
Topologically Correct Image Segmentation

Using Alpha Shapes

Peer Stelldinger, Ullrich Köthe, and Hans Meine
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Abstract. Existing theories on shape digitization are not very realistic:
they impose strong constraints on feasible shapes, and require measure-
ments to be free of error. In this paper, we propose a new approach
based on Delaunay triangulation and α-shapes which significantly weak-
ens these restrictions. It assumes that sampling points (edgels) represent
true object edges with a certain bounded error. We are able to prove
under which conditions a topologically correct segmentation can be re-
constructed from the edgels. Experiments on real and generated images
demonstrate the good performance of the new method and confirm the
predictions of our theory.

1 Introduction

The question, whether or when a computed image segmentation corresponds
closely to the underlying real-world partitioning, is fundamental to image un-
derstanding. A number of partial results have been obtained in the past, but
they are not sufficiently realistic to model many actual imaging situations. In
this paper, we improve on the state-of-the-art by explicitly allowing measure-
ment errors.

The analysis we are going to present is based on a clear distinction between
the ideal geometric image, which cannot be observed in practice, and the actually
available digital image. The geometric image has infinite resolution (i.e. is an
analog function) and can be thought of as the geometric projection of a 3-
dimensional scene, although we do not consider the details of the projection in
this work. Instead, we think of the analog image as a given geometric partitioning
of the plane into distinct regions. The interior of each region is described by
some simple function (e.g. a constant), but the transitions between regions are
discontinuous. This ideal analog image is then transformed into a digital image
by a real camera. Beyond geometric projection, a real camera is characterized
by its point spread function, the sampling grid and its quantization and noise
models. Consequently, the partition of the geometric image must be inferred
from the limited information in the digital image. We ask how accurate this
reconstruction can be.

So far, geometric sampling theorems have been developed that describe the
situation in binary partitionings, where the plane is split into (not necessarily
connected) fore- and background components. In this case, the topology of the



partition is preserved under various discretization schemes when the original
regions are r-regular (definition below) and the sampling grid has a maximum
pixel radius of at most r′ ≤ r [11, 15]. By making slightly stronger assumptions
(r′ + p ≤ r), this property is preserved when the shapes are blurred by a disc or
square of radius p prior to discretization [9, 16]. It is even possible to relax the
requirement of r-regularity somewhat into r-halfregularity [17], when the size of
the regions is large enough.

However, the approaches mentioned have two important limitations. First,
they are not applicable when there are more regions than just fore- and back-
ground. Second, they do not make any predictions of what happens when the
segmentation can only be computed with a certain measurement error. One rea-
son for these limitations is that the theorems are based on the assumption of
a fixed (although sometimes arbitrary) sampling grid. In this paper, we are go-
ing to drop this assumption in favour of adaptive sampling where the sampling
points are placed roughly along the contour of the regions to be segmented.

We can get to adaptive sampling in two ways: first, we can choose sam-
pling points purely based on a fixed grid. This can be done by directly taking
the grid points as sampling points, but drop all sampling points that are not
near the segment boundaries. Thus we obtain a set of pixels marking segment
edges (Fig. 4). Alternatively, we can choose points in the crack edge (inter-pixel
boundary) between digital regions, i.e. on the pixel’s dual grid (Fig. 5).

Second, we can allow sampling points to be placed freely in the plane. These
points may, for example, result from the sub-pixel accurate version of Canny’s
algorithm or from exact contour following in a smoothly interpolated image by
means of the predictor-corrector method or the sub-pixel watershed transform
[10] (Fig. 8).

Our treatment of adaptively placed sampling points is inspired by research
on laser range scanning. Here, a number of isolated sampling points is scattered
over the surface of the object of interest, and the task is to reconstruct the sur-
face from the set of points. A successful solution of this problem is the concept of
α-shapes [6, 7]. The α-shape is essentially defined as the subset of the Delaunay
triangulation of the points where the Delaunay cells’ radius is below α ∈ R

+.
Under certain conditions, an α-shape is homeomorphic or at least homotopy
equivalent to the desired object surface. By applying this idea to the problem
of image segmentation, we are able to derive a new condition on object shape
that ensures homotopy equivalence of the digital segmentation with the original
analog plane partitioning. This means in particular that there is a 1-to-1 map-
ping between the computed and the ground-truth regions. By imposing slightly
stronger requirements on region shape, these properties can even be guaranteed
when the segmentation is subject to measurement errors.

2 Preliminaries

We consider the task of reconstructing a partition of the Euclidean plane from a
sampled representation. The plane partition to be recovered is defined as follows:



Definition 1. A partition of the plane R
2 is defined by a finite set of points

P = {pi ∈ R
2} and a set of pairwise disjoint arcs A = {ai ⊂ R

2} such that
every arc is a mapping of the open interval (0, 1) into the plane, the start and
end points ai(0) and ai(1) are in P (but not in ai). The union of the points and
arcs is the boundary of the partition B = P ∪ A, and the regions R = {ri} are
the connected components (maximal connected sets) of the complement of B.

The partition is called binary when we can assign two labels (foreground and
background) to the regions such that every arc is in the closure of exactly one
foreground and one background region. A binary partition is called r-regular,
when at every boundary point there exist two osculating discs of radius r which
are entirely in the foreground and background respectively. This implies that the
regions are morphologically open and closed with respect to discs of radius ≤ r,
and that the curvature of the boundary cannot exceed 1/r. This, in turn, means
that regions cannot have corners, and that it is impossible to form junctions of
three or more regions. These restrictions are somewhat relaxed by the notion
of r-halfregular partitions, where an osculating r-disc must exist at least in the
foreground or the background, and the number of regions (connected compo-
nents) must not change under either morphological opening or closing with a
disc of radius ≤ r. Corners are now possible, but the partition is still binary and
has no junctions. The two notions of r-regularity and r-halfregularity have been
central to all existing geometric sampling theorems.

In this paper, the class of feasible plane partitions is extended as follows:

Definition 2. A plane partition is called r-stable when its boundary B can be
dilated with a closed disc of radius s without changing its homotopy type for any
s ≤ r.

