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Zusammenfassung

Wir schlagen eine neue Methode zur Detektion von signifikanten
Ubergingen in verrauschten visuellen Daten vor. Die Methode basiert auf
einem allgemein einsetzbaren, globalen Minimierungsansatz, der kiirzlich als
natiirliche Erweiterung des quadratischen Variationsprinzips vorgeschlagen
wurde, welches in der Bildverarbeitung oft zur Regularisierung schlecht ge-
stellter Probleme eingesetzt wird. Dieser Ansatz erlaubt eine rdumliche In-
tegration visueller Daten, bei welcher signifikante Anderungen in den Daten
erhalten bleiben, ohne, dafl dabei auf die giinstigen Eigenschaften quadrati-
scher Minimierungsansitze verzichtet werden muf: Existenz, Eindeutigkeit
und Stabilitit der Losung, sowie ihre stetige Abhéngigkeit von den Daten.

In dieser Arbeit wird die Abhingigkeit der Lésung des Minimierungs-
problems von den globalen Parametern analysiert, die den zugehérigen Dif-
fusionsprozef} steuern. Die Ergebnisse motivieren eine neuartige Methode
zur Detektion und Lokalisation von signifikanten Ubergingen in verrausch-
ten Daten. Es wird nach Punkten gesucht, die “stabil” bzgl. infinitesimal
kleiner Anderungen an den globalen Parametern sind. Numerische Beispiele
auf Daten natiirlicher Szenen zeigen, dafl diese Punkte zur Charakterisierung
einer Reihe von typischen Ubergingen dienen kénnen.



Abstract

We present a novel scheme for the detection of transitions in noisy visual
data. The scheme is based on a general global minimization approach that
we have recently proposed as a natural extension of quadratic variational
principles used in vision. This approach provides a transition-preserving
spatial integration stage without loss of the advantageous properties of qua-
dratic minimization problems: well-posedness, uniqueness, convergence and
stability of numerical schemes.

In this paper, we analyze the dependence of nonlinearly smoothed func-
tions on global parameters which control the associated diffusion process.
The results motivate a novel definition for the detection of transition points
in noisy data. The corresponding algorithm looks for points that are “stable”
with respect to infinitesimal parameter perturbations. Numerical examples
with real data show that these points provide a useful characterization of
various types of transitions over scale.

Keywords: Variational regularization, nonlinear diffusion, piecewise
smooth functions, data reduction, segmentation.



1 Introduction

1.1 Overview

The robust integration of local visual features into non-local coherent descriptions of
images is an important task of low-level vision. Concerning the hierarchy of processing
stages from raw pixel data towards higher cognitive functions, redundant data should be
discarded as early as possible. In general, this amounts to locally correlating computed
feature values (in space and time) with some smoothing or filtering operation. On the
other hand, visual features indicating the structure of the surrounding scene must not
be destroyed by the smoothing procedure. These conflicting demands are usually called
the segmentation problem. As any processing stage, a solution to this problem should be
based on a mathematical description making explicit (i) the mappings used to transform
input data from both, bottom up and top down (feedback) pathways, to output data, and
(11) the computational architectures by which the corresponding processes can be carried
out.

A wide range of smoothing schemes for integrating visual data, like greyvalues, motion,
texture, etc., can be described by quadratic variational principles. Based on a prior:
knowledge about qualitative properties of the data, constraint terms can be specified
to compute smooth global representations of the visual input by minimizing quadratic
functionals. The mathematical characterization of this class of problems can be found in
the literature [1], and efficient stable algorithms can be devised for conventional hardware
[28] or analogue networks [20, 11]. Related biological models have been pointed out by
[29].

A major drawback of quadratic variational approaches, however, is that important
local clues with respect to the structure of the scene are wiped out by the smoothing
process. Therefore, we have developed an extension of the quadratic variational principle
that preserves significant variations of the input data and is applicable to a wide range of
early vision tasks [22]. Furthermore, our approach inherits the attractive properties of the
quadratic principle (see [23, 24] and Section 2), and thus appears to be an useful compro-
mise between the simplicity of quadratic minimization problems and the mathematical
(non)tractability as well as algorithmic complexity of more involved global minimization
problems that have been proposed in the literature to overcome the “discontinuity” prob-
lem (cf. next section).

