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ABSTRACT

Over the last years, active contour methods have become a basic tool in computer vision. They have proven to be  
efficient for various image processing applications,  like reconstruction of the edges inside images or the tracing of  
image features. However, when applying the basic snake technique to synthetic aperture radar (SAR) remote sensing 
images, the reconstruction of edges may not be satisfying. This is caused by the special imaging technique of SAR that  
may tend to produce varying-contrast edges and the commonly known speckle noise. 

In  [4]  we  proposed  the  use  of  asymmetric  external  energy  terms  to  cope  these  problems.  In  this  paper  we  will  
summarize the lessons learned in the previous work, where we applied the technique to detect edges of tidal creeks  
using an ENVISAT ASAR image. These creeks can e.g. be found in the UNESCO World Heritage Site ”Wadden Sea”  
located at  the German Bight  (North Sea).  In  addition,  we describe the challenges and opportunities  that  could be  
achieved  when  using  hi-resolution  TerraSAR-X  data  instead  of  the  ASAR  data.  We  have  just  applied  for  some 
TerraSAR-X hi-resolution images and are looking forward to practically demonstrate the advantages for this special 
class of images.

1. INTRODUCTION

Active contour algorithms can be seen as a model-based segmentation approach. Contrary to commonly known pixel-
based approaches,  they  provide an  efficient  tool  for  the localization  and tracking of  linear  features  at  a  sub-pixel 
accuracy. The can be defined as parametric curves that move within an image during defined energies at an optimization  
process.  This behavior may be the reason for their synonym: “snake”. The energies are usually defined such that the  
snake will iteratively fit to image edges or other features of interest inside the image during the optimization process 
(see [2]). 

The aim of this work is to accurately localize the tidal creek shorelines in synthetic aperture radar (SAR) imagery of the  
German UNESCO Heritage Site “Wadden Sea”. In the ENIVSAT ASAR image we used, the edge of the tidal creek is  
formed by a homogeneously imaged water surface on one hand and a heterogeneous silt surface on the other hand. 
Thus, we cannot use common edge detectors like the canny edge detector or texture based methods (cf. [3]). Moreover,  
the structure of these edges does not allow for the use of classical SAR shoreline detection algorithms due to the strong  
speckle noise along the edges of varying-contrast (see [5]). 

According  to  their  definition,  snakes are capable  to  bridge  those  gaps  in  the  image  gradient  information.  This  is  
achieved by an energy term, that favors smooth, connected curves and thus penalizes to much bending. In past research,  
we have found that the energy definitions that have been used widely for the localization of edges did not seem to be  
adequate for the localization of varying contrast edges in SAR images. Thus, we introduced a new asymmetric external 
energy definition for the snakes in [4].

1.1. Region of interest

The UNESCO world heritage “German Wadden Sea” is an intertidal flat area located at the German Bight (North Sea).  
The task presented herein is the accurate localization of tidal creek shorelines in the Wadden Sea using space borne  



SAR images. Thus, the main question is: What characterizes such shorelines in a SAR image and how can they be  
localized? 

Figure 1: The large red region denotes the complete SAR image taken by the ENVISAT ASAR sensor.
The smaller blue region is the ROI, where we applied the algorithm.

The intertidal flat area of the “German Wadden Sea” is interesting in many aspects and for various kinds of researches.  
As the interactions of land and water are very strong during each tidal cycle, a highly branched system of tidal creeks is  
evolving and spreading through the entire landscape. These creeks have been carved by the water and turn this area into 
a very dangerous place for hikers. When the water comes back, hikers can be trapped on a piece of land or get drown.  
Additionally the exact position is very important for boats and ships inside this area.

1.2. Image data

We will now present some results obtained using snakes with an asymmetric energy term  on  a SAR image. The image  
was  captured  by  the  ASAR  sensor  aboard  the  ENVISAT satellite  in  October  2007  covering  an  area  of  approx.  
105×105 km2  (see Fig. 1). Further information about the image properties can be found in Tab. 1.

Platform and Sensor ENVISAT ASAR (C-Band)

Sensor ASAR (C-Band)

Acquisition Mode Image Mode

Date and Time 2007/10/18 09:55 UTC

Polarization VV

Incidence Angle 22.5°

Table 1: Satellite sensor and image acquisition information for the used data.

