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Abstract. The aim of this research is to determine an accuracy assessment of different multispec-
tral gradient-based edge detectors. We will present and evaluate three different approaches: the 
mean-, the maximum- and the multispectral gradient approach. The mean approach determines the 
overall gradient as the arithmetic mean of all (band-wise) gradient vectors, whereas the maximum 
approach selects the gradient vector of maximum length. The first two algorithms that are heuristi-
cally motivated, the multispectral gradient approach can be derived mathematically from the single 
band gradient-based approach and thus is very interesting to investigate (see [1]). To compare and 
evaluate the algorithms, we designed a modular framework that is based on generic programming 
and the VIGRA computer vision library [2]. We discuss the framework's architecture in more de-
tail to demonstrate the flexibility. For the evaluation we synthesized artificial images where we 
know the exact location and occurrence of edge elements (evaluation by means of dedicated tech-
niques [3]). The evaluation shows that in many cases the naive mean  approach does not lead to 
satisfactory results. In some cases, the maximum- and the multispectral gradient approach are al-
most on the same level of detection quality. In other cases the multispectral gradient approach out-
performs the other two approaches. Complementary to the quantitative evaluation, we present the 
application of the algorithms to Landsat 7 ETM+ satellite multispectral imagery of coastal and ur-
ban areas taken from the public Landsat Archive. 

Keywords. multispectral imagery, gradient operators, edge detection, computer vision. 

1. Introduction 

The accurate detection of edges or boundaries in digital images has been under investigation since 
the very beginning of computer vision and image processing. A variety of tasks require a good de-
tection of edges, e.g. 3D-scene reconstruction, image segmentation or motion detection. Better low-
level edge detection thus yields better results in the succeeding higher-level algorithms. In this work 
we will focus on a multispectral image gradient estimation. The image gradient is defined as the 
vector of the partial first derivatives and describes the rate of local intensity change of an image 
function. The image gradient forms the base for many other edge detection algorithms like the Can-
ny edge detector [4] or segmentation algorithms like the watershed transform [5]. 

We will start with the definition of such a gradient for the case of grey-value (single channel) 
images, where many algorithms have been developed over the last decades.  The situation becomes 
more involved in case of multispectral imagery. The main question is how to integrate the infor-
mation of each spectral channel into one gradient estimation algorithm, which determines a closed 
representation for multispectral images. Recent studies have lead to many approaches, which seem 
to be plausible, but are – more or less – heuristically motivated (see e.g. [6]). In addition, many 
multispectral gradient-based approaches have just been evaluated qualitatively. Only few authors 
have performed a quantitative evaluation yet (see e.g. [3], [6]).  
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We will describe and evaluate three different approaches for the gradient estimation using mul-
tispectral images in this work. Each approach uses a different strategy to estimate and integrate the 
single-channel edge information. Beside the implementation of two heuristically motivated algo-
rithms, the mean- and maximum gradient approach, we are focusing on a mathematically motivated 
approach, which has been proposed by Di Zenzo [7] and further investigated by Drewniok in [1] 
and [8]. This approach extends the classical discrete gradient operator formally to multispectral im-
ages and thus lets us expect promising results. One main advantage is the generality of the algo-
rithm’s definition, which allows for an extension of commonly known gradient operators to multi-
spectral images. This unique property leads to a very modular algorithmic design. We have imple-
mented three different interchangeable approaches by means of a modular framework. All algo-
rithms are sharing a common interface and hence can be modularly replaced and evaluated. 

Beside the presentation of the results of each algorithm, we emphasize on a general evaluation 
by means of e.g. the accuracy of edge localization than on subjective measures. To do this quantita-
tive evaluation, we use a synthetic image and analyze the errors made when the image noise in-
creases. To measure the quality of the edge detectors, we use the technique introduced by Ven-
katesh in [3] but extended the criteria to take an orientation error of the computed edgels into ac-
count (see [9]). We will also show the results of all approaches applied to Landsat 7 ETM+ data, for 
urban and coastal areas. 

In the next chapter, we will formally introduce the definitions of images, multispectral images 
and edges as well as differential edge detection algorithms. These algorithms will then be used in 
the subsequent chapter to compute the results.  