Numerical results show that our approach preserves significant transitions of input
data. However, according to the mathematical conditions imposed, these transitions (i.e.
edges, motion boundaries, etc.) are not represented by “thin” lines but as transition

regions. For example, ramp-like transitions are preserved as ramps and not as a sequence



of step edges. Therefore, to mark appropriate points that represent transition regions, we
consider the behaviour of nonlinearly diffused signals dependent on the variation of global
parameters that control the diffusion process (Section 3). Based on this, we develop a
novel criterion for the detection of transition points and investigate the behaviour of these

points over scale (Section 4).

1.2 Related work

The quadratic minimization approach has been introduced to the vision community by
Horn and Schunck [10], and then has been applied to various problems (e.g., [12, 28]).
Later, this approach has been termed “regularization” [21, 2], due to the resemblance
to a mathematical concept that, for example, is known in the context of deconvolution
problems.

To overcome the limitations of this class of approaches with respect to the segmentation
problem, many approaches have been proposed that may be classified as follows: Non-
quadratic global minimization approaches, either continuously formulated or discrete, or
nonlinear-diffusion approaches. We briefly sketch the features of these research directions
and refer for a more thorough discussion to [22].

Discrete extensions of the quadratic variational principle are based on so-called line
processes [9] which incorporate additional unknown variables into the cost function in
order to label data transitions. The problem formulation then becomes inherently dis-
crete: The variables to be determined do not longer represent some “continuous” function,
the problem solution depends on the specific coordinate system used. To minimize the
resulting complex cost functions one uses either annealing processes (which are very of-
ten impractical) or heuristically traces the solution path with respect to a one-parameter
family of cost functions (e.g. [9, 14, 3, 8]).

A continuously formulated extension of quadratic minimization problems has been
presented by Mumford and Shah [15]. These authors directly addressed the problem
to determine a function that may have jumps across the boundaries of an unknown de-
composition of the underlying domain. It can be shown that solutions to this difficult
minimization problem exist in very general function spaces [7, 4]. However, it seems to
be unknown how regular these solutions are and (consequently) there is no theory of how
to numerically approximate such solutions (cf. [26]). Recently, Ambrosio and Tortorelli
proposed a family of (slightly) simpler functionals that are related to the Mumford-Shah
functional in a precise mathematical sense. Corresponding algorithms, however, are still
developed by using ad-hoc rules [13, 16].

A third line of research has been initiated by Perona and Malik [19]. They proposed

a nonlinear version of the heat-equation to adaptively filter images. However, a corre-
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sponding mathematical model has not been developed. The approach is ill-posed and
corresponding algorithms are unstable (cf. [17]). The same statements probably apply
to the approach of Nordstrém [18], who avoided the time-stopping problem by modify-
ing Perona and Malik’s equation such that it can be related to a minimization problem.
Existence of a solution has not been proved, and it is not clear how this approach can
be modelled using the classical Sobelev-space theory. Recently, interesting work has been
published in the mathematical literatur [5]. These researchers developed a mathematical
basis for a modified Perona-Malik equation and, apart from the time-stopping problem,
report good results. The relationship to our approach should be worked out in future

investigations.

1.3 Organization of this paper

In the next section, we outline the general minimization principle that underlies our
work. Next we present results about the parameter dependence of nonlinearly diffused
functions (Section 3). In Section 4, a novel criterion for the detection of transition points
is developed. Using real data, the behaviour of these points over scale is explored. We

summarize the results and indicate further work in Section 5.

2 Nonlinear diffusion as a strictly convex minimiza-
tion problem

In this section, we briefly sketch our basic approach to the spatial integration of visual
data. For details we refer to [22, 24, 27].

Let © C IR? be a piecewise smooth domain within the image plane, and g € L*(Q; IR")
the input data. ¢ may be raw pixel data (n = 1), motion data (n = 2), or, in general,
the function associated with the output of a set of n-dimensional feature processing units.
Our approach to integrate this locally computed data is to find a function v € H in a

suitable function space H such that the functional
= —qgl*+ MV d 1
J(v) fn {|U gl ( U)} z (1)

attains its minimum. Depending on the choice of the function A(-), this problem may
be well-posed and have a unique solution. Furthermore, approximate solutions can nu-
merically be determined by computing the solutions u, in discrete subspaces Hy C H,
respectively. To this end, by using standard discretization methods [6], vanishing of the

first variation of J is expressed as a set of nonlinear equations

<J'(uh),vh> = 0, Vv, €Hy,



which can easily be solved for us. In contrast to ad-hoc discretizations, these discrete
solutions converge towards the solution u € H as the discretization parameter A goes to

Zero:

lu —upllwe =0 as h—0.

