema. The smoothing is carried out by means of a
Gaussian smoothing kernel, which standard deviation is determined according
to the maximum value of the distance transform of the region. Thus, regions
with “thicker” shives are proportionally more smoothed.

3.2 Fiber skeleton graph creation

Each connected component may correspond to either a single MDF fiber or
an aggregation of different non-isolated fibers. The next step is to determine
the structure of the imaged signatures. To speed up this part of the developed
algorithm the fiber segmentation is applied to each connected component con-
currently using a unique identifier and the mask as well as the image data for
the bounding box of the former step. The segmentation of the fibers of each con-
nected component is based on an sub-pixel skeletonization approach proposed
by Meine in [15]. This approach determines sub-pixel precise local maxima and
saddle points. After the determination, a Runge-Kutta optimization approach
is used to trace flow lines from each saddle point to eventually connect it to
the closest local maxima.In contrast to Meine, who applied this approach on a
gradient image to derive a sub-pixel watershed segmentation of the image, we
apply the algorithm on the preprocessed image data.



The resulting directed graph G = (V, E) will then be used as a definition of
the inner structure, the skeleton, of each connected component. Additionally, a
geometrical embedding function geo : V. — R? is defined to map each vertex
to a sub-pixel image position. Despite other works on fiber recognition, this
accuracy is needed due to the large range of fiber sizes, to ensure the accurate
measurement of smallest fibers (cf. [2, 3]).

Image
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Normalized Image
Connected Connected Connected
Component 1 Component2 | 7 Component N
Classified Classified Classified
Region 1 Region2 | 77 Region N
Completely Completely Completely
preproc. Region 1 preproc. Region2 | preproc. Region N
Fiber Graph 1 Fiber Graph 2 | ....... Fiber Graph N
Fiber Statistics 1 Fiber Statistics 2 | oo Fiber Statistics N

Collected Graphs
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Fig.3: Algorithmic design. From top to bottom: general execution direction.
From left to right: concurrent computing.
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Fig. 4: The resolution of H-configurations. Left: streamer configuration, right: er-
roneous crossing configuration. From left to right: initial configuration, proposed
fix. Light green: saddle points, dark green: (pseudo) maxima.

4 Fiber graph processing

After the creation of the graph, the graph is the universal data structure, where
all future steps and the measurements will take place. But before the measure-
ment, some graph structures need to be analyzed and eventually be fixed in
order to achieve a structural correspondency between the graph and the imaged
MDF fibers.

4.1 Resolving H-configurations

After the creation, we need to fix the structure of the graph by means of erroneous
detected crossing configurations. Since the graph was derived purely by the image
itself, some crossings may be degenerated to a H-configuration. Additionally, so-
called streamers may also result in such configurations (cf. [15]).

For each saddle vertex v with exactly two neighbored vertices v; and v in V/,
let geo(v) = (z,y)T and geo(v;) = (x;,y:;)T denote the geometrical embedding
of the nodes.

An H-configuration is defined at vertex v if and only if each of the vertices
v1 and vy have exactly two neighbors different from v, namely v11, v12, v2; and
vo2 and each of these neighbored vertices has a degree of 2 (see Fig. 4). The
resolving of such H-configurations is performed using the following algorithm:

1. Compute the angles a; between v;, v;; and v;o for ¢ € {1,2}.

2. If a1 =~ 180° and as =~ 180° and
I(x1,y1) > I(z,y) and I(z2,y2) > I(x,y):
Streamer configuration: the vertex v will be removed from V and all edges
connecting to or from v in E will be deleted, too.

3. Else: Compute the angles ¢;; between v1;, v and vo; for 4,5 € {1,2}.

4. If max(c;j) ~ 180°:
Erroneous crossing configuration: contract the vertices vy and vy to v. Thus,
v1 and vy will be removed from V', corresponding edges will be removed, too.
Eventually edges from v to v11, v12, v21, and vee will be inserted into E.



