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ABSTRACT 
 

Sequential multi-sensor satellite images are used for the 
computation of mesoscale surface currents in the Northern 
and Southern Baltic Proper.  Different marine surface films 
and accumulated algae at the water surface are imaged by 
the sensors working in the optical, infrared, and microwave 
part of the electromagnetic spectrum and can thus be used as 
tracers for the local motion of the sea surface. Due to the 
generality of the problem, there are different algorithms 
available for motion estimation using object tracking in 
images. To apply these to the field of sea surface current 
estimation, we need to take the smoothness assumptions into 
account that the algorithms were built up on. We present the 
influence of different spatial constraints in the algorithms 
for the derivation of mesoscale sea surface currents using 
multi-sensor / multi-channel satellite images by means of a 
quantitative comparison with model results provided by the 
German Federal and Maritime Agency (BSH). 
 

Index Terms— oceanography, sea surface currents, 
motion estimation, multi-sensor 
 

1. INTRODUCTION 
 

Mesoscale dynamic sea surface features, such as eddies, 
fronts, or dipoles, are of key importance for our 
understanding of local dynamics of the marine coastal 
environment. However, they are often not fully resolved by 
numerical models currently in use. Series of satellite images 
(with resolutions ranging from a few meters to hundreds of 
meters), acquired within a short time period (from less than 
an hour to a day), can be used to close this gap, if the spatial 
and temporal extent of those dynamic surface features fits to 
the spatial and temporal resolution of the sensors and of the 
data acquisitions, respectively. Moreover, current tracers 
that are detectable by all applied sensors, need to be present 
during the whole time of image acquisitions.  

In this paper, we present the use of spatial constraints in 
algorithms for the derivation of mesoscale sea surface 
currents using multi-sensor / multi-channel satellite images. 
In order to show example results of the methods we have 

selected satellite data from different sensors imaging the 
Baltic Sea. We will compare our results quantitatively with 
the sea surface currents that have been predicted from the 
German Federal and Maritime Agency (BSH) [6] instead of 
comparing them directly with each other. 
 

2. SATELLITE DATA 
 

The images were acquired by the Thematic Mapper 
(TM), the ERS-2 Synthetic Aperture Radar (SAR) and the 
Sea Viewing Wide Field-of-view Sensor (SeaWiFS) during 
extensive summer algae (cyanobacterial) blooms in July 
1997 (Northern Baltic Proper), in August 1999 (Southern 
Baltic Proper). Both natural and man-made surface films 
affect the sea surface and thus are visible on satellite 
imagery [4,5,12].  

Although we have selected two cases for this paper, we 
want to underline that the algorithms are applicable to other 
imagery and to other areas than the Baltic Sea, if there are 
current tracers visible and the images are taken within a 
certain time period. In another example, we used SAR data 
from the California coastal area to derive sea surface 
currents. 
 

3. IMAGE ANALYSIS USING SPATIAL 
CONSTRAINTS 

 
In earlier studies [12], we have already demonstrated the 

use of motion detection / motion measurement algorithms 
for the derivation of sea surface currents. 

Regarding the algorithms used, we can distinguish 
between feature-based and Optical Flow methods. Whereas 
feature-based methods only measure the movement of given 
features, the Optical Flow methods estimate the motion for 
the complete image domain. Therefore, we will distinguish 
between the use of spatial constraints into the next two 
chapters, because both handle them in a different way. 

 
3.1. Adding spatial constraints to feature-based methods 
 
In [12] we have already shown that data from sensors 

working at different electromagnetic frequency bands (e.g., 



TM and SAR) can be used to apply high-speed feature-
matching (cross-correlation) techniques for motion detection 
[7]. The drawback of these locally applied feature-matching 
algorithms is that they do not take into account the 
smoothness of motion within some spatial neighborhood. In 
order to overcome this drawback we have embedded a 
spatio-temporal constraint into the results of the feature-
matching methods by means of applying relaxation 
techniques after the computation of sea surface currents 
based on feature matching [2, 11]. Note that the matching 
algorithm has to provide a set of (alternative) motion 
directions in order to apply a relaxation algorithm. 

The application of this technique leads to a maximization 
of the ‘global’ (i.e., underlying) smoothness inside a given 
neighborhood. Therefore, alternative motion targets have to 
be estimated a priori. This approach is very different from 
general vector field smoothing operations (e.g., the 
replacement of each motion vector by the average motion 
vectors in some spatial neighborhood), since the relaxation 
techniques only selects alternative motion targets for each 
vector and does not introduce new  (smoothed) vectors. 

The first step of a relaxation algorithm is to find the 
neighbored motion vectors for each vector within a given 
radius. After that, the relaxation algorithm runs iteratively to 
optimize for a smooth flow inside a given neighborhood 
step by step. At each iteration step, the best fitting candidate 
from the list of all found candidates is determined and set to 
be the new valid vector for the next iteration. For the 
determination of the best fitting candidate, an “optimal 

vector” by means of smoothness within the neighborhood is 
computed first. This is done by computing a mean vector 
inside the given neighborhood using Gaussian-weighted 
distances to the current vector. 

After the application of the relaxation our results are also 
compared with the numerical model results of the sea 
surface currents provided by the German Federal and 
Maritime Agency (BSH) [6]. The vector field comparison is 
not a trivial task, because of the different spatio-temporal 
and (water) depth resolution of the derived and the model 
currents [10,14].  