2. Methods 

Before we are going into details about the methods’ definitions, we first want to introduce with the 
definition of an image. We start by defining a continuous image I of n channels 

 
I :R!R" Rn              (1) 
 
The image I is defined as function, which assigns an n-dimensional intensity-vector to each spa-

tial position. We assume that the image function is differentiable over the whole domain. For the 
special case of a single channel image an image is defined as a function, which maps to a real value, 
not to a vector. Although, we have in practice no continuous images, these definition is a very well 
tractable mathematically background for the gradient definition, which forms the base for the edge 
detectors we present in the following section. Subsequently, we need to define the digital image, 
too:  

 
Idigital :N !N" Rdiscrete

n # Rn           (2) 
 
As we can observe from the upper definition, the image’s domain and image’s image set are 

both discretized during the digitalization. This discretization consists of two steps: the sampling, 
which discretizes the image’s domain, and the quantization, which discretizes the image’s image set. 
Consequently the differential approaches we are focusing on, can all be defined continuously but 
need to be discretized when applied to digital image data. 
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2.1. Single channel gradient definition 

Based on the continuous image definition of eq. (2), we can define the edges in single channel im-
ages as strong intensity changes in a spatially local environment around a given pixel. If the degree 
of intensity change is above some given value, we may call this pixel an edge element (edgel). The 
definition of eq. (2) allows for a more mathematically motivated spatially change description by 
means of the partial spatial derivatives: 
 

!I = Ix Iy( )
T

  where  Ix =
!I
!x
, Iy =

!I
!y

    (3) 

 

This results in a gradient vector for each image pixel. Local extremes of this vector correspond 
to image positions where the images gray values vary the most. To describe the strength of the im-
ages gradient, many measures can be defined. Roberts e.g. proposes to use the two-dimensional Eu-
clidean vector length as a scalar measure of intensity change. The length in conjunction with the 
orientation of the vector yields to another commonly used representation: 

 

L = !I   and  ! I = atan2 Ix, Iy( )   where  atan2(x, y) =
tan!1 x

y( ) if y > 0

tan!1 x
y( )+ !

2 else
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$

&

'
$

(
$

 (4) 

 

Based on the continuous definitions, many discretizations for partial first order derivatives of an 
image have been developed. A comparison can e.g. be found in [6]. In this work, we will focus on 
the discretization of the first spatial derivative by means of a separable convolution with derived 
Gaussians of first order. This approach has some advantages over other approximations and results 
in a very fast gradient estimation  (see [10]). After the formal description and introduction of a spa-
tial derivative estimation for one grey-value image, we will describe three different combination 
approaches of single band information in the following section. 

 

           

    
Figure 1: The image’s gradient for a single channel image. Upper panel: the gray scale image and the resulting partial 
derivatives Ix and Iy , which form the gradient information. Lower panel: the gradient magnitude and angle representa-

tion. The derivatives have been computed using a Gaussian first order kernel with ! =1  
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2.2. Gradient definitions for multispectral images 

Another view on multi-channel images, which deviates from eq. (1), is to define a multi-channel 
image as a stack of n single channel images. Following this view, we are able to compute the single 
channel gradient for each channel separately. Let !Ic denote the single channel gradient for the cth 
channel of the image. We can now generalize the single channel gradient operator of eq. (3) for the 
case of multispectral images: 

 

!I =
!I1
!
!In

"

#

$
$
$$

%

&
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''
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= J   (5) 

 

The matrix J contains the derivatives of each gradient component and is the commonly known 
Jacobian matrix. We will recall this matrix in more detail in the multispectral gradient approach at 
the end of this section. Based on the above definition, the main challenge is the integration of the 
components of the resulting vector. This can be seen analogously to the combination of an x- and y- 
derivative to one scalar (the length) for the single channel case in eq. (4). We will now start with an 
introduction of the approaches we selected for this work: the mean-, maximum-, and multispectral 
gradient approach. The first approach combines the different gradient information of each channel 
using the arithmetic mean: 

 

!I = 1
n

!Ic
c=1

n

" (6) 
 

The mean operator suffers from mutual extinction of opposing gradient. Although this approach 
is very basic and may yield to good results when the variation of the vectors’ directions do not dif-
fer too much, we will now present a second approach, the maximum approach, which does not suf-
fer from anti correlated vectors: 

 

max(!I ) = argmax
c

!Ic   (7) 
  

Although this operator solves the mutual extinction problem of the mean operator, all infor-
mation of the non-maximum vectors is lost. Two cases, the advantages and disadvantages of the 
mean- and maximum approaches, are shown in fig. 2. 