4.2 Adding pseudo-graphs for small connected components

Another consequence of the graph creation algorithm is, that a skeleton can
not be derived for all detected regions. Small regions e.g. may not provide any
(or only one) local maxima. To cope this, we distinguish between two cases for
connected components whose graphs have an empty set of edges:

1. If the size of the connected component is one pixel:
Add two vertices placed slightly left and right of the detected maxima and
connect them to the central maxima vertex.
2. If the size is larger than one pixel:
(a) Compute the normalized image moments up to second order: m;; with
i,7€{0,1,2}and i +j < 2.
(b) Derive the center of gravity:
g = (mhp mg)"
(c) Define the covariance matrix
_ (ma miy T
A= (m/u m62) ~99
(d) Solve the Eigen system of A,
Let evy denote the major eigenvector of A.
(e) Clear the current graph.
(f) Add two vertices v; and vy to the graph. Connect them using edges.
(g) Set the geometrical embedding as follows:
geo(vy) =g —a-evy and
geo(vy) =g+a-evy
where a is a scaling factor with 0 < a < 1.

After the execution of the above algorithm either a graph or a pseudo-graph
is assigned to each connected component of the image.

4.3 Resolving crossing fibers

Due to errors in the mechanical separation process or large compounds (shives),
the classified pixels of each region may correspond to more than one wood fiber.
Thus, based on the skeleton of each region, overlaying fibers need to be splitted
before the derivation of fiber statistics.

Instead of a real graph splitting, which would require the addition of new
vertices, we extend the graph structure by a special set of edges, which we will
refer to as “bypasses”. In contrast to the edges, each bypass b(vy,vs,v3) € B
defines a triple, where v, defines the start vertex of the bypass, vs the vertex,
which is bypassed, and vz the target of the bypass. Using this notation, all other
graph information is still available and the graph traversal by means of deriving
fiber properties can be performed in a clearly defined way.

To determine if there is an bypass, we perform the following analysis steps for
each vertex v with a set of neighbors NB = {w| (v,w) € E} with card(NB) =n
and n > 2 :



1. Create a square matrix of size n x n: A
2. For each pair of neighbors w;, w;:
Determine the angle between w;, v and w; and store it as a;; and aj; in A.
Let a;; be the maxz(a), e.g. the angle, which is the closest to 180°.
4. While a;; > 180 — ang;:
(a) Create new bypasses b(w;,v,w;) and b(w;, v, w;).
(b) Reset the angles in matrix A: a;; = aj; =0
(c) Proceed with the next max. angle of A.

©w

where ang; is an angular valued threshold, which describes an lower angular
border for bypass creation. If e.g. ang; = 40°, than only traversals with a de-
viation of 40° over v will be considered as bypasses. Since the proposed greedy
algorithm runs iteratively on each vertex, multi-crossings may also be resolved
by means of the best pairs below the angular threshold ang;.

4.4 Fixing the end vertices of fibers

Due to the generation steps of the graph, the length of a fiber might be un-
derestimated. The reason for this underestimation is the use of local maxima
as vertices. The end of the fiber, however, may be pixels beyond the last local
maximum found. To solve this problem, we propose to fix these underestimated
end vertices. The proposed algorithm works as follows. For each end vertex v in
V', which has exactly one neighbor w with e(v,w) € E:

1. Let a = geo(v) — geo(w) be the direction vector from vertex w to vertex v
2. Normalize the vector a’ = ||a].
3. Set p = geo(v).
4. While p is inside the connected component:
Setp=p—c-a,
where c is a constant factor with 0 < ¢ < 1.
5. Add x as a new vertex to V.
6. Add the geometrical embedding geo(z) = p

7. Connect z with v.

After the algorithm, for each former end vertex, another end vertex is intro-
duced and shifted away from the former end vertex until the end of the fiber
mask is reached.