In other words, we can replace an infinitely thin boundary with a strip of width
2r such that the number and enclosure hierarchy of the resulting regions is pre-
served. In particular, “waists” are forbidden, whereas junctions are allowed, see
Fig. 1. This includes r-regular and r-halfregular partitions, but also allows non-
binary partitions and junctions and models real images much better. In particu-
lar, polygonal partitions (all arcs are straight lines) are always r-stable for some
sufficiently small r. Unfortunately, the traditional way of proving a geometric
sampling theorem (using a fixed grid at arbitrary position and angle, in connec-
tion with subset or supercover digitization) does not work for these partitions
because topological equivalence cannot be guaranteed in general. Therefore, we
consider another approach to digitization: we approximate the boundary of the
partition with a finite set of adaptively placed sampling points. The sampling
points are selected somehow “near” the boundary. We formalize this as follows:

Definition 3. A finite set of sampling points S = {si ∈ R
2} is called a (p, q)-

sampling of the boundary B when the distance of every boundary point b ∈ B
to the nearest point in S is at most p, and the distance of every sampling point
s ∈ S to the nearest point in B is at most q. The elements of S are called edgels.
The sampling is said to be strict when all sampling points are exactly on the
boundary, i.e. q = 0.



Fig. 1. An r-stable plane partition does not change the homotopy type when dilated
with a disc of radius of at most r (light gray), while dilations with bigger radius (dark
gray) may connect different arcs at waists as marked by the circle.

The Hausdorff distance between the boundary and its sampling is dH(S,B) =
max(p, q). Obviously, q < p is required because S is finite, i.e. dH(S,B) = p. Non-
zero edgel shifts q > 0 can be caused by systematic or statistical measurement
errors.

Edgels may be determined in various ways. For example, we can still use
a fixed grid, but consider only those grid points which are near the boundary
according to the boundary’s grid intersection or supercover digitization (Fig. 4b).
When a 4-connected region label image is given, we can define edgels as the nodes
of the interpixel edge (crack edge). In this case, the edgels are a subset of the
original grid’s dual grid (Fig. 5). Often, it is possible to improve edge localization
by shifting grid-based edgels to a sub-pixel position that is supposedly closer
to the true boundary, as in Canny’s algorithm (Fig. 8a). Edgels can also be
defined by means of an edge-template matching procedure that provides sub-
pixel locations in the first place, or be derived from a sub-pixel accurate edge
tracing algorithm [10] (Fig. 8b).

For our discussion, the method used to compute edgels only matters in so far
as it determines the accuracy of the sampling, i.e. the values of p and q. Once
computed, we consider edgels as isolated points that somehow define the digital
boundary. This digital boundary does not need to be everywhere thin in the first
step, but may include also some triangles instead of only edges. The idea o allow
thick boundary representations is a major difference to previous edgel linking
methods. It follows from the observation, that in reality the exact boundary
can not be localized with arbitrary precision due to the erroneous digitization
process. This also motivates the definition of r-stable plane partitions, where a
thick representation of the boundary (i.e. a dilation with a disc) has the same
homotopy type as the originally thin boundary. Such a thick boundary describes
the area which includes the distorted reconstructed boundary. To make the pro-
cess of boundary reconstruction by edgel linking more precise, we first need the
Delaunay triangulation of a point set:

Definition 4. The Delaunay triangulation D of a set of points S is the set of
all triangles formed by triples t ⊂ S such that the open circumcircle of every



triangle does not contain any point of S. If the points are in general position,
the Delaunay triangles, their edges and corners (also denoted as 2-, 1- and 0-
cells in this context) form a uniquely defined, connected simplicial complex. The
union of all cells |D| =

⋃

c∈D c is called the polytope of D.

In order to approximate the boundary of the partition, we want to remove those
edges and triangles from the Delaunay triangulation that are not related to the
boundary. A useful subset is defined by the α-complex introduced in [6]:

Definition 5. The α-complex Dα of a set of points S is defined as the sub-
complex of the Delaunay triangulation D of S which contains all cells c such
that

– the radius of the smallest open circumcircle of c is smaller than α, and this
circle contains no point of S, or

– an incident cell c′ with higher dimension is in Dα.

The polytope |Dα| is called α-shape. Since cells are removed from the Delaunay
triangulation, the α-complex has holes which hopefully correspond to the regions
of the original plane partition we are analyzing. In order to determine when this
is the case, the following theorem is of fundamental importance (the proof can
be found in [7]):

Theorem 1 (Edelsbrunner). The union of closed discs of radius α centered
at the points si ∈ S covers the polytope |Dα|, and the two sets are homotopy
equivalent.

Consequently, the polytope |Dα| is homotopy equivalent to the original plane
partition if and only if the dilation of the edgels with α-discs is homotopy equiv-
alent to the boundary of the partition. This requirement is indeed fulfilled in
certain situations, as the following theorem shows:

Theorem 2 (Bernardini & Bajaj). Suppose the plane partition is r-regular,
and S is a strict sampling of its boundary B such that p ≤ r, q = 0. Then the
polytope |Dα| is homotopy equivalent and even homeomorphic to the boundary
B for all p < α < r.

This theorem is proved in [2]. Under these particular conditions, Dα does not
contain any triangles – it only consists of edges and points and thus defines
a plane partition in itself. According to the theorem, this plane partition is
topologically equivalent to the original partition whose boundary was sampled by
S. In other words, the α-complex completely defines the correct linking of edgels
into edge chains. Unfortunately, this no longer applies when the original partition
is not r-regular and/or the edgels are not exactly on the original boundary. Fig. 3
shows an example where the r-dilation of the boundary is homotopy equivalent
to the boundary (i.e. the partition is r-stable), but the dilation of the edgels is
not. The rest of the paper is devoted to the question what can be said under
these more general conditions.
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Fig. 2. Any circumcircle around p4 and p5 contains p1, p2, and p3 (see text).

3 Segmentation with Alpha-Shapes

Since holes of the α-complex do not necessarily correspond to regions of the
original plane partition, we must characterize these holes in more detail. This is
facilitated by the following definition:

Definition 6. Consider the Delaunay triangulation D of a point set S and the
complement DC

α = R
2 \ |Dα| of the corresponding α-polytope with α > 0. A

connected component of DC
α is called an α-hole of |Dα|. When the radius of the

circumcircle of the largest Delaunay triangle in an α-hole’s closure is at least
β ≥ α, we speak of an (α, β)-hole.