The image was taken during low-tide,  showing some dry fallen areas in front of the coastline.  These areas appear  
heterogenous compared to the surrounding water surface (see Fig. 2). This heterogeneity may be caused by various 
sources, e.g. wind- and wind-water interactions, incidence angle and direction. In addition, we notice that strong speckle  
noise is affecting nearly all edges. Thus, the signatures from the radar backscatter are hard to interpret, even for domain 
experts. In general, SAR images can provide valuable information about mainly cloud covered areas, like the German 
Bight. 



Figure 2: The ROI of the ENVISAT ASAR image. Darker patches denote dry-fallen areas,
whereas (noisy) light gray areas denote the surrounding water.

2. ACTIVE CONTOURS

Active Contours or snakes are a common tool for the modeling, localization and tracking of contours in computer vision  
research. The following definitions are according to [4] but have been summarized for this paper. We start with the  
definition of an active contour by a parametric curve:

s  p=[x  p , y  p ] with p∈[0,1] (1)

For the implementation, we used a B-Spline approximation of the parametric curve defined above. This approximation 
has some advantages over other methods (see [1]). Complementary to the parametric curve, an energy functional is 
defined:

E s=∫0

1
E i p E e  pdp , (2)

where Ei  is the internal energy of the snake itself and Ee  denotes the external energy that is determined solely by the 
image. This functional is usually minimized iteratively, which results in a contour, that refers best to the image edge of 
interest.The minimization of both parts along the curve causes the snake to move with respect to certain shape- and  
image constraints at the same time. The role of the different energy parts is described in the following two subsections.

Besides this brief introduction, further basics of modeling snakes can be found in [2]. In the current implementation, the 
optimization algorithm of the snake is based on a multi-resolution coarse to fine gradient back-step algorithm. The 
gradient is computed by a variation of the control points'  coordinates and a recording of the change of the energy.  
Although this may be much slower than using a dedicated gradient calculation method, it is the most general approach 
possible and allows for easy adaption of other energy terms in our experimental setup.

2.1. Internal energy

The  internal  energy  term represents  the  intrinsic  energy  of  the  snake.  Hence,  it  does  not  depend  on  any  image  
information. We propose to divide the internal energy Ei  into two internal energy parts:

Ei=a s E sac E c (3)

To weight the different energy terms against each other, there are two coefficients a s , the spacing coefficient, and ac , 
the linearity coefficient, which controls the strength of the curvature dependent term. The internal spacing energy Es  is 
given by:

Es=∑i=0

n−2 ∣d i∣
l

−1
2

(4)



where the vectors d i  denote the differences between two neighbored control points c i1 and c i . There are n control 
points,  which  yield  n−1  difference  vectors;  l gives  the  goal  length  for  the  segments.  This  segment  length  is  a 
parameter of the snake as well and may be set programmatically. By default it is set to the average segment length and 
is calculated only once during the snake's initialization.

l=
∑i=0

n−2
∣d i∣

n−1
(5)

Obviously,  E s  will be zero if and only if all the segments have a length of  l.  Es  will approach  n−1  if the snake 
shrinks to a point and will grow with the square of the length of the snake as it is stretched further and further. The 
curvature dependent term Ec  is given by:

Ec=∑i=0

n−3 1−
d i⋅ d i1

∣d i∣∣ d i1∣ (6)

This energy will be in the range [0, 2n−2] . A value of zero signals a straight line and the more the snake is bent the  
higher this energy becomes.

2.2. External energy

For  the  localization  of  varying-contrast  boundaries  in  a  SAR image,  we  propose  the  use  of  two  different  image 
dependent energy terms. The first one detects edges; the other one punishes differences in the image intensity on the 
waterside  of  the  snake.  The  edge  detector  is  the  complement  of  the  two  dimensional  Gaussian  bell  function 
differentiated in the y-direction (see Fig. [3]).

Eg=∑i=0

n−1
∇ I ss  p i

2 (7)

where ∇ I s s  p i  denotes the image gradient perpendicular to the snake direction at position s  pi .

Figure 3: The kernel that is used to determine the image gradient based external energy.
The value at a kernels position is plotted at the z-axis. 