4.5 Derivation of fiber characteristics

After the extraction of the fiber skeleton, the fiber characteristics may be derived
by means of traversing the graph and collecting information during the traversal.
The selection of statistical fiber properties is based on providing a huge variety
of basic features (see [3]) and is especially tailored to the needs of the researchers
at the Thiinen Institute of Wood Research:



— Length [pm)]
The length of a fiber is defined as the overall distance between all traversed
vertices.

— Width [um] (min., max., mean and std. dev.)
Since the width of a fiber may vary, it is determined for every visited vertex
using a distance transform of the fiber mask. Afterwards, the statistical
properties are derived.

— Curvature [°] (min., max., mean and std. dev.)
Since the curvature of a fiber may vary too, it is determined for every visited
vertex (except the first and last vertex) by computing the angles between
three successive vertices. Afterwards, the statistical properties are derived.

— Intensity (min., max., mean and std. dev.)
The intensity of a fiber may also vary. Thus it is determined for every visited
vertex before the statistical properties are derived.

During the traversal, each visited edge is marked, to ensure that it will only be
counted once. Additionally, information about the fiber classification is derived
during the traversal. We distinguish between three different kinds of fibers:

1. Complete fiber
All of the traversed vertices are located inside image areas classified as
"fibers”.

2. Touching shive
All but the first or the last of the traversed vertices are located inside image
areas classified as "fibers”. The first or the last vertices may however be
classified as shives.

3. Shives
Nearly all vertices (we currently use a threshold of 90%) are located inside
image areas, which have been classified as shives.

The threshold is needed due to the extension of end vertices. The result of
image analysis is exported in form of CSV-fines, further processed by a MATLAB
routine, and finally used for the characterization of the analyzed fibers.

5 Results

Before the three-month industrial trail, where the automated offline fiber char-
acterization has proved to work stable, the presented algorithm has been applied
to comparative microscopic measurements of the same fiber set. Since the micro-
scopic measurement has to be performed manually and is very time-consuming,
the comparison is based on a set of only 400 fibers. These 400 fibers have been
manually measured and characterized w.r.t. their lengths and widths.

We will now discuss the individual results for a set of 6 fibers. The fibers have
been selected to repent prototype, which differ in lengths and in morphology.
Additionally, some of the fibers have not been pre-separated and thus are imaged
overlaid onto each other. The sub-images of these fibers are shown in Fig. 5.
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Fig. 5: Examples 1-6, extracted from the test set. Note that the examples are not
to scale, when compared to with each other. The start and end-nodes of each
fiber are uniquely labeled, bypasses are highlighted in magenta.



Table 1: Comparison of computed (automatically derived) and (microscopic
manually) measured fiber lengths for the examples of Fig. 5. A deviation of
one pixel corresponds to approx. 23 pm.

Example computed [pm] microscope [um|] deviation [pum]
1 1113.93 1115.82 1.88 (0.17 %)
2 996.29 994.66 1.63 (0.16 %)
3 1337.79 1322.90 14.89 (1.11 %)
3 1204.08 1192.57 11.51 (0.96 %)
3 779.79 768.94 10.85 (1.39 %)
1 713.17 739.41 26.24 (3.68 %)
4 1966.21 2019.39 53.18 (2.70 %)
5 3064.32 3114.90 50.58 (1.65 %)
6 1298.97 1329.55 30.58 (2.35 %)

Table 1 shows the individual deviations between automatically derived and
microscopic (manually) measured fiber lengths. The results are promising with
quantitative deviations of only 0.17% to 3.68%, referring to a range from less
than 0.1 up to about 2 pixels w.r.t. the 1600 dpi of the scanned image. Since the
microscopic measurements deviate from person to person, this can be considered
as a nearly perfect match. This is insofar remarkable as it took several hours
for a trained expert to perform the microscopic measurements but only about
one second for the algorithm to determine even more fiber characteristics, like
the curvature or intensity of a fiber. It should be mentioned, that the width
measurements show similar results.

