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Abstract. Existing theories on shape digitization impose strong con-
straints on feasible shapes and require error-free measurements. We use
Delaunay triangulation and α-shapes to prove that topologically correct
segmentations can be obtained under much more realistic conditions. Our
key assumption is that sampling points represent object boundaries with
a certain maximum error. Experiments on real and generated images
demonstrate the good performance and correctness of the new method.

1 Introduction

A fundamental question of image analysis is how closely a computed image
segmentation corresponds to the underlying real-world partitioning. Existing
geometric sampling theorems are limited to binary partitionings, where the plane
is split into (not necessarily connected) fore- and background components. In
this case, the topology of the partition is preserved under various discretization
schemes when the original regions are r-regular and the sampling grid has a
maximum pixel radius of r′ ≤ r [7,9]. By making slighlty stronger assumptions,
this property is preserved when the shapes are blurred by a disc or square of
radius p prior to discretization [6, 10] or when regions may have corners [11].

However, these theorems have two important limitations: they are not appli-
cable when there are more regions than just fore- and background, and they do
not make any predictions about the consequences of measurement errors. One
reason for these limitations is the assumption of a fixed sampling grid. We are
dropping this assumption in favour of adaptive sampling where sampling points
are placed roughly along the contour of the regions to be segmented.

Our treatment of adaptively placed sampling points is inspired by research on
laser range scanning. Here, a number of isolated sampling points is scattered over
the surface of the object of interest, and the task is to reconstruct the surface
from the set of points. A successful solution of this problem is the concept of
α-shapes [4, 5]. Under certain conditions, an α-shape is homeomorphic or at
least homotopy equivalent to the desired object surface. By applying this idea
to the problem of image segmentation, we are able to derive a new condition
on object shape that ensures homotopy equivalence of the digital segmentation
with the original analog plane partitioning. This means in particular that there
is a 1-to-1 mapping between the computed and the ground-truth regions. By
imposing slightly stronger requirements on region shape, these properties can
even be guaranteed when the segmentation is subject to measurement errors.



2 Preliminaries

We consider the task of reconstructing a partition of the Euclidean plane from a
sampled representation. The plane partition to be recovered is defined as follows:

Definition 1. A partition of the plane R
2 is defined by a finite set of points

P = {pi ∈ R
2} and a set of pairwise disjoint arcs A = {ai ⊂ R

2} such that
every arc is a mapping of the open interval (0, 1) into the plane, the start and
end points ai(0) and ai(1) are in P (but not in ai). The union of the points and
arcs is the boundary of the partition B = P ∪ A, and the regions R = {ri} are
the connected components (maximal connected sets) of the complement of B.

The partition is called binary when we can assign two labels (foreground and
background) to the regions such that every arc is in the closure of exactly one
foreground and one background region. A binary partition is called r-regular,
when at every boundary point there exist two osculating discs of radius r which
are entirely in the foreground and background respectively [9, 10]. This implies
that regions cannot have corners, and junctions of three or more regions are im-
possible. These restrictions are somewhat relaxed by the notion of r-halfregular
partitions, where an osculating r-disc must exist at least in the foreground or
the background, and the number of regions must not change under either mor-
phological opening or closing with a disc of radius ≤ r [11]. Corners are now
possible, but the partition is still binary and has no junctions. The two notions
of r-regularity and r-halfregularity have been central to all existing geometric
sampling theorems. In this paper, the class of feasible plane partitions is extended
as follows:

Definition 2. A plane partition is r-stable when its boundary can be dilated
with a closed disc of radius s without changing its homotopy type for any s ≤ r.