 
 

            
Figure 2: Problems of the mean and maximum approach. Left: the mean approach fails, because all blue vectors sum to 
the negative of the red vector, and thus the mean is zero. Right: the maximum approach selects the singleton red vector 

although there is more evidence for the opposite directions (in blue). 
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After the presentation of the mean- and maximum approach, we will define a third approach, 
which is less heuristically but more theoretically founded. The aim of this operator is to assign one 
scalar value to each the strength and angle of the multispectral image. We refer to this approach as 
the multispectral gradient approach, because it uses all partial derivatives in conjunction to esti-
mate the largest difference vector. We will present the approach very briefly, but want to mention 
that more information can be found in [1], [7] and [8]. Let us assume, that there exists a direction 
vector d which corresponds to an angle !  in the following way: 

 

!
d =

cos(! )
sin(! )

!

"
#
#

$

%
&
&   (8) 

 

The multispectral derivation in this direction can then be expressed by: 
 

!d I =!I "
!
d = J "

!
d   (9) 

 

The matrix J is the Jacobi matrix from eq. (5). To define magnitude of change, Drewniok pro-
posed the use of the squared Euclidean distance of the resulting vector (see [1]). This approach 
turns to be mathematically attractive as the amount of squared change is given by: 

 

L2 (! ) =J !
!
d
2
= J !

!
d( )

T
! J !
!
d( ) =

!
dT ! JT ! J( ) !

!
d   (10) 

 

Independently of the channel count, this results in a symmetric 2!2 matrix of the following co-
efficients in between the direction vector: 
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Since 
!
dT ! JT ! J( ) !

!
d  is the Rayleigh-quotient of the matrix JT ! J( ) , the extremes of this quo-

tient are given by the eigenvalues of the matrix. The magnitude and direction of strongest change 
can be estimated by the largest eigenvalue and eigenvector of this matrix. Additionally, the solution 
of such an eigenvalue-problem is trivial because there exists an analytical solution: 

 

!1,2 = 1
2 a11 + a22( )± a11 ! a22( )2 + 4a122( )  , where !max = !1  and !min = !2  (12) 

 

Using this equation, we can determine the amount of change by means of the largest eigenvalue. 
The direction of change can now be defined using the corresponding eigenvector equations: 

 

! = atan2 !max ! a11 , a12( )   using atan2 of eq. (4) (14) 
 

Due to the definition of the multispectral change by means of squared lengths in eq. (10), the 
angle !  cannot be determined in the complete interval of [-180°, 180°) but in a half circle of: [-90°, 
90°). This is caused by the quadratic term of eq. (10), which makes it impossible to decide whether 
a vector points to the first or third quarter (and to the second or fourth quarter respectively).  

To solve this, different approaches are possible. To save computing time, we propose the use of 
a back-face voting algorithms. We compute the dot product between the computed direction and 
each channel’s gradient direction and sum its signs (-1 or 1) up to one single value. If the result is 
positive, the vector already points into the correct direction. If the result is negative, we flip the 
computed vector’s direction to get the final direction. 
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Figure 3: Example for the multispectral gradient algorithm: the gradient vectors for different channels (green), derived 

axis (red), and finally derived direction vector via the voting algorithm (blue). 
 

2.3. Evaluation method 

After the definition of three different gradient computation methods, we will present the used eval-
uation method to compare the results of the different operators. We use an extended version of the 
approach proposed by Venkatesh und Kitchen [3]. The evaluation starts with an ideal edge defini-
tion image and pose the question, which kinds of errors may have been made by edge detection op-
erators. Venkatesh und Kitchen conclude with a set of four different error classes:  

 
• False positive (FP)   

An edgel has been detected although there is no edgel in the reference. 
• False negative (FN) 

The detector missed the detection of a given edgel.  
• Multiple detection (MD)  

An edge was detected more than once. 
• Localization (LOC) 

The edgel has been detected, but slightly displaced to the reference position. 
 