This edge detector is applied to the image at all points of the snake and rotated to match the snake's direction. All filter 
responses are  squared and summed up to obtain the edge related energy term  E g .  This allows the snake  to find 
dark/bright as well as bright/dark edges.

2.3. Asymmetric external energy term

In empirical studies we found that the squared gradient magnitude alone is not sufficient to determine boundaries of  
varying contrast in SAR images. The variation of the contrast along these edges is very heterogeneous. Therefore, we  
introduced a second external energy term in [4]:



Ev=
1

n−1∑i=0

n−1

∇ I vs  pi−∇ I v s  p i
2

(8)

where  ∇ I v s  pi  is defined as the image convolved with the kernel  k v  perpendicular to the snake direction at 
position  pi . The kernel k v  is the same where the image gradient is positive and it is set to zero otherwise (see  
Fig. 4). 

Figure 4: The kernel that is used to weight the variance of the image for the asymmetric energy term
The value at a kernels position is plotted at the z-axis. 

Thus its response is proportional to the image intensity of a small region on one side of the snake. Note that, instead of  
summing up the responses, we use their variance to determine the second energy term E v.  The rationale behind this is 
that water appears quite smooth in a SAR image since the wind and hence the waves do not change on a small scale. It  
follows that a strong variance of the intensities on the waterside is a sure sign that the snake does not follow an edge of  
a tidal creek. For the two image-related energies to be weighted a third parameter needs to be introduced: α  sets the 
relative weight of the variance term in the image energy.

E I= E v1−E g (9)

If   is set to zero, only the edge detecting energy will be used. Contrary, a value of one leads to a use of only the 
variance dependent term. In the later case it will not be likely to find an edge at all, but simply seek a featureless  
location.

3. RESULTS

Before running the algorithm, we manually set the initial control points of the snake. After this initialization, we start  
the algorithm with three different parameter sets. First, we set α=0 :

 E=E g+500 E s+500 E c , (10)

which results in a snake optimization that is purely affected by the image's gradient magnitude and the internal snake  
energy. This case corresponds to the classical definition of a snake and is shown in Fig. 5 (left panel, red graph and right 
panel, green graph). For the second run, we set the parameter α=0.9 , which leads to a combination of both external 
energy terms: 

E=0.9 Ev+0.1 E g+500 E s+500 Ec (11)

The result of this run is shown in Fig. 5 (left panel) in green color. We see a better approximation to the real tidal creek  
border. Note that it is hard to determine the real position of an edge of a tidal creek, although we assume that the dark  
areas in Fig. 5 all belong to dry-fallen areas and thus must not be crossed by edge detecting snakes. Additionally we  
selected a intermediate value of  α=0.5  which results in the third test setting, where both external energy terms are 
weighted equally:

E=0.5 E v+0.5 E g+500 E s+500 E c (12)



Figure 5: Results using the same initialization and different parameter settings.

4. CONCLUSIONS

Traditional snakes are a reliable base for contour localization. They can be extended to work on new image domains 
like SAR imagery. The analysis of complex “edges” may profit from asymmetric energy terms by means of localization 
results. We also performed empirically observation of the local energy distributions around control points (see Fig. 6).  
From the different distributions it can be observed that the right weighting choice determines the existence of local 
energy minima.

Figure 6: Local energy distributions at one control point for different parameter settings.

The first results look very promising, even when applied to non hi-resolution SAR data like the ENVISAT ASAR image 
presented herein. We hope for improvement of the results but are also estimating new challenges when working with 
TerraSAR-X very high-resolution data, e.g. provided by the new DTeddie project. Currently, we are extending our  
framework to allow for a knowledge based initialization of the snakes (e.g. by means of Electronic Nautical Charts) and 
for a better interpretation and understanding of the resulting contours.

For the future, we are planning several enhancements, like the implementation of faster optimization strategies and the  
combination with more higher knowledge about the imaged scene. We will also apply the algorithm on more ENVISAT 
ASAR images and on high-resolution TerraSAR-X data in future. Another issue will be the comparison with ground 
truth about the location of the tidal creeks' edges. The determination of such lines requires a lot of domain and remote  
sensing knowledge and thus has to be carried out by domain experts like oceanographers.
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