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ABSTRACT 
 
In [6] we presented an approach to measure sea surface 
currents from satellite images by computing the 
displacement vectors of distinctive image features or 
measuring the optical flow between successive images of 
the same scene. These algorithms are based on the 
assumption that the image flow observed is caused by the 
motion of surface films with the currents to be measured. 
Optical flow due to other image features, e.g. ship wakes, 
does not correspond to the motion field and causes 
systematic errors. The decision whether a derived 
measurement is valid or not by domain experts is very time-
consuming. We present first steps towards an automatic 
knowledge-based approach that uses description logic to 
validate the measurements of sea surface currents. The 
terminological knowledge is based on the expert’s 
knowledge of the domain in conjunction with a geographical 
database containing factual knowledge about the scene. The 
combination of different sources of knowledge makes it 
possible to infer about the validity of sea surface current 
measurements from image data by reasoning based on the 
local context of the image features. 
 

Index Terms— oceanography, sea surface currents, 
uncertainties, description logics 
 

1. INTRODUCTION 
 
In this paper we present a conceptual framework that uses a 
knowledge based description logic approach to decide 
whether or not a computed motion vector corresponds to a 
sea surface current. For this decision we need to take 
different sources of knowledge into account.   
In [7] we have shown that low level image processing 
algorithms can be used to improve the derived motion fields 
by means of smoothness. However there are still cases 
where this correction may result in unwanted motion 
measurements that do not correspond to the sea surface 
currents. To solve problems like this, image interpretation 
systems have proven to be adequate [5]. 

2. DERIVATION OF HIGH-RESOLUTION SEA 
SURFACE CURRENTS FROM SATELLITE 

IMAGERY 
 

Currently there exist two well-known families of 
algorithms for the computation of sea surface currents from 
at least to satellite images of one region: the feature-based 
and the Optical Flow-based approaches. Both have in 
common that there have to be current tracers (e.g. sea 
surface films) visible in the images to be analyzed. The local 
sea surface currents cause the motion of these tracers, which 
allows an indirect and high-resolution measurement of the 
currents [6].  

Before the feature-based local approaches can be used, 
we have to find the features of interest (e.g. algae 
signatures) in at least one satellite image a priori. After the 
detection of features different feature matching methods can 
be used (e.g. fast normalized cross-correlation or shape-
context matching). These methods usually assign a 
confidence value to each matching (see [6]). 

The Optical-Flow-based approaches do not depend on 
knowledge about specific features. They result in a global 
motion field that represents the displacement of one satellite 
image relative to the other. The Optical Flow methods do 
not explicitly assign a confidence value to each motion 
vector. 

In this paper, we concentrate on results of feature-
matching approaches based on surface film tracking on 
synthetic aperture radar (SAR) satellite imagery. The results 
of these approaches provide explicit information about the 
uncertainties of each motion measurement. Although the 
feature-matching methods are well known, and are highly 
optimized, there is always some chance of a measurement 
error. We distinguish between two error cases: 

1. A high correlation value of a motion that does not 
correspond to a real sea surface current and  

2. A low correlation value of motion that corresponds 
to a real current element.  

Due to the matching strategy, the first case occurs more 
often than the second one and cannot be compensated by 
low-level post-processing steps [7]. The origin of these 



erroneous motion measurements is the tracking of 
unsuitable features. These features can be ship wakes or 
wind induced surface anomalies that result in similar 
signatures in the SAR images. To solve this ambiguity, we 
need to classify the motion target with scene specific 
knowledge. 

 
3. SOURCES OF KNOWLEDGE 

 
We distinguish between two sorts of knowledge: 

dynamic factual knowledge about the scene depicted in the 
current image that is analyzed and static interpretation 
knowledge that allows the automated reasoning over the 
facts. Examples of factual knowledge about the scene 
comprise wind information, tidal information, position of 
ships and waterways, chlorophyll ratio, and sea surface 
temperature information for each selected feature at each 
spatiotemporal point. The factual knowledge changes 
dynamically for each measurement. This may cause a huge 
amount of data, which cannot be represented inside the 
description logic efficiently. Hence, there is a strong need of 
a multi-layer architecture with bottom-up reasoning for the 
task of detecting unreliable measurements. 

The interpretation knowledge is often compact enough to 
be represented inside such a system. Moreover there are 
static interpretation rules given by domain experts, like: 

- Biogenic surface films are often associated with a 
locally enhanced chlorophyll-a concentration  

- SAR signatures of wakes and surface films may 
look similar. 

- Wind and tidal forces mainly affect surface 
currents. 

The representation of this “higher knowledge” is 
independent from the factual knowledge. Knowledge 
engineers can revise it according to domain experts and their 
knowledge [3].  
 