For each of these error classes, a single error measure is introduced according to the abbrevia-
tions in the above list. The original definition of these errors can only be applied to a very small 
subset of edgels namely horizontal or vertical edges. To use this approach in conjunction with arbi-
trary edge directions, we extended it and added the estimation of a direction error (DIR) (see [9]). 
Using the extended version of the above algorithm, we are able to compare the errors made on vari-
ous gradient images edges, independent of the direction and connectedness. 

3. Results 

The results presented in this section have been computed using a prototypical framework, which is 
mainly written in Python using the SciPy / NumPy [11], Matplotlib [12] and VIGRA [2] packages. 
For the single channel gradient estimation algorithm, we use the graussianGradient function of the 
VIGRA (see [2]). Although this framework is just prototypical, it already encapsulates the different 
gradient operators, so that they can be freely interchanged due to their common interfaces. Figure 4 
shows a chart of the current framework. The general structure will remain unchanged no matter, 
which programming language has been chosen. 
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For the results, we have selected two settings: a quantitative evaluation of all approaches and an 
application of these approaches to real world multispectral image data. 

 
 

 
 

Figure 4: The proposed framework. Due to the same data produced by all multispectral gradient operators, it is highly 
flexible. 

 

3.1. Evaluation of the proposed method 

To evaluate the three gradient estimation approaches, we have selected a very basic but appropriate 
test image: circle. The image is a three channel RGB-image of dimensions 129x129 pixels and con-
tains a large yellow circle in front of a blue background. This setting is insofar advantageous as it 
contains edges of all directions, and not just horizontal or vertical ones. This is much closer to real 
world images, where the edges are usually not constraint to two directions. The boundary between 
the fore- and background has a contrast of 255 gray values. The image and the reference boundary 
is shown in fig. 5. 

 
Figure 5: The used test image circle (left) and the reference boundary position image (right). 

 

One of the most important properties of an edge detection algorithm is the robustness to noise. 
All presented approaches are based on first order derivatives, so we expect a good comparability 
between the approaches. Contrary to second order derivative filters like Laplacian based filters, the 
basic noise robustness should be better for the approaches presented herein. We will compare the 
edge detection results of the different approaches while decreasing the signal to noise ratio (SNR) 
of the image using additive noise. To compare the results with the reference edgels, we extracted 
the edgels from the resulting multispectral gradients by means of local maxima of the gradient 
magnitude. 
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Figure 6: The different results for all three algorithms when applied to the circle image. The results have been computed 

for different signal to noise (SNR) ratios to make the influence of noise visible. If the SNR increases, the image noise 
will decrease. 

 
The results of the evaluation show that all algorithms are quite sensitive to image noise. Howev-

er, the individual sensitivity of each approach varies a lot. We start with a closer look at the false 
positive and the multiple detection errors. For the mean approach, we get an error of about 20% at a 
SNR of about 35, whereas the other two approaches still perform well up to a SNR of about 15. The 
multispectral gradient approach outperforms the maximum- and mean approach in these errors. 

Another observation is, that each of the three algorithms seems to be very stable for the error 
measures of false negative and orientation, as the errors remain below 20% for both errors. The 
mean approach performs worse than both other approaches, but the maximum- and the multispec-
tral gradient approach are almost on the same low error level. Thus, it seems to be adequate to use 
the maximum- as well as the multispectral gradient approach, when the minimization of these er-
rors is important. 

The results for the localization error differ from the others, as the multispectral gradient ap-
proach performs worse than the maximum approach below an SNR of 15. This is however a very 
low value, with practically no importance. A real image with such a low value would probably be 
marked invalid and deleted, because the noise is too high to ensure a proper post-processing. Again, 
the mean approach causes higher errors than the other two approaches. 

As a conclusion of the evaluation, we found that both, the maximum and the multispectral gra-
dient approach produce fewer errors than the mean approach. The multispectral gradient approach 
performs better than the maximum approach in nearly all categories tested. 

3.2. Application on real data 

In order to demonstrate the applicability of the proposed method, we will now show two examples 
of each approach on multispectral remote sensing images. These images have been acquired by 
Landsat 7 using the Enhanced Thematic Mapper Plus (ETM+) sensor and are freely available via 
the USGS Landsat Archive [13]. The images have been geographically orthorectified at prior by the 
USGS.  