Beside the agreement of single fibers’ characteristics, we analyze the overall
agreement of all measured and derived fibers. Since some of the measured fibers
were not included in the microscopic measurements and vice versa, we decided
to compare both values based on each (sorted) fiber subset. The results of the
comparison with respect to the fiber length are shown in Fig. 6. The result of
this comparison is the overall agreement of microscopic and automated measure-
ments. Moreover, it supports the statistical quality of the automatically derived
fiber properties. With a correlation coefficient of approx. 1, we are able to ar-
gue and to replace costly and slow microscopic measurements by the method
presented herein.

After the quantitative evaluation of the proposed algorithm, it has been im-
plemented in a multi-threaded manner using the VIGRA library (see [16]) for the
implementation of the computer vision tasks and the Qt4-Framework to provide
a graphical user interface and a framework for concurrent processes (see [17]).
The software is connected to the experimental setup by means of a trigger signal
of the camera grabber. On each trigger signal it performs the grabbing of images,
the calibration, the analysis of the fibers using the algorithm presented herein
and the storage of the results by means of comma separated values and scalable
vector graphics, which contain the extracted graphs for each acquisition.
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Fig. 6: Scatter plot of the quantitative evaluation for a randomly selected set of
400 fibers. Diagonal: regression line representing a correlation of 1.0. The derived
correlation coefficient is: 0.9933823.

6 Conclusions

In order to overcome current limitations in TMP fiber quality and MDF process
control KOGS, Department of Wood Sciene, Thiinen Institute of Wood Research
and GreCon started to develop an inline- and an offline operating fiber analysis
system in 2009. Since the inline system operates in three German MDF plants
and the offline system has proven to work stable by analyzing millions of fibers
in thousands of images in a first industrial trail, it was the intention of this
conference contribution to present details of the developed software for fiber
characterization using mass image analysis. We have shown that the approach
of Meine is, with some modifications, capable for sub-pixel precise skeleton graph
derivation, too (cf. [15]).



The algorithmic design is based on the map-reduce design pattern, which
allows the algorithm to run in multiple threads/processes, one for each connected
component. Since modern CPUs already consist of multiple processing units, we
achieve a maximum performance speed up in order of the number of available
(threading) cores. However, this speed up is also depending on the number of
connected components in the pre-classified image. Besides the innovative (non-
liquid) fiber pre-separation, and flow line tracing during image analysis, the
software-based separation of cross-laying fibers was one of the core inventions in
the development of a TMP fiber analysis system for the MDF industry.

According to Wessbladh and Mohr [18], fiber suspension-based screen and
image analysis techniques (Bauer-McNett, Shive Analyser, PQM) are presumed
to be suitable for TMP characterization. However, these systems could not be
established operationally as seen in a global survey on how fiber quality is deter-
mined in the MDF industry (cf. [5]). Besides the innovative (non-liquid) fiber pre-
separation, and flow line tracing during image analysis, the successful software-
based separation of cross-laying fibers can be seen as one of the core inventions
in the development of a TMP fiber analysis system for the MDF industry.

Moreover, the system has proven to work stable by analyzing millions of
fibers in thousands of images in a first industrial trail. Thus, it will be used in
future as the first system to replace the haptical and visual analysis of experts by
means of a laboratory system. In addition, the proposed algorithm outperforms
other competitive approaches by using sub-pixel accuracy (cf. [19]). Despite other
works on fiber recognition, this accuracy is needed due to the large range of fiber
sizes, to ensure the accurate measurement of smallest fibers (cf. [2, 3]).

The experiments have shown that the proposed algorithm outperforms the
formerly used software at the Thiinen Institute of Wood Research by means of
correctness of the measurements, the derivable parameters and the precision of
each derived fiber property. In addition, the proposed algorithm outperforms
other competitive approaches by using sub-pixel accuracy. The time needed for
analyzing MDF fibers by mass image processing instead of manual microscopic
measurements reduces from the order of years to minutes, without any loss in
quality of the resulting statistics.
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