2
Z;Lh 1

Figure 1: (a) A(¢) (left) and (b) p(t) (right)

Our choice of A(-) depends on three (global) parameters, A(-) = A(:; An, Ai,¢,), the
meaning of which is illustrated in Figure 1. Figure 1b depicts the shape of the “diffusion”-
coefficient p that is defined by the equation:

N(z) = p(lz])z .

Figure 1 shows that, as soon as |[Vv| exceeds the value of ¢,, the influence of the smoothness

term in (1) decreases from A, to A;.
Alternatively, by setting the first variation of J to zero and subsequent partial inte-

gration, the minimizing function u may also be interpreted as the (weak) solution to the

nonlinear diffusion equation

% = V- (p(|Vo]) Vo) + 2(g — v)

with Neumann condition at 0.
3 Parameter-dependence of nonlinear diffused

signals

In this section, we investigate the behaviour of solutions for our nonlinear diffusion process
dependent on the variation of the global parameters Ap, A, and c, (cf. Figure 1). The
analysis presented in Section 3.1 shows (i) that A, is immaterial in this context and can be

set to any small positive value (as a result, this reduces the number of effective parameters



to two), and (ii) that certain combinations of the remaining parameter A, and ¢, are of
primary importance.
These results are illustrated by numerical examples and are exploited for the detection

of transition points investigated in Section 4.

3.1 Analytical results

In order to obtain analytical results, we have focused for the time being on the 1D-case.
Our approach, however, does not depend on the dimensioning of the data, and we expect

similar results to hold in the general case.

In the 1D-case, the diffusion equation reads:

i for [zl <e

Af for |u'(z)| > ¢,

o(z) = u(z) - () { 2)
One of our goals is to derive the conditions for edge and ramp detection. To this end,
we compute the solution of the linear diffusion equation with A = A, and compare the
maximum gradient of this solution with the switching parameter c,. We consider an edge
or ramp as detected, if the gradient of the solution at this position is greater than c,.
Closed-form solutions to (2) can be computed for various simple functions g: The
Sobolev embedding theorem tells us that the solution u must be continuous. This gives
the boundary conditions for each region corresponding to u/(z) in (2), and thus u can be

computed by convolving the data g with the associated Green-functions.
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Figure 2: Ramp edge (left) and rectangle signal (right)

Table 1 shows the results computed for the isolated step edge (height k), the isolated
ramp edge (width 2a, height h, gradient m = h/2a; Figure 2), and a rectangular signal
(width 2a, height h; Figure 2). Figure 2 shows also a typical solution u with the switching

points (at z = b and = = ¢) which separate the low-smoothing from the high-smoothing

regions.
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Table 1: Parameter dependence for various data g

From Table 1, the following observations can be made:

The value 2c, ), is a contrast sensitivity threshold determining the minimum con-
trast ho necessary for the detection of an isolated step or ramp edge. An edge is
considered as isolated if there are no other features within a neighborhood which

is large compared to A,. Thus, ), is a characteristic distance for the interaction of

discontinuities (cf. [3]).

The value of ¢,\; is also responsible for the height A’ of the reconstructed signal.
The height k' is defined as the difference between the two values of u at the switching
points at both sides of the step or ramp (see Figure 2).

A ramp edge can only be detected if its gradient is greater than c, and if the ramp
is wide enough. Note that a ramp is always reconstructed as a ramp. There is no
limit of the gradient causing a ramp to split into several spurious step edges, as is

the case for the weak string (or membrane) model of Blake and Zisserman [3].

In the case of interacting steps (a < Ay ), the contrast sensitivity threshold increases
by a factor A,/2a. Here, c,A? must be less than the area under the rectangle. The
higher the steps, the closer they can be. The value of ¢,A} plays also a crucial
role for the difference of the original and the reconstructed height (Figure 2, in the

middle of the rectangle).

Another interesting fact is that the difference of the maximal gradient of the non-
linear solution to the linear solution with A = A; is very small. Furthermore the
value of \; has no effect on the detection properties and we can always choose some

low value for this parameter.



3.2 Coping with noise

Consider a step function which is degraded by an additive white noise process. We want
to derive some constraints on the parameters in order to detect the step edge while at the
same time smoothing out the noise.

Let us first consider the case of linear diffusion of the data
g(z) = h(z) +n(z), 0 ~N(0,0%).