Seppke, Dreschler-Fischer, Hamester: A Modular Framework for the Comparison of Gradient-Based Multispectral 
Edge Detectors 

 9 

Table 1. Information about the datasets used for this work 

 First image (German Bight) Second image (Hamburg) 

Acquisition Date 2000-05-15 2001-05-11 

Scene center (Lat, Lon) (54.5138028°, 9.4631795°)  (53.1111525°, 10.2966600°) 

Cloud Cover 60% 10% 

 
To show the use on coastal and urban areas, we have selected two ROIs out of the two acquisi-

tions: The island of Sylt (the north most German island, located in the North Sea next to the Danish 
boundary) and the city of Hamburg in northern Germany. Before processing the images, we have 
subsampled all image bands to the (infrared) resolution of 57m. Although the first acquisition suf-
fers from a lot of cloud coverage, we were able to find the island of Sylt imaged without clouds. 

 

            
Figure 7: Real color images created using bands 3,2,1 of both acquisitions. The German island of Sylt imaged on 

2000/05/15 (left) and the city of Hamburg, Germany imaged on 2001/05/11(right). The areas for which we present de-
tailed result views are highlighted by white squares and labeled. 

 
We will now describe the general approach, which is used by our framework to compute the re-

sults for both images. Each acquisition consists of 9 spectral bands, for which we first compute the 
single-band Gaussian gradient separately. For all of the tests presented herein, we used a Gaussian 
first order kernel with ! =1 (see fig. 1). After the computation of the band-wise gradient, we can ap-
ply and compare the different multispectral gradient-based approaches. In this comparison, we will 
present just the resulting multispectral image gradient for the real world images by means of gradi-
ent strength and orientation (see sec. 2). We will also present the results of a Canny Edge Detector 
[4] applied to each image using local gradient maxima as starting points, which are above 10% of 
each maximum gradient strength.  

In contrast to the quantitative evaluation of the previous section, where we do know about the 
ground truth, we are not able to define a ground truth in this case. In practice, this ground truth may 
be more like a gold standard because it often varies with the task. 
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Mean of gradients   Gradient maximum  Multispectral gradient approach  

Figure 8: Results of the different multispectral gradient operators applied to the first ROI showing the island of Sylt. 
The gradient magnitude is shown in the upper panel, the gradient angle is depicted in the middle panel, and the lower 

panel shows the response of the Canny edge detector. 
 

The results for the island of Sylt are given in fig. 8. Concerning the gradient magnitude, we ob-
serve the following general properties: The maximum approach results in the highest responses, fol-
lowed by the multispectral gradient approach, which still produces higher responses than the mean 
approach. While the maximum approach seems to exaggerate the boundary elements, especially at 
the western part of the islands coastline, the mean approach does not result in strong responses at 
all.  
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Mean of gradients   Gradient maximum  Multispectral gradient approach 

Figure 9: The subset marked in figure 7 (left) has been chosen to show the results of the different multispectral gradient 
operators. The gradient magnitude is shown in the upper panel, the gradient angle is depicted in the middle panel, and 

the lower panel shows the response of the Canny edge detector. 

 
We will now take a closer look to the eastern coastline next to the village of Keitum (see fig. 7, 

left panel). The response strength of multispectral gradient approach seems to be in between the 
results of the other approaches. Although the responses are not as high as for the maximum ap-
proach, they seem to be selectively higher at some special areas inside this area. 

Although the resulting direction angles of the computed gradients are quite similar for all three 
algorithms when applied to the first ROI, we want to discuss two special areas, where the multispec-
tral gradient approach outperforms the other two algorithms. The first area is located in the upper-
left quadrant of the image, at a pixel-position of about (50, 150), see fig. 8. Using the mean- and 



Seppke, Dreschler-Fischer, Hamester: A Modular Framework for the Comparison of Gradient-Based Multispectral 
Edge Detectors 

 12 

maximum approach, we see some erroneous edge responses, due to linear parallel imaging artifacts. 
These artifacts have been suppressed successfully by the multispectral gradient approach.  

The second area is again the village of Keitum (see fig. 7, left panel). Here we see, that the mul-
tispectral gradient approach yields more accentuated and thus finer gradient angle responses than 
the other two approaches. 