In other words, we can replace an infinitely thin boundary with a strip of width
2r such that the number and enclosure hierarchy of the resulting regions is pre-
served. In particular, “waists” are forbidden, whereas junctions are allowed, see
Fig. 1. This includes r-regular and r-halfregular partitions, but also allows non-
binary partitions and junctions and models real images much better. In particu-
lar, polygonal partitions (all arcs are straight lines) are always r-stable for some
sufficiently small r. Unfortunately, the traditional way of proving a geometric
sampling theorem (using a fixed grid at arbitrary position and angle, in connec-
tion with subset or supercover digitization) does not work for these partitions
because topological equivalence cannot be guaranteed in general. Therefore, we
consider another approach to digitization: we approximate the boundary of the
partition with a finite set of adaptively placed sampling points. The sampling
points are selected somehow “near” the boundary. We formalize this as follows:

Definition 3. A finite set of sampling points S = {si ∈ R
2} is called a (p, q)-

sampling of the boundary B when the distance of every point b ∈ B to the nearest
point in S is at most p, and the distance of every point s ∈ S to the nearest point
in B is at most q. The elements of S are called edgels. The sampling is said to
be strict when all edgels are exactly on the boundary, i.e. q = 0.



Fig. 1. The homotopy type of an r-stable plane partition
does not change when dilated with a disc of radius of at
most r (light gray), while dilations with bigger radius (dark
gray) may connect different arcs as marked by the circle.

The Hausdorff distance between the boundary and its sampling is dH(S,B) =
max(p, q). Obviously, q < p is required because S is finite. Non-zero edgel shifts
q > 0 can be caused by systematic or statistical measurement errors. Edgels
may be determined in various ways (section 4), but this only matters in so far
as it determines the accuracy of the sampling, i.e. the values of p and q. Once
computed, we consider edgels as isolated points that somehow define the digital
boundary and connect them by means of the Delaunay triangulation:

Definition 4. The Delaunay triangulation D of a set of points S is the set of
all triangles formed by triples t ⊂ S such that the open circumcircle of every
triangle does not contain any point of S. If the points are in general position,
the Delaunay triangles, their edges and corners (also denoted as 2-, 1- and 0-
cells in this context) form a uniquely defined, connected simplicial complex. The
union of all cells |D| =

⋃

c∈D c is called the polytope of D.

In order to approximate the boundary of the partition, we want to remove those
edges and triangles from the Delaunay triangulation that are not related to the
boundary. A useful subset is defined by the α-complex introduced in [4]:

Definition 5. The α-complex Dα of a set of points S is the subcomplex of the
Delaunay triangulation D of S which contains all cells c such that (a) the radius
of the smallest open circumcircle of c is smaller than α, and this circle contains
no point of S, or (b) an incident cell c′ with higher dimension is in Dα.

The polytope |Dα| is called α-shape. Since cells are removed from the Delaunay
triangulation, the α-complex has holes which hopefully correspond to the re-
gions we are trying to segment. In order to determine when this is the case, the
following theorem is of fundamental importance (the proof can be found in [5]):

Theorem 1 (Edelsbrunner). The union of closed α-discs with centers at the
points si ∈ S covers |Dα|, and the two sets are homotopy equivalent.

Consequently, the α-shape |Dα| is homotopy equivalent to the original plane
partition if and only if the dilation of the edgels with α-discs is homotopy equiv-
alent to the boundary of the partition. This requirement is indeed fulfilled in
certain situations: In [1] it is proved that |Dα| is even homeomorphic to B if B
is the boundary of an r-regular set with p < α < r and q = 0. Unfortunately,
this no longer applies when the original partition is not r-regular and/or the
edgels are not exactly on the original boundary. Fig. 2 shows an example where
the r-dilation of the boundary is homotopy equivalent to the boundary (i.e. the
partition is r-stable), but the dilation of the edgels is not. The rest of the paper
is devoted to the question what can be said under these more general conditions.



(a) (b) (c)

Fig. 2. The α-dilation (a) of the boundary of an α-stable plane partition may not be
homotopy equivalent to the union (b) of the α-discs centered at the edgels. Thus the
α-shape (c), which is always homotopy equivalent to the union of discs (b), may contain
unwanted holes consisting of Delaunay triangles of radius greater than α. Thus there
exists an α-disc centered in the hole which does not cover any edgel, as shown in (c).