For simplicity, we also use the term “hole” for the component which contains the
infinite region. It is an (α, β)-hole for arbitrary large β. It follows from theorem
1 that there is a 1-to-1 relation between α-holes and the holes in the union
of α-discs around the edgels. The following lemma establishes that a similar
relationship exists for (α, β)-holes:

Lemma 1. An α-hole h is an (α, β)-hole if and only if it contains a point v
whose distance from the nearest edgel is at least β.

Proof. I (dH(v ∈ h, S) ≥ β ⇒ h is an (α, β)-hole): when v is in the infinite re-
gion, the claim follows immediately. Otherwise, v is contained in some Delaunay
triangle. By assumption, the corners of this triangle must have distance ≥ β
from v. Therefore, the radius of the triangle’s circumcircle must be at least β,
and the claim follows.

II (h is an (α, β)-hole ⇒ ∃ v ∈ h with dH(v, S) ≥ β): by assumption, the closure
of h contains a Delaunay triangle t with circumradius of at least β. Consider the
center v of its circumcircle. If it is within the triangle t, it is also in h and the
claim follows. Otherwise, it is at least in some (α, β)-hole, and we must prove
that t is in the same hole. Suppose to the contrary that v and t are in different
α-holes. Then there exists a Delaunay triangle t′ or a single edge e between t and
v whose smallest circumcircle is smaller than α. The corners of t′ or e cannot
be inside the circumcircle of t because otherwise t would not be a Delaunay
triangle. Neither t′ nor e can contain v because their circumcircle radius would
then be at least β. Now consider Fig. 2. It shows triangle t with corners p1,
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Fig. 3. It may happen that the α-dilation (a) of the boundary of an α-stable plane
partition is not homotopy equivalent to the union (b) of the α-discs centered at the
edgels. Thus the α-shape (c), which is always homotopy equivalent to the union of discs
(b), may contain unwanted holes. These holes consist of Delaunay triangles of radius
greater than α, thus there exists an α-disc centered in the hole which does not cover
any edgel, as shown in (c).

p2, p3 and its circumcircle (gray) with center v. The points p4 and p5 are the
end points of e or of one side of t′. Their distance |p4p5| must be greater than
|p1p3|. Consequently, any circumcircle with radius ≤ α (dashed) around p4 and
p5 contains t, contrary to the condition that it must not contain any other edgel.
(In case of t′, this condition follows from the fact that t′ is a Delaunay triangle.
In case of e, it stems from the definition of the α-complex.) The claim follows
from the contradiction.

The reason for defining (α, β)-holes is that even for optimally chosen α, the
α-complex does not necessarily reconstruct the homotopy type of the original
boundary, since it may contain too many holes, as can be seen in Fig. 3. We solve
this problem by introducing a second parameter β for the size of such holes, i.e.
we use the notion of (α, β)-holes to “repair” α-complexes that contain too many
holes:

Definition 7. An (α, β)-boundary reconstruction from a set of edgels S is de-
fined as the union of the polytope |Dα| with all α-holes of Dα that are not (α, β)-
holes.

In other words, surplus holes are simply “painted over”, and (α, β)-boundary
reconstruction essentially amounts to edgel linking by hystheresis thresholding
on the triangle size of a Delaunay triangulation:

1. Compute the Delaunay triangulation D of the edgels S.
2. Mark all triangles in D (including their edges) with a circumradius < α.
3. Additionally mark Delaunay edges whose circumcircle contains no edgel

and has a radius smaller than α.
4. Find connected components of unmarked triangles and edges.
5. For each component from step 4 which does not contain any triangle with a

circumradius of at least β, mark all its triangles and edges.

The following theorem shows that exactly the desired holes survive when α and β
are properly chosen. This theorem can be interpreted as a new sampling theorem
for region boundaries.



Theorem 3 (Boundary sampling theorem). Let P be an r-stable plane par-
tition, and S a (p, q)-sampling of P’s boundary B. Then the (α, β)-boundary
reconstruction R defined by S is homotopy equivalent to B, and the (α, β)-holes
of R are topologically equivalent to the regions ri of P, provided the following
conditions are met:

1. p < α ≤ r − q
2. β = α + p + q
3. every region ri contains an open γ-disc with γ ≥ β + q > 2(p + q).

Proof. Let U be the union of open α-discs centered at the points of S. Further-
more, let B⊕ = B ⊕ Bo

α+q be the dilation of B with an open α + q-disc, and

r⊖i = ri ⊖ Bα+q the erosion of region ri ∈ P with a closed (α + q)-disc.

– According to the definition of a (p, q)-sampling, the dilation of B with a
closed q-disc covers S. Consequently, B⊕ covers U . Therefore, U cannot
have fewer connected components than B⊕. B⊕ has as many components as
B due to r-stability of the partition P. Conversely, since α > p, every open
α-disc around a point of S intersects B, and the union U of these discs covers
the entire boundary B. It follows that U cannot have more components than
B. The number of components of B and U is thus equal. Due to homotopy
equivalence of U and |Dα| (theorem 1), this also holds for the components
of |Dα|.

– Since P is r-stable with r ≥ α + q, each r⊖i is a connected set with the same
topology as ri. The intersection r⊖i ∩ B⊕ is empty, and r⊖i cannot intersect
U ⊂ B⊕ and |Dα| ⊂ U . Hence, r⊖i is completely contained in a single α-hole
of |Dα|.

– Due to condition 3, ri contains a point whose distance from B is at least
γ = β + q. Its distance from S is therefore at least γ − q = β. Due to lemma
1, the α-hole which contains r⊖i is therefore also an (α, β)-hole.

– Since B⊕ covers U and U covers B, no (α, β)-hole can intersect both r⊖i
and r⊖j (i 6= j). It follows from this and the previous observation, that every
region ri can be mapped to exactly one (α, β)-hole which will be denoted hi.

– An α-hole that does not intersect any region r⊖i must be completely con-
tained within B⊕. Every point v ∈ B⊕ has a distance d < α + q to the
nearest point of B. In turn, every point in B has a distance of at most p to
the nearest point in S. Hence, the distance from v to the nearest point of
S is d′ < α + p + q = β. According to lemma 1, this means that an α-hole
contained in B⊕ cannot contain a triangle with circumradius β and cannot
be an (α, β)-hole.