Here, h(z) is the step function of height A. With the associated Green function I'(z,¢)
we can write the solution of this problem as a convolution of ¢ with a linear filter G
oo 1 kg
u@)= [ Gla—8g@)df  Gla—€) =T(z,6) =51 .

Additive white Gaussian noise of variance o is transformd by a linear filter GG into Gaussian

noise with variance
o 1
2 g 2
o =i GA{E)dE == —,
“ /-oo (®) 4\
For the gradient u" of the solution this means:

W)= [T 2D ygae 4 [T ey ag

-0 833

~ (G 2 &2
3 . 8 £ e
G =9 /_m(aw(t)) dt_4,\3

The solution to the linear diffusion equation is also the solution of our nonlinear diffusion

with

equation (with A = \3), as long as the maximum gradient of the solution does not exceed
the switching parameter ¢,. The maximum gradient of the linear solution for the ideal

step of height h 1s

h
! = 4 = m—
max Igleafa( |’Ul ($) 2/\h
In order to detect the step with high probability, we choose the value of ¢, such that:
h k o
! it o e e T
Cp S Umax — k’O’u-' - 2/\h 2 /\;.51/2

k = 2,3 are meaningful values. At the same time we have to choose ¢, high enough in

order not to detect steps that are due to noise only:

ko
2)&/2

¢ = koy =
For these constraints to be meaningful, A has to satisfy
2k \*
A2 |—] .
= (37
Thus, the higher the signal-to-noise ratio h/o, the lower the smoothing parameter A.

Numerical examples illustrating this fact can be found in [24].
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Figure 3: Result of nonlinear diffusion on real data (see Figure 4). Parameter values:

Ap = 2.5,\ = 0.2,¢c, = 1.0 (top); Ay = 16,A; = 0.2,¢c, = 0.024 (bottom)

3.3 Discussion of analytical results using real data

In this paragraph we discuss some aspects of the analytical results of the previous subsec-
tions using real data. Figure 3 shows two results of nonlinear diffusion of the same data
but with different parameter settings. Although we have chosen very different values for
the high-smoothing parameter Ay, we get very similar results because the value of ¢,Af is

the same in both cases. Since the selectivity threshold and the reconstructed height for



interacting steps (see Table 1) is proportional to this combination of parameters we have
no difference in the regions of thin peaks.

However, the value of ¢, A, in the first example (at the top of Figure 3) is higher than
in the second. The low value of ¢, is the reason for the cornered shape of u in the second
example. This can be explained by looking at the expressions for the reconstructed height
in case of a step or ramp edge (Table 1). In case of a small value for ¢, A, we have a better
approximation to a step function.

We conclude, that in order to segment a signal into several parts of nearly constant
grey-value, we can choose a high value for the smoothing parameter A, as long as the

corresponding value for the switching parameter ¢, is low.

4 A novel approach to the detection of visual-data

transitions

4.1 Definition of transition points

In the previous section we have shown, how the nonlinear diffusion process decomposes
the underlying domain {2 into regions with high and low degree of smoothing, respectively.
Regions where the algorithm has switched to the low-smoothing mode are indicated by
[Vu| > ¢, (and vice versa). These are the regions where transitions of the data occur.

Figure 4 illustrates how the approach performs for real, noisy 2D-data. According to
the mathematical conditions imposed (see Section 2), conservative estimates of transition
regions are obtained (Figure 4, middle-right): the overall structure appears to be correct
but the regions are broad. We consider this not as a drawback of our approach but as
a consequence of the fact, that ramps are reconstructed as ramps, for example (see the
discussion in Section 3.1).

For many applications, however, one wishes to represent transition-regions by curves
within 2. Our approach to mark points that are distinctive of the corresponding transition
region goes as follows: For ¢, — oo the nonlinearity of our approach has no effect on the
solution. Hence, slightly increasing ¢, leads to an additional relaxation of the “tension”
between hills and valleys of the data. It is intuitively clear that there exist boundaries
between these regions that do not move during this relaxation process. Our approach
is to represent transition regions by these boundaries that are obtained by infinitesimal
variations of c,.

Formally stated, we propose to look for zero-crossings of the tangent-vector of the

curve in the function space H that is given by the family of nonlinearly diffused functions

for varying c,.
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Figure 4: Section (middle-left) of an outdoor scene (top-left), result of 2-dimensional
nonlinear diffusion with parameters (An, A, ¢,) = (7,0.2,0.4) (top-right) and the regions
of low smoothing (middle-right). The original section and the result of nonlinear diffusion

are plotted in the bottom pictures.
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4.2 Computation of transition points

After discretization our minimization problem is described by a nonlinear system of equa-

tions: F'(u;c,) = 0. Taking the derivative with respect to the parameter c, yields:

d 0 d d
E::F(U(il’l, Cﬂ)a CP) == a_uF(u(‘racﬂ)acﬂ)au(ma cp) g E;F(U,Cp) = 0.