 
3.2. Spatial constraints in Optical Flow methods 

 
In other cases, best results in computing sea surface 

currents are obtained through the calculation of the Optical 
Flow between subsequent images acquired by the same 
sensor (e.g. SeaWiFS) [12]. Optical Flow algorithms are 
implicitly based on the assumption that the motion is 
smooth within a certain spatial neighborhood [5]. Due to 
different smoothness assumptions and minimization 
strategies, several approaches exist. 

In this paper, we will focus on the Lucas-Kanade 
algorithm [1,9]. It is based on constant motion assumption 
within a certain neighborhood: 
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Fig. 1. The application of a relaxation algorithm on sea surface currents derived using a correlation approach on a 
Thematic Mapper (TM) (background image) and a Synthetic Aperture Radar (SAR) image.  Left: The result of the 
normalized maximum cross correlation (MCC) feature-matching method. Right: The same result, but after the 
application of a relaxation algorithm. Motion vectors with a cross correlation lower than 0.60 are not displayed. 
 



where vx and vy denote the motion in x- and y-direction, 
and Ix, Iy, and It are the partial derivatives of the images in x- 
and y-direction and time. The sums are running over a given 
neighborhood for each pixel.  

Regarding the sums in Eq. 1, we recognize the uniform 
weighting of image information in the neighborhood. 
Especially, there is no weighting for favoring closer image 
information. To add the distance dependency, we transform 
the Lucas Kanade algorithm into a Structure Tensor 
approach, which changes the neighborhood smoothness 
constraint from a constant to a distance weighted Gaussian 
function. Thus, image information that is more distant from 
the current position will be less weighted: 
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where G(x, σ) denotes the Gaussian function. The 2×2 
matrix that needs to be inverted is called the Structure 
Tensor at scale σ, which gives the approach its name. Note 
that this distance-weighted approach is also used for the 
determination of the “optimal vector” during the relaxation. 
Again, we compare the results of these two algorithms with 
the numerical model results provided by local agencies.  

 
4. RESULTS 

 
According to the different types of spatial constraints, 

we separate the results into two chapters for clarity. In the 
first chapter we will present the results of the relaxation 
algorithm, whereas in the second chapter, we show the 
differences between the Lucas Kanade and the Structure 
Tensor approach. 

 
4.1. The influence of relaxation as post-processing step 

 
As an example for this case, Fig. 1 shows sea surface 

currents (yellow arrows) derived using a pair of ERS SAR 
and Landsat TM images. Blue circles highlight regions of 

main improvement: in those areas calculation errors such as 
crossing vectors (arrows) in the left panel are corrected in 
the relaxed vector field in the right panel. Our results (left 
panel) represent the local smoothness much better, without 
reducing the correlation factor for each (local) motion.  

Although the relaxation algorithm is only supposed to 
correct some outliers (see Fig. 1), we see that the 
enhancement of quality is visible even when comparing the 
whole vector field with the model data (see Fig. 2). The 
average angular error (compared to the model data) 
decreases for nearly all correlation classes, except for the 
motion vectors of highest correlation (see Fig. 2, left panel). 
The variances are also rapidly decreasing between a 
correlation threshold of 0.4 and 0.6, which mainly indicates, 
that the relaxation algorithm was able to decrease the 
variance of the motion vectors. 

 
4.2. From Lucas Kanade to the Structure Tensor approach 

 
To measure the influence of the different spatial 

constraints of both algorithms, we compute several sea 
surface current vector fields with different mask-sizes. Then 
we compared each computed vector field to the predicted 
currents of the BSH v3 model using the method proposed in 
[13]. Note that we have to choose appropriate values for the 
Gaussian standard deviation, in order to make the results 
comparable to the mask size of the Lucas Kanade algorithm.  

The resulting average angular errors and their variances 
are plotted in Fig. 3. We see an advantage of the Structure 
Tensor method over the Lucas Kanade method in both the 
decreasing error and its variance.  There seems to be some 
convergence in the errors for large mask-sizes. This may be 
caused by a “smoothing out” of nearly all image 
information.  

However, due to small turbulent structures that are 
found by both algorithms but not predicted by the BSH v3 
model, the overall errors and variances are much higher than 
for the feature matching case presented earlier. 

  

Fig. 2. The errors (left) and the error deviations (right) when comparing the NCC motion vector field to the BSH v2 model 
results, and when comparing the result of the relaxation to the same model results. 



5. CONCLUSIONS 
 

We demonstrated that the addition, or the change, of 
spatial constraints in the presented algorithms leads to 
promising results of the derivation of sea surface currents 
from satellite data. The use of relaxation techniques as a 
post-processing step after the derivation of currents using 
feature-matching methods seems to be very valuable, as 
these algorithms do not take any smoothness of motion into 
account. In addition, the relaxation approach does not 
smooth the vector field but tries to optimize using alterative 
directions (see Fig. 1).  

The correct choice of smoothness is important for 
gradient-based Optical Flow algorithms. We have shown 
that the Structure Tensor approach leads to more reliable 
results than the Lucas Kanade method, when applied for the 
derivation of sea surface currents due to the different spatial 
relationship model of the Structure Tensor approach. 

Our results clearly show that satellite images may be 
used to derive mesoscale sea surface currents, but also that 
special attention has to be paid to the very kind of algorithm 
used. We also note that sea surface features visible on the 
used satellite imagery must be present, in order to allow for 
successful surface current computation. Any kind (i.e., 
biogenic or anthropogenic) of sea surface films is well 
suited in this respect. 
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Fig. 3. Comparison of the average angular errors for derived 
currents using the Lucas Kanade (LK) and  Structure Tensor 
(ST) approach when compared to model data of the BSH v3 
model. 