– The previous observation has two consequences: (i) All holes remaining in
R intersect a region r⊖i . Therefore, the correspondence between ri and hi

is 1-to-1, and B and |R| enclose the same number of regions. (ii) All dif-
ferences between R and Dα (i.e. all Delaunay cells re-inserted into R) are
confined within B⊕. This implies that |R| cannot have fewer components
than B⊕ and B. Since all re-inserted cells are incident to Dα, |R| cannot
have more components than |Dα|, which has as many components as B (see
first observation). Hence, B and |R| have the same number of components.



(a) (b)

Fig. 4. (a) Where the boundary intersects the dual grid, the nearest sampling points
form the grid intersection digitization. (b) The supercover digitization contains all sam-
pling points whose pixel facets intersect the arc.

– Consider the components of the complement (r⊖i )C and recall that r⊖i is a
subset of both ri and hi for any i. Since B and |R| have the same number
of components, it is impossible for hC

i to contain a cell that connects two
components of (r⊖i )C . This means that the sets rC

i and hC
i have the same

number of components. This finally proves the topological equivalence of ri

and hi, and implies homotopy equivalence of B and |R|. ⊓⊔

If there exists no r such that all conditions of theorem 3 are fulfilled for a
given plane partition (or if the chosen α is too big), it cannot be guaranteed that
the regions of the (α, β)-boundary reconstruction have the same topology as the
original ones. E.g. if a region is too small it may happen that it is lost in the
reconstruction. If a region has an s-waist for s ≤ 2α, i.e. if the s-dilation of the
boundary cuts the region into two or more components, it may happen that the
region is also split into two or more parts in the (α, β)-boundary reconstruction.
In case of very small waists, i.e. when s+2p+2q ≤ α, it is even guaranteed that
the two waist sides are connected by at least one line segment in the reconstruc-
tion (and if the different parts of the original region are big enough, every part
occurs in the reconstruction as a separate region). Thus, we can still apply our
sampling theorem when a plane partition has some waists: we simply construct
a new plane partition where the different sides of a waist are connected by a
new arc. When the new partition fulfills the requirements, the modified topol-
ogy is preserved, and the difference between the modified reconstruction and the
original plane partition is well defined. The example shown in the middle row of
Fig. 13 illustrates this fact.

4 Application to Popular Sampling and Segmentation

Schemes

The parameters p and q in theorem 3 are assumed given. To make their meaning
and consequences more intuitive, we compute or estimate these numbers for
common sampling and segmentation schemes. Let’s first look at grid intersection
digitization:

Definition 8. Consider a plane partition P with boundary B and a square grid.
Compute all intersection points of B with the grid lines (i.e. with the lines con-
necting 4-adjacent sampling points) and round their coordinates to the nearest
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Fig. 5. The interpixel boundary (dashed) can be extracted from the subset digitization
(a). It includes both the midcrack digitization (b) and the endcrack digitization (c).

sampling point. The set of edgels thus defined is called grid intersection digitiza-
tion of B, see Fig. 4a.

For simplicity, let the grid size (i.e. the smallest distance from one sampling point
to another) be unity. When each component of B crosses at least one grid line,
the distance p of any point of B to the nearest selected grid point is less than√

2, and the distance q of any grid intersection to its rounded coordinate cannot
exceed 1/2. Inserting this into the conditions of theorem 3, we get α ≥

√
2,

r ≥
√

2+ 1
2 , β ≥ 2

√
2+ 1

2 ≈ 3.3, and γ ≥ 2
√

2+1 ≈ 3.8. However, the worst case
configurations giving rise to the values of β and γ in the theorem cannot actually
occur in a square grid because Delaunay edges between grid points cannot have
arbitrary length. It can be shown that the largest circumradius in an undesirable
α-hole is below

√
34 ≈ 2.9, so that γ ≈ 3.4 (circle area 37 pixels) is sufficient.

Generally the grid intersection digitization of a connected curve is an 8-
connected digital curve. It is identical to Bresenham’s digital straight line in
case of a straight arc. Moreover the grid intersection digitization is a subset
of the supercover digitization on a square grid, which produces a 4-connected
digital curve for any connected curve:

Definition 9. Let P be a plane partition with boundary B and G a finite set of
sampling points such that the Voronoi cells of G have a radius of at most g. The
supercover digitization of B is the set of all sampling points whose Voronoi cell
intersects B, see Fig. 4b.

The constraint on the size of the Voronoi cells implies that p = g and q < g.
Hence, α > g, r > 2g, β > 3g and γ > 4g are required. For example, in a unit
square grid we have q < p =

√
2/2 and γ > 2

√
2 ≈ 2.8. Thus, the supercover

digitization imposes weaker constraints on the original plane partition P than
the grid-intersection digitization. This is mainly due to the denser sampling of
the boundary (smaller spacing of the edgels) in the former. As stated in [14], the
supercover digitization is a Hausdorff discretization, i.e. a set of sampling points
which minimizes the Hausdorff distance to the boundary B. Since this Hausdorff
distance is equal to max(p, q), the given bounds for α, β and γ are sufficient for
all Hausdorff discretizations.

Another interesting question is what can be said about region based digiti-
zation methods, in particular the subset digitization:

Definition 10. Let P be a plane partition with regions R = {ri} and G a fi-
nite set of sampling points such that the Voronoi cells (i.e. the pixels) of G have



a radius of at most g. The subset digitization r̂i of region ri is the union of
all Voronoi cells whose sampling point is in ri, see Fig. 5a. The union of the
boundaries of all r̂i is called the interpixel boundary. A boundary digitization
scheme where all edgels are on the interpixel boundary B is an interpixel dig-
itization. Two examples are the the midcrack digitization (Fig. 5b) where the
center points of all pixel edges inside the interpixel boundary B are chosen as
edgels, and the endcrack digitization (Fig. 5c) where all pixel corner points lying
on the interpixel boundary B are used.

Thus, boundary-based digitizations like endcrack and midcrack digitization can
be derived from the region-based subset digitization. While the maximal distance
q of any edgel to the nearest boundary point cannot exceed g, the distance p
from any boundary point to the nearest edgel can be arbitrary large, as the
following considerations illustrate:

An r-stable, but non-binary plane partition is never r-regular. Con-
sequently, r̂i is generally not topologically equivalent to the closure of
ri and may even be disconnected. The distance of the components of r̂i

may approach the diameter of ri when ri has a long narrow spike.