3 Segmentation with Alpha-Shapes

Since holes of the α-complex do not necessarily correspond to regions of the
original plane partition, we must characterize these holes in more detail:

Definition 6. Consider the Delaunay triangulation D of a point set S and the
complement DC

α = R
2 \ |Dα| of the corresponding α-polytope with α > 0. A

connected component of DC
α is called an α-hole of |Dα|. When the radius of the

circumcircle of the largest Delaunay triangle in an α-hole’s closure is at least
β ≥ α, we speak of an (α, β)-hole.

For simplicity, we also use the term “hole” for the component which contains the
infinite region. It is an (α, β)-hole for arbitrary large β. It follows from theorem
1 that there is a 1-to-1 relation between α-holes and the holes in the union of
α-discs around the edgels. A similar relationship exists for (α, β)-holes:

Lemma 1. An α-hole h is an (α, β)-hole if and only if it contains a point v
whose distance from the nearest edgel is at least β.

Proof. I (dH(v ∈ h, S) ≥ β ⇒ h is an (α, β)-hole): when v is in the infinite re-
gion, the claim follows immediately. Otherwise, v is contained in some Delaunay
triangle. By assumption, the corners of this triangle must have distance ≥ β from
v. Hence, the triangle’s circumradius must be at least β and the claim follows.

II (h is an (α, β)-hole ⇒ ∃ v ∈ h with dH(v, S) ≥ β): by

p1

p2

p4

v

p5

p3

assumption, the closure of h contains a Delaunay triangle
t with circumradius of at least β. Consider the center v of
its circumcircle. If it is within the triangle t, it is also in
h and the claim follows. Otherwise, it is at least in some
(α, β)-hole, and we must prove that t is in the same hole.
Suppose to the contrary that v and t are in different α-
holes. Then there exists a Delaunay triangle t′ or a single

edge e between t and v whose smallest circumcircle is smaller than α. The corners
of t′ or e cannot be inside t’s circumcircle since it is a Delaunay triangle. Neither
t′ nor e can contain v because their circumcircle radius would then be at least β.



Now consider the illustrated triangle p1, p2, p3 and its circumcircle (gray) with
center v. The points p4 and p5 are the end points of e or of one side of t′. Their
distance |p4p5| must be greater than |p1p3|. Consequently, any circumcircle with
radius ≤ α (dashed) around p4 and p5 contains t, contrary to the condition
(imposed by the definition of an α-complex) that it must not contain any other
edgel. The claim follows from the contradiction. ⊓⊔

Even for optimally chosen α, the α-complex does not necessarily reconstruct the
homotopy type of the original boundary, since it may contain too many holes
(see Fig. 2). This can be “repaired” by identifying (α, β)-holes:

Definition 7. An (α, β)-boundary reconstruction from an edgel set S is defined
as the union of the polytope |Dα| with all α-holes of Dα that are not (α, β)-holes.

In other words, surplus holes are simply “painted over”, and (α, β)-boundary
reconstruction essentially amounts to hystheresis thresholding on the triangle
size of a Delaunay triangulation. The following theorem shows that exactly the
desired holes survive when α and β are properly chosen.

Theorem 2 (Boundary Sampling Theorem). Let P be an r-stable plane
partition, and S a (p, q)-sampling of P’s boundary B. Then the (α, β)-boundary
reconstruction R defined by S is homotopy equivalent to B, and the (α, β)-holes
of R are topologically equivalent to the regions ri of P, if

1. p < α ≤ r − q
2. β = α + p + q
3. every region ri contains an open γ-disc with γ ≥ β + q > 2(p + q).

Proof. Let U be the union of open α-discs centered at the points of S. Further-
more, let B⊕ = B ⊕ Bo

α+q be the dilation of B with an open α + q-disc, and

r⊖i = ri ⊖ Bα+q the erosion of region ri ∈ P with a closed (α + q)-disc.