 

 
Mean of gradients   Gradient maximum  Multispectral gradient approach  

Figure 10: Results of the different multispectral gradient operators applied to the second ROI showing the city of Ham-
burg. The gradient magnitude is shown in the upper panel, the gradient angle is depicted in the middle panel, and the 

lower panel shows the response of the Canny edge detector. 
 

The results for the second ROI are differ considerably from those for the first region. Instead of 
a natural coastal zone, this region shows the highly urbanized region around the city of Hamburg, 
Germany, which is localized in the center of the image. We clearly see the boundaries of the river 
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Elbe, which crosses the image borders on the middle left and lower right side, an runs through the 
city and the city’s harbor (see fig. 6, right panel). Thus we have much more structure images for this 
scene and expect a lot more gradient response than for the first region. 

 

  
Mean of gradients   Gradient maximum  Multispectral gradient approach 

Figure 11: The subset marked in figure 7 (right) has been chosen to show the results of the different multispectral gradi-
ent operators. The gradient magnitude is shown in the upper panel, the gradient angle is depicted in the middle panel, 

and the lower panel shows the response of the Canny edge detector. 

 
 Comparing the results of the different multispectral gradient algorithms, we get a similar be-

havior than for the first ROI: The maximum approach seems to exaggerate the boundary elements, 
the mean approach result in lower responses and the multispectral gradient approach seems to be 
in between the results of the other both approaches. Moreover, we see a very selective behavior of 
the multispectral gradient approach, which favors the river boundaries and structures located near 
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the airport of Hamburg (see fig. 7, right panel). The mean approach is not able to detect these 
boundaries properly (see fig. 11). 

The comparison of the computed gradient angle is even harder to interpret. We notice that all 
three results are very similar. However, small differences in the computed angles can be found at 
the area around the airport again (see fig. 11). Both, the maximum- and the multispectral gradient 
approach yield good gradient angle estimates, whereas the mean approach is not able to derive 
good results, especially not for the lower runway. 

4. Conclusions 

We have introduced the task of computing the edge strength and orientation of multispectral image-
ry and presented a framework for comparison and evaluation of the different approaches. Based on 
the definition of the standard gradient operator, we have presented three different approaches, 
which integrate the single channel gradient information into one multispectral edge response by 
means of strength and angle. Beside the two heuristically motivated approaches of the mean- and 
maximum gradient estimation, we have put our focus on the mathematically well-defined multispec-
tral gradient approach. The advantage of this approach is that anti-correlated vectors do not reduce 
but boost the overall edge response. The other two approaches presented here may not able to inte-
grate anti-correlated gradients adequately. On the contrary, the mean of all gradients is strongly in-
hibited by these anti-correlated vectors. We have also introduced an extended version of the original 
algorithm described by [1] and [7] to reconstruct the correct edge angle for each multispectral pixel. 

In the quantitative evaluation, we have seen that the multispectral gradient approach yields the 
best results in nearly all categories, even if the image noise is strong. We also like to point out that 
the maximum approach performs quite well and needs slightly less computing time compared to the 
multispectral gradient approach, whereas the channel gradient inhibition of the mean approach is 
often too large to get useful results. The maximum approach might thus be a good alternative to the 
multispectral gradient approach when computation time is very limited or the image data sets are 
very large (e.g. gigapixel or hyper-spectral datasets). In the presented framework, the different sin-
gle- and multispectral gradient approaches can be replaced without difficulties and unwanted side 
effects, so that the user is able choose between accuracy and computation time by switching be-
tween the approaches if necessary. 

The application to Landsat 7 ETM+ imagery has shown the good quality of the multispectral 
gradient approach. However, the interpretation of these results is more subjective, due to the ab-
sence of a ground truth for the image’s gradient. This ground truth is usually very hard to define for 
non-artificial images, because the edges to be found mainly depend on the task. To show a more 
general applicability of the multispectral gradient-based approaches, we have successfully demon-
strated the application on coastal an urban areas.  

The computation of a multispectral gradient is just the first step of the task of edge detection in 
computer vision. Based on the gradient field, which is computed by the approaches presented here, 
further algorithms are needed to extract the boundary by means of a list of edgels or other data 
structures. The investigation of the performance of these boundary extraction algorithms will be 
part of further research, as well as the integration of our prototypical framework into other applica-
tions, which could profit from these approaches.  
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