Obviously, this is not a useful practical bound for the value of p. We need a
restriction that is stronger than r-stability, but weaker than r-regularity and
which prevents these undesirable spikes:

Definition 11. Let P be a plane partition with boundary B. We say two points
x1, x2 ∈ B delimit a (θ, d)-spike, if the distance from x1 to x2 is at most d and
if every path on B from x1 to x2 contains at least one point with ∠x1yx2 < θ.
We say that P has no (θ, d)-spikes if for any pair of boundary points x1, x2 ∈ B
with distance of at most d, there exists a path Y ⊂ B between x1 and x2 such
that ∠x1yx2 ≥ θ for all points y ∈ Y .

Intuitively, two points delimit a (θ, d)-spike, if the shortest boundary path
between them does not differ too much from a straight line, i.e. it lies inside the
shaded region in Fig. 6. But this intuitive description cannot be used for the
definition, since we want to apply it to fractal arcs as well. A fractal arc has
infinite length, so the notion of shortest path is not applicable, but the arc may
nevertheless be free of θ-spikes (see below).

It can be shown that r-regular partitions have no (θ, d)-spikes for all d ≤ r

and θ = 2arctan
(

d
2r−

√
4r2−d2

)

(e.g. for θ = 90◦, 60◦ we get d = r and d =
√

3r

respectively). By sampling the boundary of an r-regular partition dense enough,
one can enforce the angles ∠x1yx2 to be arbitrarily flat. In general, absence of
(θ, d)-spikes does not imply r-stability, so we will require both. This property
does not only restrict the maximal angle of the original contour. It also restricts
the angle of any pair of adjacent line segments of the boundary reconstruction
if the edgels on the boundary exceed a certain density. Fig. 6 shows that the
distance from any point y on the path Y to the nearest point of x1 and x2 is
at most d

2 sin θ
2

. Although this restricts the angles of the reconstruction only for
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Fig. 6. Any point which encloses an angle of at most θ with x1 and x2 must lie inside
the shaded region. The shown y is the one with the maximal distance to the nearer
one of x1 and x2. Thus there is a path from x1 to x2 inside the shaded region and each
of its points has a distance of at most d

2 sin
θ
2

.

noise-free sampling points, i.e. q = 0, it can be used for computing an upper
bound for p even for digitizations with noise:

Theorem 4. Let G be a square grid with sample distance h (pixel radius g =
h√
2
). Further, let P be a plane partition such that every region ri ∈ P contains a

closed g-disc and the boundary B has no (θ, d)-spikes. Then the endcrack digiti-
zation of B is a (p, q)-boundary sampling with q = h√

2
and p = q+

(

h
2 + q

)

/ sin θ
2 ,

provided that h ≤ d
1+

√
2
. Likewise, the midcrack digitization is a (p, q)-boundary

sampling with q = h
2 and p = q +

(

h
2 + q

)

/ sin θ
2 , provided that h ≤ d

2 .

Proof. First, we prove the bounds on q. Let x, y be two 4-adjacent square grid
points. Their common pixel edge is in the interpixel boundary if and only if x and
y lie in different regions ri and rj , i.e. the grid line between x and y intersects
the boundary B in at least one point v. The endcrack edgels are exactly the
end points of these pixel edges, and their distance to v is at most h√

2
. It follows

that q = h√
2

for the endcrack digitization. The midcrack edgels are the center

points between x and y, so their maximum distance to v is h
2 . Hence, q = h

2 for
the midcrack digitization. The maximum distance between neighboring edgels
on the interpixel boundary is h in both cases.

Now, we prove the bound on p given q. By definition B =
⋃

∂ri, where ∂ri

is the boundary of region ri. Since every region contains a closed disc of radius
g = h√

2
, and every such disc contains at least one grid point, every region ri

contains a grid point, i.e. r̂i is not empty, and there exist at least four edgels
near ∂ri. Due to the nonexistence of (θ, d)-spikes, any two components (∂ri)j

and (∂ri)l of the boundary ∂ri must have a distance of more than d ≥ 4q. So,
for every component there exists a set of edgels which are closer to (∂ri)j than
to any other component. Obviously every component (∂ri)j is a closed curve.
Thus by mapping every edgel to the nearest point of B, one gets a cyclic list
of points [bk](ij) for every component (∂ri)j , and each point bk has a distance
of at most h + 2q to its successor bk+1 in the list. For endcrack edgels, we have
h + 2q = (1 +

√
2)h ≤ d, and for midcrack edgels h + 2q = 2h ≤ d. Thus, the

boundary part between bk and bk+1 includes no point with an angle smaller



(a) (b) (c)

Fig. 7. (a) Koch Snowflake; (b) subset digitization of (a) with midcrack edgels marked
(note the topology violations); (c) (α, β)-boundary reconstruction from midcrack
edgels. Areas where the edgels do not unambigously determine the boundary shape
pop out by remaining thick.

(a) (b)

Fig. 8. Subpixel-accurate edgels from Canny’s algorithm (a) and the subpixel water-
shed algorithm (b). Note the lower density and higher displacement of the former.

than θ. As shown in Fig. 6, this implies that the distance from any boundary
point between bk and bk+1 to the nearer one of these two points is at most
(

h
2 + q

)

/ sin θ
2 . Thus, the maximum distance to the nearest of the two edgels

which are mapped onto bk and bk+1 is p = q +
(

h
2 + q

)

/ sin θ
2 . ⊓⊔

Thus for example, when h = 1 and the plane partition has no (60◦, d)-spikes
with d > 2.4, we get p ≈ 1.31, q ≈ 0.7 for endcrack and p = 1, q = 0.5 for
midcrack digitization. It follows that midcrack digitization should be favoured
over endcrack digitization.

The nonexistence of shape spikes allows us to topologically correctly digitize
even objects having a fractal boundary like the Koch Snowflake (see Fig. 7):
let K be the object bounded by the Koch Snowflake based on a triangle of
sidelength 1. Then it can be shown that K is r-stable for all r < 1√

3
and it has

no (60◦, d)-spikes for d < 1√
3

and it contains a γ-disc for any γ ≤ 1√
3
. Thus the

(α, β)-boundary reconstruction based on the midcrack digitization with a square
grid of grid size h is correct for all h < 1√

27
≈ 0.192.