4. DESCRIPTION LOGICS 
 

Description logics (DLs) are a family of knowledge 
representation languages, which originated from early 
attempts in the 1970s to model knowledge with class- or 
concept-based knowledge structures, i.e., Minsky’s Frames, 
and the so-called Semantic Networks.  Nowadays, DLs 
provide the semantic basis for the Semantic Web (e.g., 
OWL DL is basically a description logic).   

Most contemporary DLs can be considered as subsets 
of first-order logic, and hence, the inference services offered 
by the corresponding systems are well defined.  

Knowledge in DL systems comes in two disguises: 
class- or concept-based knowledge, and individual-specific 
knowledge. The knowledge is kept in two separate boxes, 
the TBox and ABox. Concepts are described by concept 
descriptions and denote sets of individuals in the modeled 
domain of discourse. In order to interrelate individuals in the 
domain of discourse, binary relations are used which are 

called roles in DLs. If R is such a role, and C and D are 
concept descriptions, then the following grammar defines 
the syntax of concept descriptions in the basic DL ALC, 
starting from atomic concepts (concept names):  

 
concept ::=  atomic-concept | top | bottom  
concept ::=  (and C D) | (or C D) |  

 (some R C) | (all R D) | 
 (not C)  
 
According to this specification, “(and woman (some 

has-child person))” is a concept (description). The semantics 
of such a concept / the denoted set of individuals in the 
domain of discourse, is specified inductively by means of a 
so-called Tarski-style interpretation function I, which maps 
concepts to subsets of some non-empty universe of 
discourse, Δ, and roles to binary relations over Δ, such that 
the following equations are satisfied:  

 
I((and C D))=  I(C) ∩ I(D)  
I((or C D)) =  I(C) ∪ I(D)  
I((some R C)) =  { i | ∃j∈Δ: j ∈ I(C),  (i, j) ∈ I(R) }  

 I((all R C)) =  { i | ∀j∈Δ: (i, j) ∈ I(R) ⇒ j ∈ I(C) }  
 I((not C)) = Δ \  I(C)  

 
I(C) is also called the extension of C (w.r.t. an 

interpretation). A concept C is said to be satisfiable or 
consistent iff there is at least one interpretation function and 
non-empty domain Δ such that I maps C to a non-empty 
subset of Δ; otherwise, C is called inconsistent or 
unsatisfiable. An interpretation, which satisfies C is also 
called a model of C.  

An important relationship between concepts is the 
subsumption relationship. It is said that C is subsumed by D 
if the extension of C is a subset of the extension of D in all 
models of C and D. Then, C is called the more specific, 
subsumee, and D the more general concept or subsumer.  

In terms of first-order logic, a concept description 
corresponds to a first-order logic formula with one free 
variable, like “woman(x) /\ ∃y. has-child(x,y) /\ person(y)” 
and thus, checking satisfiability amounts to checking the 
first-order satisfiability of this formula in terms of first-order 
predicate logic.  

In order to interrelate concept descriptions, the so-called 
terminological box, or TBox, contains concept 
specialization and concept definition axioms, thus allowing 
to define the vocabulary of a domain of discourse. For 
example, the concept definition axiom “mother ↔ (and 
woman (some has-child person))” enforces equality of the 
extensions of these two concept descriptions in all models of 
the knowledge base. A concept specialization axiom 
enforces that the extension of the first concept is a subset of 
the extension of the second concept, e.g., “woman → 
person”. The notion of a model is extended to TBoxes in the 
obvious way by requiring that a model must satisfy the 



corresponding equations for the different types of axioms.  
From a first-order logic perspective, the given axioms 
correspond to the sentences  

 
∀x : mother(x) ↔  woman(x) /\ 

 ∃y. has-child(x,y) /\ person(y) 
∀x : woman(x) →  person(x)  
 
Important inference problems for TBoxes are, again, 

satisfiability (does the TBox admit a model?), TBox 
coherence (are there unsatisfiable concept names other than 
“top” in the TBox?), and TBox classification. The latter 
inference service computes the so-called taxonomy of a 
TBoxwhich represent the direct subsumption (direct 
subconcept) relationships between concept names (atomic 
concepts) by means of a directed, acyclic graph (DAG). 

 Whereas the TBox models conceptual knowledge, the 
so-called assertional box, the ABox contains a set of so-
called assertions, where assertion is defined by the 
following grammar rules: A knowledge base typically 
consists of a pair (T,A), where T is TBox and A is an ABox. 
Formally, an ABox is a set of ABox assertions. Let “i, j” be 
ABox individuals (constants), R be a role, and C be a 
concept:  

    
    assertion ::= concept-assertion | role-assertion 
    concept-assertion ::= (instance i C)   
    role-assertion ::= (related i j R)  
 
