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Abstract— The point-based registration technique of Book-
stein [1] can be seen as an interpolation problem. With
this technique an elastic transformation based on thin-plate
splines is determined which maps the source and target land-
marks exactly to each other. However, in real applications
the positions of the landmarks can only be determined ap-
proximately. Therefore, in this case an interpolation scheme
is inadequate and should be substituted by an approxima-
tion scheme to take into account the localization errors. In
this paper, we describe an approach for extending Book-
stein’s method in this direction.
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I. THIN-PLATE SPLINE INTERPOLATION

The use of thin-plate spline interpolation as point-based
elastic registration method of medical images was first pro-
posed by Bookstein [1]. Below we briefly describe this
method in the general context of d-dimensional images.
The general problem can be stated as follows: Given two
sets of n landmarks p; and q;, ¢ = 1,...,n in two image
representations of dimension d. Within a suitable Hilbert-
space H? of admissible functions find the transformation
u, which i) minimizes a given functional J : H¢ — IR and
ii) fulfills the interpolation conditions

u(p;) = q, i=1,...,n. (1)
We only consider such functionals J(u) which can be sep-
arated into a sum of similar functionals that only depend
on one component u; of the transformation u. Thus, the
problem of finding the transformation u can be subdivided
into d problems for each component z of u. In the case
of thin-plate spline interpolation the functional J is fully
described through the dimension d of the domain and the
order m of derivatives used [2]. We will write J2 for these

functionals.
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This functional is invariant with respect to translations and
rotations, because the integrand is a scalar.

Let a set of functions ¢; span the space II"™~! (I[{d) of all
polynomials on IR? up to order m—1, which is the nullspace
of the functional J%. The dimension of this space is

S d+m-1
u=(77)

Jf,ll (2) =

D

a1+...fag=m

and must be lower than n (this gives the minimum number
of landmarks). The solution of the minimization problem
can now be written in the following form:

M n
2(x) =) aigi(x) + Y willi(x) (3)
i=1 i=1
with some basis functions U; = U(-, p;) depending on a)

the dimension d of the domain, b) the order m of the func-
tional J to be minimized and c¢) the Hilbert-space H of
admissible functions [2]. If we choose the Sobolev-space
H = H?, which consists of all square integrable functions,
with (weak) derivatives up to second order in Ls(IR), we
obtain the kernel:

|x —p|[* 4In |x — p| d even

|X _ p|2m—d

U(x,p)Z{

otherwise

Note, that the basis functions U; span an n-dimensional
space of functions that depend only on the source land-
marks.

The coefficient vectors a = (ay,...,ay)? and w =
(wy, ..., w,)T can be computed through the following sys-

tem of linear equations:

Kw+Pa = v (4)
Pfw = 0,

where v is the column vector of one component of the co-
ordinates of the target points q;, and

Ki; = Ui(pj), P = ¢;(ps)-

II. THIN-PLATE SPLINE APPROXIMATION

The interpolation approach assumes that the landmark
positions are known exactly. In real applications, how-
ever, the positions of the landmarks can only be deter-
mined approximately. Therefore, in this case an interpola-
tion scheme is inadequate. To take into account the land-
mark localization errors one has to weaken the interpola-
tion condition (1). This can be done by combining an ap-
proximation criterion with the optimization functional (2).
In the simplest case of a quadratic approximation term this
results in the following functional [3]:

I(u) = lai —u(pi)|” + AJS (u).

i=1



Such functionals have been used for the reconstruction of
surfaces from sparse depth data [4]. For 2D images Arad et
al. [b] recently used this approach to represent and mod-
ify facial expressions. The first term measures the sum of
the quadratic Euclidean distances between the transformed
source landmarks and the given target landmarks. We will
call this term the data term, because this is the term, where
we take into account the data, given by the positions of the
corresponding landmarks. The second term measures the
smoothness of the resulting transformation. We therefore
ask for a transformation u(x), which i) approximates the
displacement of the source landmarks to the target land-
marks and ii) is sufficiently smooth. The relative weight
between the approximation behavior and the smoothness of
the transformation is determined by the parameter A > 0.
If A is small, we obtain a solution with good approximation
behavior (in the limit of A — 0 we have an interpolating
transformation). In the other case of a high value for A we
obtain a very smooth transformation, with little adaption
to the local structure of the distortions determined by the
sets of landmarks. In the limit of A — oo we get a global
polynom of order up to m — 1, which has no smoothness
energy J¢ at all.

The interesting fact is that the solutions to this problem
have always the same form as in the case of interpolation
given by (3). Also, the computational scheme is nearly the
same as in (4). We only have to add the parameter A in
the diagonal of the matrix K. Thus K is substituted by
K+ AL
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Fig. 1. Thin-plate spline approximation example (parameter: A = 0,
A= 0.001 and A = 0.1).

Fig.1 shows an example of image registration using thin-
plate spline approximation in two dimensions (with m = 2)
for different values of the regularization parameter A. On
the top-left the landmarks are shown on a regular grid. The

small black points mark the positions of the source land-
marks, the big grey points mark the target landmarks. The
other three parts of Fig.1 show the transformed grid after
applying the transformation computed through the approx-
imation approach. The top-right part of Fig.1 shows the
result for A = 0, which is equivalent to the interpolation
scheme. At some locations the grid is heavily distorted, es-
pecially at the two close landmarks in the bottom-left part
of the grid. The other values of the regularization parame-
ter are A = 0.001 (bottom-left) and A = 0.1 (bottom-right),
where the latter one is nearly a pure affine transformation.

Recently, we have applied this approximation method
for the registration of tomographic images of the human
brain[6]. Tt turned out that this scheme leads to a more
accurate and robust registration result. In particular, out-
liers do not disturb the result as much as is the case with
an interpolation scheme.

The regularization parameter A weights the relevance of
the data term with respect to the smoothness condition. A
generalization can be made, if we have information about
the expected accuracy of the given landmarks. We can
weight each single data term |q; — u(p;)|* by the inverse
variance 1/0? of the measurement q;. If the variance is
high, i.e. if the measurements are uncertain, less penalty is
given to the approximation error at this point. With this
generalization the data term reads

Z": |ai —u(p)]
i=1 0-22
And we have to solve the following system of equations:

K+ W Hw+Pa = v (5)

P’w = 0

with
W =diag{l/c?,... 1/c%}.
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