Many segmentation algorithms (e.g. zero-crossing-based edge detectors and
the watershed algorithm) compute image labelings similar to subset digitization,
which can be used to define endcrack and midcrack edgels. However, their error
bounds differ from the ideal ones obtained above. To quantify these differences,



we model the transformation from analog to digital images in real cameras:

fij = (PSF ⋆ f(x, y))ij + nij (1)

where f(x, y) is the ideal geometric image, PSF is the point spread function,
subscripts denote sampling, and nij is additive Gaussian noise (quantization
is neglected). The PSF (which shall be band-limited) suppresses high spatial
frequencies and the resulting smooth transitions between regions allow for sub-
pixel accurate edge localization. On the other hand, systematic localization errors
are introduced because blurring distorts edges. Noise causes additional statistical
errors in p and q. We estimate these errors for a number of exemplary edge
detectors: we consider two variants of the Haralick detector as representatives
of zero-crossing-based algorithms, and three variants of Canny’s algorithm to
exemplify ridge-based edge detection. Haralick [8] defines edgels at the zero-
crossing of the second derivative along the gradient direction:

b = f2
xfxx + 2fxfyfxy + f2

y fyy
!
= 0 (2)

provided that the third derivative along the same direction is negative (indicating
a local gradient maximum), and the gradient magnitude is above a threshold.
Crack edges between positive and negative pixels of b where the constraints are
fulfilled define a set of midcrack edgels. Their fixed accuracy can be improved
when a continuous function b̃ is computed by spline interpolation of b, and edgels
are located in b̃ by means of Newton iteration along the gradient direction. In
our implementation of this variant, edgels are placed roughly at a distance of
0.1 pixels along the edge, Fig. 9a, b.

In contrast, Canny’s algorithm [5] uses the gradient magnitude
√

f2
x + f2

y

and looks for relative maxima along the gradient direction. Better localization
(significantly smaller q) is achieved by either computing the maximum of an ap-
proximating parabola accross the edge, or by Newton iterations on a continously
interpolated version of the gradient image, Fig. 9c and d. We estimate p and q
on a large number of images created by numerical solution of the convolution
integral (1) at various angles and grid positions, Fig. 9. Derivatives are computed
by Gaussian filters at scale σE , and the PSF is also Gaussian with scale σPSF.
To avoid aliasing we use σE ≥ 1 and σPSF = 1 (cf. [18]).

First, consider noise-free straight edges. A radially symmetric PSF does not
distort straight edges and q should be close to zero (non-zero values reflect dis-
crepancies between the computational theory and its actual realization). Sub-
pixel methods achieve q . 0.05 pixels. With the exception of the subpixel Haral-
ick operator (which places edgels very densely), p roughly equals the pixel radius.
Row 1 in Table 1 lists the maximum errors we found.

The effect of image noise on straight edge localization was analysed by
Canny [5]. When the noise is Gaussian distributed with zero mean and stan-
dard deviation sN , the expected error (in pixels) is

E[ξ] =
sN

a

√
6

4

(

1 +
σ2

PSF

σ2
E

)3/2

(3)



(a) (b) (c) (d)

Fig. 9. Edgels and boundary reconstruction using α = 1.55, β = 2: (a) midcrack variant
and (b) subpixel variant of Haralicks algorithm. Note the lower density and higher
displacement of the former. (c) Parabola and (d) spline variant of Canny’s algorithm.
Red dots indicate the ground-truth corner locations.

where a is the height of the step, and a/sN is the signal-to-noise ratio (SNR).
When σPSF ≈ σE , we get E[ξ] ≈ 1.7 sN

a . For σE → ∞, the error approaches
0.6 sN

a (the common belief that the error increases with σE is only justified in
1D). In typical images a

sN
is between 5 and 100. The expected statistical error

is then below 0.2 pixels, and the maximum error does not exceed 3E[ξ] = 0.6
pixels with probability 0.997. Rows 2 and 3 of Table 1 confirm these predictions.

Smoothing of curved boundaries with the PSF results in biased edgel posi-
tions. The gradient magnitude of a disc with radius ρ and contrast a is [3]

g(r) = |a| ρ

σ2
e−

r2+ρ2

2σ2 I1

( rρ

σ2

)

(4)

where r is the distance from the center of the disc, I1 is the modified Bessel
function of order 1, and σ2 = σ2

PSF + σ2
e is the combined scale of the PSF and

edge operator. The bias depends on the curvature radius ρ and the scale σ. It is
directed towards the concave side of the curve when σ < 0.8ρ (which is true in
most practical situations). Row 4 of Table 1 compares theoretical predictions and
experimental estimates for ρ = 4. It can be seen that the best methods (using
spline interpolation and Newton iterations) are very close to the theoretical limit.

A bias toward the concave side of the contour is also observed at corners. Its
magnitude depends on σ and the corner angle ϕ and is maximal along the bisec-
tor of the corner. The gradient maximum along the bisector (i.e. the estimated
edge location) is the solution of the implicit equation [13]

1

2πσ2
e−

r2

2σ2 −
(

tan
(ϕ

2

))2 r

2

(

1 + erf

(

r√
2σ

))

= 0 (5)

where erf is the error function. The sharper the corner, the higher the bias.
E.g. for ϕ = 90◦, 45◦, 15◦ it is approximately 0.5σ, 1.2σ, and 2.2σ. Rows 5 and
6 in Table 1 show that actual errors are even higher than theory predicts.

The situation at junctions is even more complicated. The large number of
degrees of freedom (angles, intensities) does not allow the error to be described
in a compact way. The algorithms considered here are usually unable to close all
contours near a junction. The remaining gaps also cause p to attain quite large
values, as row 7 of Table 1 shows.



Table 1. Experimental estimates of the maximum errors p and q (pixels). Theoretical
predictions are given in brackets. Unless noted, there was no noise and σPSF = σE = 1.