Thus we have to solve the following system of linear equations in order to compute the
derivative of the solution with respect to the parameter c,:

d 1 0
Wi, 0= d—u(m;cm = —(VF(u)™ =—F(u;c,).

el
cp Bcp

In order to guarantee the differentiability of F' we have to ensure that p is not only
continuous but also differentiable. An appropriate and sufficiently close approximation

preserving the mathematical properties of our approach (e < c,) reads:

2)\?» 0<s<¢
p(s) = 9 222+ X2[2(c, + €) — s — /] c, <s<c,+e
207 + £2%(e+ 2¢,) ¢, +e<s
with ; ;
)\2 — Ah, — /\l )

¢ €

It can be shown that VF is always a symmetric, positive definite matrix. In the one-
dimensional case it is tri-diagonal, so that we can solve the system of equations with
a direct numerical method [25]. It should be noted that this is a consequence of the

mathematical properties of our approach to “nonlinear diffusion” described in Section 2.

4.3 Numerical examples and discussion

In this section, we show and discuss our approach by computing u., for real image data.
So far, we have made extensive numerical experiments for the 1D-case. The 2D- and
3D-case will be investigated in future work.

As data g we have taken the greyvalues of the row marked in Figure 4. This signal
comprises several step and ramp like transitions, and thus is an appropriate candidate to
test the performance of our approach over the parameter space.

Figure 5 summerizes the results for various values of Az. Each part of Figure 5 shows
the original and the nonlinearly smoothed signal g and u, respectively, together with w.,.
We have drawn the values used for A; and A, as lines of corresponding length (top-left), so
that they can directly be compared to the image dimension. The zero-crossings of u., are

marked in the smoothed version of the signal. The following observations can be made

(see Figure 5):
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Figure 5: Numerical results of our segmentation method in parameter space (parameter

12

5,7,12) (see text)

0.2, &y = 0.2, A =
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“Spurious” zero crossings, caused by subsequent steps in the same direction, for

example, are not detected because they do not occur within low-smoothing regions.

The curve u., always comprises a small number of typical shapes. 'The environment
of the spurious zero-crossings (up to the neighboring zero-crossings), for example,
consists of three nearly linear segments. Other zero-crossings have at least on one
side a “u”-formed shape, which can degenerate (in the case of a thin peak in the

data) to a hill (or valley) with a flat plateau.

Ramp-like transitions (relative to the current value of A;) show up as flat sections

of u., with a very low gradient.
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Figure 6: Zero-crossings of u., over parameter-space {A,}. Parameter values: ¢, = 0.2,

A = 0.2, A\, = 2...16. The horizontal lines mark the values of A;, which were used in

figure 5

e Figure 5 showed that zero-crossings can only disappear if the value of A, increases.

This corresponds to the interpretation of A as a scale parameter. This is illustrated
in Figure 6, where we plotted the positions of the zero-crossings over the parameter
M. Figure 6 reveals also that the positions of zero-crossings are remarkably stable
within the parameter space. This is a significant improvement over purely linear

scale-space methods. Slight shifts of zero-crossings over scale occur only at extended

13



ramp like transitions, where wu., has a very low gradient so that the zero-crossing is

somewhat “weak”.

Summarizing we conclude that the derivative wu., of nonlinearly diffused functions
exhibits many useful features that systematically change over scale. We will explore in

future work whether a symbolic description of real world data may be based on these

features.

5 Conclusions and future work

In this contribution, we presented a novel scheme for detecting transitions in visual data.
This scheme is based on an approach which has been recently developed by the authors
where nonlinear diffusion is applied to visual data in a unique and numerically well-
defined way. The parameter dependence of diffused functions has been investigated.
Furthormore, it has been shown that signal transitions occur at points that are stable
with respect to infinitesimal perturbations of a global parameter controlling the nonlinear
diffusion process. The corresponding “tangent-vector” to the solution curve provides an
interesting set of features that allows to characterize step and ramp like transitions and
has been shown to be useful for analysing real world data over scale. The application of

this ideas to higher-dimensional data will be explored in future work.
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