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University of Hamburg, MIN Faculty, Dept. of Informatics, Cognitive Systems Laboratory

{seppke, dreschler, 1huebbe}@informatik.uni-hamburg.de

Abstract

Active contour methods like snakes, have become a
basic tool in computer vision and image analysis over
the last years. They have proven to be adequate for the
task of finding boundary features like broken edges in an
image. However, when applying the basic snake tech-
nique to synthetic aperture radar (SAR) remote sens-
ing images, the detection of varying-contrast edges may
not be satisfying. This is caused by the special imag-
ing technique of SAR and the commonly known speckle-
noise. In this paper we propose the use of asymmet-
ric external energy terms to cope with this problem.
We show first results of the method for the detection
of edges of tidal creeks using an ENVISAT ASAR im-
age. These creeks can be found in the World Heritage
Site ”Wadden Sea” located at the German Bight (North
Sea).

1. Introduction

Active contours are curves that move dynamically
within a given (image) domain depending on defined
energy terms. The contour itself may move as long as
the energy terms pull it in some directions. The energies
are usually defined such that the snake will fit to image
edges or other features of interest inside the image (see
[4]).

Snakes are often used to bridge gaps in the image
gradient information. This is achieved by an energy
term, that favors smooth, connected curves and penal-
izes to much bending. Since we want to apply the
snakes on synthetic aperture radar (SAR) images, we
will give a brief overview of this radar based sensor
technique that has become very popular in the research
field of ocean and coastal remote sensing over the last
years (cf. [1] [3]). The snake technique can also e used
for other remote sensing tasks, e.g. to support automatic
registration of remote sensing images (see [6]).

The SAR technique is an active microwave tech-
nique that is capable to measure high resolution radar
backscattering. In this paper, we will only refer to
space-borne SAR. It uses a synthetic aperture, which
means that the satellite carries a small radar antenna but
simulates a large one using its own movement and the
Doppler effect. More information about the SAR tech-
nique can be found in [8].

Although these sensors do not measure photometri-
cally, they are capable of imaging features that result in
different radar backscatter. These differences are often
induced by different surface materials or surface rough-
ness parameters. The wavelength of the emitted mi-
crowaves (e.g. 58 mm for C-band) is large enough to
pass through through clouds without interference.

In the SAR image we used, the edge of the tidal
creek is formed by a homogeneous water surface on one
hand and a heterogeneous silt surface on the other hand.
Thus, we cannot use commonly known edge detectors
like the canny edge detector or texture based methods
(cf. [7]). Moreover, the structure of this edge does not
allow the use of classical SAR shoreline detection al-
gorithms because of the strong variation of the contrast
along the edges (see [5] [7] [9]).

From a model-based approach, snakes seem to be a
good choice for modeling the boundaries of such edges.
However, the classic energy definitions that have been
used widely [4] for the detection of edges did not seem
to be adequate for the detection of varying contrast
edges in SAR images in empirical tests. Hence, we
propose the introduction of a new asymmetric external
energy definition for the snakes.

2. The snake model

Traditionally, a snake is modeled as a parametric
curve ~s(p) = [x(p), y(p)] with p ∈ [0, 1]. The curve
moves through the image domain while minimizing the
following functional:



E(s) =
∫ 1

0

Ei(p) + Ee(p) dp (1)

Where Ei is the internal energy of the snake itself
and Ee denotes the external energy that is caused solely
by the image. The minimization of both parts along the
curve causes the snake to move with respect to certain
shape- and image constraints.

Besides this brief introduction, further basics of
modeling snakes can be found in [4]. For the implemen-
tation, we used a B-Spline approximation of the para-
metric snake in Eq. 1. This approximation has some
major advantages over other possible approximations
(see [2]). We will now discuss the energy terms used
for both the internal and the external energy in more de-
tail.

2.1. Internal energy

The internal energy term represents the intrinsic en-
ergy of the snake. Hence, it does not depend on any
image information. In our approach, we divide the in-
ternal energy Ei into two internal energy parts:

Ei = asEs + acEc (2)

The strength of the different energy terms is con-
trolled by the two coefficients as, the spacing coeffi-
cient, and ac, the linearity coefficient, which controls
the strength of the curvature dependent term. The inter-
nal spacing energy Es is given by:

Es =
n−2∑
i=0

(
|~di|
l
− 1

)2

(3)

where the vectors ~di denote the differences between
two neighbored control points ~ci+1 and ~ci. There are
n control points, which yield n − 1 difference vectors;
l gives the goal length for the segments. This segment
length is a parameter of the snake as well and may be
set programmatically. By default it is set to the average
segment length and is calculated once when the snake
is initialized.

l =
∑n−2

i=0 |~di|
n− 1

(4)

Obviously, Es will be zero if and only if all the seg-
ments have a length of l. It will approach n − 1 if the
snake shrinks to a point and will grow with the square
of the length of the snake as it is stretched further and
further.

The curvature dependent term Ec is given by:

Ec =
n−3∑
i=0

(
1−

~di · ~di+1

|~di||~di+1|

)
(5)

This energy will be in the range [0, 2(n−2)]. A value
of zero signals a straight line and the more the snake is
bent the higher this energy becomes.

2.2. External energy

For the detection of varying-contrast boundaries in a
SAR image, we propose the use of two different image
dependent energy terms. The first one detects edges; the
other one punishes differences in the image intensity on
the waterside of the snake.The edge detector is the com-
plement of the two dimensional Gaussian bell function
differentiated in the y-direction (see Fig. 1).