Canny (pixel

coordinates)

Canny

(parabola)

Canny

(spline)

Haralick

(midcrack)

Haralick

(spline)

p q p q p q p q p q

straight line 0.79 0.70 0.71 0.05 0.75 0.02 0.70 0.47 0.19 0.46

[0.7] [0.0] [0.0] [0.5] [0.0]

straight line 1.0 0.82 0.81 0.47 0.92 0.57 0.90 0.93 0.63 0.85

SNR = 10 [0.52] [0.52] [0.52]

straight line 1.0 0.81 1.0 0.28 1.0 0.28 0.79 0.73 0.57 0.81

σE = 2, SNR = 10 [0.26] [0.26] [0.26]

disc, radius = 4 0.73 0.73 0.25 0.74 0.29

[0.2] [0.2]

corner, 90◦ 1.58 0.84 1.38 0.76 1.34 0.69 1.52 0.93 1.15 0.71

[0.71] [0.71] [0.71] [0.71] [0.71]

corner, 15◦ 4.03 1.3 3.99 0.92 3.96 0.94 3.39 1.33 3.96 1.3

[3.1] [3.1] [3.1] [3.1] [3.1]

junction, degree = 3 2.70 1.56 2.66 1.15 2.70 1.40 2.25 1.81 2.20 1.71

α = 0.1 α = 0.7 α = 1.2 α = 1.7

Fig. 10. Chinese character (white: contours extracted by levelcontour tracing [1]),
(α, β)-boundary reconstructions with increasing values of α (red : before thinning,
black : minimal boundary reconstruction)

Fig. 13 and Fig. 10 show results of α, β-reconstruction in real images. Re-
gion topology is correctly recovered when α and β are properly chosen. Since
edgels are considered as isolated points, our new algorithm also facilitates the
combination of edgels from different sources, cf. Fig. 11: The edgels computed by
Canny’s algorithm are not very accurate near corners and junctions, and this re-
quires large α and β causing the reconstruction to be thick in problematic areas
(gray). In a second step, a maximum likelihood junction position is computed
from the gradient magnitudes and directions at the edgels in a neighborhood of
each thick area, resulting in the red points. These points are simply added to
the set of edgels, and the reconstruction from the new set is much more accurate
than the original one.

Taking everything together, we arrive at the following approximate bounds:
suppose the original partition is r-stable and free of (60◦, 2r)-spikes (i.e. corners
enclose at least 60◦, curved arcs have at least curvature radius ρ = 2r/

√
3),

and the combined PSF and edge detector scale is at most σ = 0.8r. Moreover,
σ should not be smaller than 0.9 pixels in order to avoid aliasing [18], so the
pixel distance must be h ≈ r. Then q does not exceed 0.9σ + 0.3 ≈ 1.1 pixels
when the boundary contains corners or junctions and SNR = 10 (this is quite
visible noise), and q ≈ 0.2 pixels when the partition is (4-pixel)-regular and
SNR = 30. Note that these bounds are maximum errors, the average error is
much lower and approaches zero along straight edges. When the edgels are not



Fig. 11. Left: original image and ROI; center: (α, β)-boundary reconstruction from
subpixel Canny edgels (black and gray), thinned reconstruction (black only) and addi-
tional edgels to be added (red); right: modified reconstruction including new edgels.

(a) (b)

Fig. 12. Narrow spikes can lead to a boundary reconstruction where originally uncon-
nected regions (a) look like they had a common boundary edge (b).

represented with subpixel accuracy, a round-off error of h/
√

2 must be added,
and the average error cannot fall below 0.4 pixels (the standard deviation of a
uniform distribution in the unit square) even in case of straight edges.

5 Boundary Thinning and Neighborhood Relations

The sampling theorem presented above tells us how to reconstruct all regions of
a plane partition with correct topology and how to reconstruct the boundary of
the partition with correct homotopy type. But it does not say anything about the
preservation of neighborhood relations, i.e. whether the reconstructions of two
regions have a common boundary if the original regions did have one. First, it is
not straightforward to define neighborhood when the boundary representation
can be thick (i.e. may contain triangles). Second, two regions whose reconstruc-
tions are connected (i.e. have a common thin boundary), have not necessarily
been connected in the original partition, as can be seen in Fig. 12.

Many algorithms that build upon segmentation results cannot handle par-
tially thick boundary representations. We can recover a thin (i.e. locally 1-
dimensional) boundary by topology-preserving thinning, which works similar to



skeletonization in a pixel-based region representation. An edge in the (α, β)-
boundary reconstruction is called simple if its removal does not change the
topology of the reconstructed regions. Simple edges can be easily recognized:
they bound an (α, β)-hole on one side and a triangle in the boundary recon-
struction on the other. Thinning removes simple edges until any further removal
would change the topology (i.e. create an isolated sampling point or merge two
regions). The algorithm is as follows:

1. Find all simple edges of the given (α, β)-boundary reconstruction and put
them in a priority queue (the sorting is discussed below).

2. As long as the queue is not empty: get the topmost edge from the queue and
check whether it is still simple (it may have lost this property after removal
of other edges). If yes, remove it from the boundary reconstruction. Check
whether the other edges of the same triangle have now become simple and
put them in the queue if this is the case.

As far as region topology is concerned, the ordering of the edgels in the priority
queue is arbitrary. For example, we can measure the contrast (image gradient)
along each edge and remove weak edges first. A particularly interesting ordering
is defined by the length of the edges:

Definition 12. A (not necessarily unique) minimal boundary reconstruction is
obtained from an (α, β)-boundary reconstruction by means of topology-preserving
thinning where the longest edges are removed first.

The resulting boundaries are illustrated in Fig. 13. Since region topology is
preserved, the minimal boundary reconstruction is homotopy equivalent to the
boundary B of the original plane partition ∂P . The two boundaries do not in
general have the same topology, because the adjacency relations between regions
may differ (see below for details), and the reconstruction may contain “dangling”
edges, which end in the interior of a region. Since only the shortest edges survive,
dangling edges cannot reach very far into a region and don’t pose problems.

Since a minimal boundary reconstruction can be shown to be a shortest pos-
sible one with correct topology, the surviving edges connect edgels closest to
each other. Neihgboring edgels therefore align in an optimal way on the thinned
boundary. The length dmax of the longest surviving edge is a measure of the
density of the boundary sampling. The maximum distance p between a true
boundary point and the nearest edgel may be much larger than dmax/2 if the
displacement of neighboring edgels is highly correlated as is usually the case in
practice. For example, edgels along a circular arc are consistently biased toward
the concave side of the curve. When we set α′ = dmax/2+ ǫ < p (with arbitrarily
small ǫ), an (α′, β) reconstruction of the edgel set is still correct in the sense
of theorem 3: since a minimal reconstruction is a subset of the (α′, β) recon-
struction, no true regions can get merged. Since α′ < α, no region can get lost,
and since β remained unchanged, no additional holes can be created. In fact,
β′ = α′ + p + q < 2p + q would have been sufficient.