For example, from the ABox {betty: woman, (betty, 

charles) : has-child} it follows that betty is an instance of 
the concept mother. From a first-order logic perspective, an 
ABox is simply a set of ground facts. The interpretation 
function is extended in such a way that it maps ABox 
individuals to domain individuals of Δ. As usual, a model of 
an ABox satisfies all assertion. A concept assertion is 
satisfied if the element of Δ denoted by the ABox individual 
is indeed a member of the extension of the concept C, and 
analog for role assertions. Important inference problems are 
ABox consistency  (w.r.t. a TBox), and ABox query 
answering (w.r.t. TBox). Current DL systems support at 
least so-called grounded conjunctive queries. E.g., the 
answer to the conjunctive query (denoted in predicate logic)  

 
           ans(?x, ?y) ← mother(?x), has-child(?x,?y) 
  
is {ans(betty, charles)}. Note that reasoning was required 

in order to realize betty as an instance of the concept mother 
(this was not stated explicitly in the ABox): thus, ABox 
query answering has to consider the effects of the TBox 
axioms.  

 
5. THE DESCRIPTION LOGIC SYSTEM RACERPRO 

 
In this work, the DL system RacerPro is used [1]. 

RacerPro implements the expressive description logic 

SHIQ(Dn), which offers transitive, functional and inverse 
roles, role specialization hierarchies, reasoning with 
datatypes (e.g., strings, reals, integers, booleans), and some 
additional concept constructors (e.g., the qualified number 
restrictions of OWL2). Racer was the first system of a new 
generation of highly optimized DL systems [1] that also 
supported ABoxes.  

RacerPro offers many advanced proprietary features, 
such as (grounded) first-order queries, rules, programmatic 
“server-sided” scripting, extensibility, and  some innovative 
inference services (such as abductive query answering). 
After more than 10 years of continues improvements, 
RacerPro is one of the fastest ABox reasoning system 
nowadays whose scalability for certain standard ABox 
benchmarks has been shown recently [2]. As such, it is an 
ideal basis for knowledge-intensive applications which 
require ABox reasoning and ABox query answering and was 
thus selected for this research. In addition, Racer has proven 
to fit well for reasoning by means of computer vision scene 
interpretation [4]. 
 

6. KNOWLEDGE BASED DETECTION OF VALID 
SEA SURFACE CURRENT MEASUREMENTS 

 
We developed a prototypical framework that models the 
domain expert’s knowledge inside the TBox and uses the 
derived currents in conjunction with the other factual 
knowledge about the scene as ABox contents (Figure 1). To 
transfer the quantitative information into the ABox, we use 
an abstraction on the middle layer of the framework that 
maps the quantitative values to qualitative symbols. One 
example of a very simple TBox could be like this: 
 

 
water → (not land) 
 
high-chlorophyll → (and  (not medium-chlorophyll) 

(not low-chlorophyll)) 
medium-chlorophyll → (not low-chlorophyll) 
 
coastal ↔ (and  (some next-to water)  

(some next-to land))  
 
valid-current → (or  (not (some next-to ship))  

(not (some next-to waterway))) 
 
valid-chlorophyll-amount → (or  high-chlorophyll  

medium-chlorophyll) 
 
valid-current → (all next-to valid-chlorophyll-amount) 

 
 
The abstraction from quantitative to qualitative values can 
be observed e.g. in the case of the chlorophyll amount. 
Instead of model floating-point values we use three 
categories: high, medium and low. Another abstraction can 



be found at the spatial neighborhood that is modeled as role 
“next-to”. Note that the system can derive knowledge about 
a “coastal” relationship using a TBox equivalence rule.  
We now present an example for an ABox: 
 

 
(instance motionA valid-current) 
 
(related motionA water  next-to)  
(related motionA  land next-to) 
(related motionA  high-chlorophyll next-to) 

 
 
In this ABox, we assume that the measured motion is a valid 
current. We perform a so-called ABox consistency check, to 
finally get the answer to our question: Is the measured 
motion vector representing a valid sea surface current or 
not? Please note that the example above is a very simple 
one, just to demonstrate the basics needed for our approach. 
For this example, the measured motion “A” represents a 
valid current given the TBox above, because it is next to 
some higher chlorophyll amount than usual, and is not next 
to some waterway or ship. 
 

7. CONCLUSIONS 
 
We have presented the main concepts of a flexible 
knowledge based framework and have given a first example 
of an application. A conceptual diagram is given in (Figure 
1). Due to the multi-layer architecture of the framework and 
the RacerPro DL system, it is highly scalable and can 
therefore be used for reasoning in many areas of remote 
sensing.  
One of the key features is the separation of knowledge into 
static expert knowledge and highly dynamic knowledge. We 
implemented a prototype, which results in promising but yet 
preliminary results [5]. The next steps are the integration of 
other knowledge sources and of more expert knowledge to 
improve the automatic reasoning. 
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Fig . 1.  Diagram of the conceptual Framework showing 
the bottom-up reasoning approach. The geographical 
database represents the middle (integration) layer. 
 