Eg =
n−1∑
i=0

∇Is(~s(pi))2 (6)

where ∇Is(~s(pi)) denotes the image gradient per-
pendicular to the snake direction at position ~s(pi).

This edge detector is applied to the image at all
points of the snake and rotated to match the snake’s di-
rection. All filter responses are squared and summed
up to obtain the edge related energy term Eg . This al-
lows the snake to find dark/bright as well as bright/dark
edges.
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Figure 1. External energy terms
Kernel functions for the computation of the external en-
ergy (plotted using µ = 0, σ = 1).

However, the squared gradient magnitude alone is
not sufficient to determine boundaries of varying con-
trast in SAR images. The variation of the contrast along
these edges is very heterogeneous. Therefore, we pro-
pose the use of a second energy term:

Ev =
1

n− 1

n−1∑
i=0

(
∇Iv(~s(pi))−∇Iv(~s(pi))

)2

(7)



where∇Iv(~s(pi)) is defined as the image convolved
with the kernel kv perpendicular to the snake direction
at position ~s(pi). The kernel kv is the same where the
image gradient is positive and it is set to zero otherwise
(see Fig. 1). Thus its response is proportional to the im-
age intensity of a small region on one side of the snake.
Note that, instead of summing up the responses, we use
their variance to determine the second energy term Ev .

The rationale behind this is that water appears quite
smooth in a SAR image since the wind and hence the
waves do not change on a small scale. It follows that
a strong variance of the intensities on the waterside is
a sure sign that the snake does not follow an edge of a
tidal creek.

To weight the two image-related energies a third
parameter needs to be introduced: α sets the relative
weight of the variance term in the image energy.

EI = αEv + (1− α)Eg (8)

If alpha is set to zero, only the edge detecting energy
will be used. Contrary, a value of one leads to a use of
only the variance dependent term. In the later case it
will not be likely to find an edge at all, but simply seek
a featureless location.

2.3. Optimization strategy

In the current implementation, the optimization algo-
rithm of the Snake is based on a multi-resolution coarse
to fine gradient back-step algorithm. The gradient is
computed by a variation of the control points’ coordi-
nates and a recording of the change of the energy.

Although this may be much slower than using a dedi-
cated gradient calculation method, it is the most general
approach possible and allows for easy adaption of other
energy terms in our experimental implementation.

The gradient back-step is not pure, a post-processing
step is added to prevent jumping. We add this step be-
cause the image energy tends to contain rather sharp
valleys or peaks where the relevant features lie, while
most portions are rather flat. Thus using the pure gra-
dient back-step algorithm will either lead to extremely
slow crawling if the snake is not very close to the op-
timal location or to a snake that jumps back and forth
between the two sides of the edge. In some cases both
behaviors are generated by the same parameters.

3. Results

We will now present some results obtained using
snakes with an asymmetric energy term on a SAR im-
age. The image was captured by the ASAR sensor

aboard the ENVISAT satellite in October 2007 with a
resolution of 12.5 meters per pixel covering an area of
approx. 105×105km2 (see Fig. 2). The imaged area,
the World Heritage Site ”Wadden Sea”, is a tidal flat
area located at the German Bight (North Sea).

Figure 2. Location of image data
The large red region denotes the complete SAR image
taken by the ENVISAT ASAR at 2007/10/18 09:55:38
UTC. The smaller blue region is the ROI, where we ap-
plied the algorithm.

The image was taken during low-tide, showing some
dry fallen areas in front of the coastline. These areas
appear heterogenous compared to the surrounding water
surface (see Fig. 3).

To run the algorithm, we manually set the initial con-
trol points of the snake first. After this initialization, we
started the algorithm with two different settings:

The first setting is
E = Eg + 500Es + 500Ec,
which results in a snake optimization that is purely

affected by the image’s gradient magnitude and the in-
ternal snake energy. This case corresponds to the clas-
sical definition of a snake and is shown in Fig. 3 (red
graph).

For the second run, we use a setting of α = 0.9,
which leads to a combination of both external energy
terms:
E = 0.9Ev + 0.1Eg + 500Es + 500Ec.
The result of this setting is shown in Fig. 3 in green

color. We see a better approximation to the real tidal
creek border using this setting. Note that it is hard to
determine the real position of an edge of a tidal creek,
although we assume that the dark areas in Fig. 3 all be-
long to dry-fallen areas and thus must not be crossed by
edge detecting snakes.



Figure 3. Results of boundary detection
The different colors correspond to snakes with different
settings. Initial snake (blue), resulting snake with α = 0
after 100 steps (red), and resulting snake with α = 0.9
after 100 steps (green).
Data provided by the European Space Agency and by
the German Aerospace Center.

4. Conclusions

We have presented a novel approach for the mod-
eling of B-spline approximating snakes. The energies
of the snakes were defined for the task of varying con-
trast edge detection in SAR images. Moreover, we have
shown that the proposed asymmetric external energy
function yields promising results compared to the com-
monly known gradient magnitude alone in the domain
of SAR imagery.

We have selected the detection of tidal creek borders
for this example. However, the algorithm is not lim-
ited to the detection of these special boundaries. Snakes
that are modeled according our proposal can be used
to generally detect edges with variable contrast in SAR
images.

For the future, we will investigate the detection of
other boundary features in SAR images and the auto-
matic initialization of the snakes using higher knowl-
edge (e.g. from nautical charts). Another issue will be
the comparison with ground truth about the location of
the tidal creeks’ edges. The determination of such lines
requires a lot of domain and remote sensing knowledge
and thus has to be done by domain experts like oceanog-
raphers. We further plan to enhance the speed of the
snake’s optimization step in future.
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