We found experimentally that undesirable holes (α-holes that are not (α, β)-
holes) are actually quite rare, and their largest triangles are hardly ever as large



as the maximal possible circumradius β allows. Therefore, an (α′, β′)-boundary
reconstruction with β′ even smaller than α′ + p + q often produces the cor-
rect region topology. We are currently investigating the conditions which permit
weaker bounds. This is important, because a smaller β leads to a correspond-
ingly reduced γ, i.e. the required size of the original regions is reduced, and more
difficult segmentation problems can be solved correctly.

Since a minimal boundary reconstruction does not necessarily reproduce the
original region adjacencies, it is interesting to ask whether some neighborhood
relations can nevertheless be recovered from a (p, q)-boundary sampling and the
associated (α, β)-boundary reconstruction. We showed in Fig. 12 that false ad-
jacencies can be caused by narrow spikes in the original boundaries. When these
boundaries are free of (θ, d)-spikes, thin parts of the boundary reconstruction
that exceed a certain length can never arise from unfortunate spike configura-
tions, but reflect the true adjacency of two original boundaries:

Theorem 5. Let P be an r-stable plane partition with regions ri and boundary
B having no (θ, d)-spikes. Further, let S be a (p, q)-sampling of B and R the
(α, β)-boundary reconstruction of S with regions hi, such that all requirements
of theorem 3 are fulfilled. Si = ∂hi ∩S denotes the set of edgels on the boundary
of hi. When d ≥ 2 (α + q) and p′ := d/

(

2 sin θ
2

)

+ q the following holds:

1. If the distance between the two nearest edgels of Si and Sj exceeds 2p′, the
corresponding original regions ri, rj are not adjacent, i.e. ∂ri ∩ ∂rj = ∅.

2. When there exists a point x with dH(x, Si) ≤ p′, dH(x, Sj) ≤ p′ and
dH(x, Sk) > 2p′ for all k 6= i, j, the original regions ri, rj are arc-adjacent.

3. If two regions ri, rj have a distance greater than 2 (p′ + q), the conditions of
item 1 are always fulfilled.

4. If two regions ri, rj have a common boundary point x such that dH(x, rk) >
3p′ for all k 6= i, j, the conditions of item 2 are always fulfilled, i.e. adjacency
of ri and rj can be detected in the boundary reconstruction.

Proof. (1) For any st ∈ Si let xt ∈ ∂ri be the nearest boundary point. Then for
any two st1 , st2 being connected by a line segment of ∂hi, the distance between
xt1 and xt2 is smaller than 2 (α + q). Since (θ, d)-spikes do not exist, the distance
of each point of ∂ri to the nearest xt cannot exceed d/

(

2 sin θ
2

)

and thus the
distance of ∂ri to ∂hi is bounded by p′. The same holds for hj . When the shortest
distance between Si and Sj is larger than 2p′, ∂ri and ∂rj cannot intersect.
(2) Both Si and Sj intersect the disc B0

p′(x). Since dH(x, Sk) > 2p′ for every

k 6= i, j, no part of ∂rk can intersect B0
p′(x). Thus ri and rj are the only regions

which intersect B0
p′(x), which is only possible when they have a common edge.

(3) Since the distance between ri and rj exceeds 2 (p′ + q), Si, Sj have to be
more than 2p′ away from each other.
(4) Due to the absence of (θ, d)-spikes, the distance dH(x, Sk), k 6= i, j must be
greater than 2p′. For the same reasons, dH(x, Si) ≤ p′ and dH(x, Sj) ≤ p′. ⊓⊔

If every junction of P has degree 3, the boundary sampling only needs to
be sufficiently dense (i.e. α has to be sufficiently small) in order to reconstruct



not only the topology of every region of a plane partition, but also the complete
neighborhood relations, i.e. the complete combinatorial map [4] encoding P’s
abstract topology, without any error.

6 Conclusions

To our knowledge, this paper proposes the first geometric sampling theorem that
explicitly considers measurement errors. Moreover, our new theorem applies to
a much wider class of shapes (r-stable partitions) than existing theorems (r-
regular partitions). The situation in real images is thus modeled much more
faithfully because shapes may now have corners and junctions, and standard
segmentation algorithms can be used. We carefully derive the theoretical prop-
erties of several well-known edge detectors in order to apply our new theorem
and demonstrate theoretically correct edgel linking. The resulting segmentations
are similar to what one gets from traditional heuristic edgel linking, but their
properties can now be formally proven thanks to their theoretical basis in Delau-
nay triangulation. The key to these advancements has been the shift of attention
from region-based digitization models to edge based ones: the assumption that
no sampling points are in the interior of any region (beyond the known error
bound) allows us to reliably recover region and boundary connectivity. Our ap-
proach (including boundary thinning) provides a novel way for computing a
combinatorial map representation [4] of the boundaries in real images.

We demonstrated that many known digitization and segmentation methods
can be analyzed and applied in the new framework by simply determining their
error bounds. We can predict whether a given image will be handled properly
by an algorithm with a certain error bound. When the error increases, the per-
formance degrades gracefully: first, the recovered boundary becomes thick when
the detailed curve shape or junction connectivity can no longer be unambigously
determined. Then, regions get split at too narrow waists, and finally too small
regions will be lost. When additional edgels are added within the thick part of
the (α, β)-boundary reconstruction, the accuracy parameters p and q will never
increase. This opens up new possibilities for algorithm combination. For exam-
ple, one could start with an edge detector, which produces thick boundaries near
corners and junctions. Additional edgels can then be computed by a corner de-
tector whose output is confined to these areas, so that it cannot produce false
positives within regions. In future research we will investigate how false positives
(large q) and false negatives (large p) can be recognized and removed.
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α = 4.5

β = 6.67

α = 1.56

β = 3.73

Fig. 13. Top row : generated image, reconstructions before (red and black) and after
(black only) boundary thinning. Second row : details (left: original with edgels). Note
the connectivity error in the center image where α is too big. Third and fourth rows:
real images (left), (α, β)-boundary reconstruction (center) and minimal reconstruction
after thinning (right).Edgels have been computed by Canny’s algorithm on a color
(third row) and intensity (fourth row) gradient.