– According to the definition of a (p, q)-sampling, the dilation of B with a
closed q-disc covers S. Consequently, B⊕ covers U . Therefore, U cannot
have fewer connected components than B⊕. B⊕ has as many components as
B due to r-stability of P. Conversely, since α > p, every open α-disc around
a point of S intersects B, and the union U of these discs covers B. It follows
that U cannot have more components than B. The number of components of
B and U is thus equal. Due to homotopy equivalence of U and |Dα| (theorem
1), this also holds for the components of |Dα|.

– Since P is r-stable with r ≥ α + q, each r⊖i is a connected set with the same
topology as ri. The intersection r⊖i ∩ B⊕ is empty, and r⊖i cannot intersect
|Dα|⊂U ⊂B⊕. Hence, r⊖i is completely contained in a single α-hole of |Dα|.

– Due to condition 3, ri contains a point whose distance from B is at least
γ = β + q. Its distance from S is therefore at least γ − q = β. Due to lemma
1, the α-hole which contains r⊖i is therefore also an (α, β)-hole.

– Since B⊕ covers U and U covers B, no (α, β)-hole can intersect both r⊖i
and r⊖j (i 6= j). It follows from this and the previous observation, that every
region ri can be mapped to exactly one (α, β)-hole which will be denoted hi.



– An α-hole that does not intersect any region r⊖i must be completely con-
tained within B⊕. Every point v ∈ B⊕ has a distance d < α + q to the
nearest point of B. In turn, every point in B has a distance of at most p to
the nearest point in S. Hence, the distance from v to the nearest point of
S is d′ < α + p + q = β. According to lemma 1, this means that an α-hole
contained in B⊕ cannot contain a triangle with circumradius β and cannot
be an (α, β)-hole.

– The previous observation has two consequences: (i) All holes remaining in
R intersect a region r⊖i . Therefore, the correspondence between ri and hi

is 1-to-1, and B and |R| enclose the same number of regions. (ii) All dif-
ferences between R and Dα (i.e. all Delaunay cells re-inserted into R) are
confined within B⊕. This implies that |R| cannot have fewer components
than B⊕ and B. Since all re-inserted cells are incident to Dα, |R| cannot
have more components than |Dα|, which has as many components as B (see
first observation). Hence, B and |R| have the same number of components.

– Consider the components of the complement (r⊖i )C and recall that r⊖i is a
subset of both ri and hi for any i. Since B and |R| have the same number
of components, it is impossible for hC

i to contain a cell that connects two
components of (r⊖i )C . This means that the sets rC

i and hC
i have the same

number of components. This finally proves the topological equivalence of ri

and hi, and implies homotopy equivalence of B and |R|. ⊓⊔
If there exists no r fulfilling all conditions of theorem 2 for a given plane partition
(or if the chosen α is too big), topology preservation is no longer guaranteed. Very
small regions may get lost in the reconstruction. A region that is split into two or
more parts by an s-erosion (i.e. has an s-waist) with s < α may also be split in the
reconstruction. In case of very small waists, i.e. when s+2p+2q ≤ α, this is even
guaranteed to happen. Thus, we can still apply our sampling theorem: we modify
the original plane partition by connecting the different sides of small waists
by a new arc. When the new partition fulfills our requirements, the modified
topology is preserved, and the difference between the modified reconstruction
and the original plane partition is well defined, see the second column of Fig. 3.
When a thick boundary representation is undesirable, we apply topology-preserv-
ing thinning. An edge in the (α, β)-boundary reconstruction is called simple if
its removal does not change the topology of the reconstructed regions. Simple
edges always bound an (α, β)-hole on one side and a triangle in the boundary
reconstruction on the other. Thinning removes simple edges until none are left:

1. Find all simple edges of the given (α, β)-boundary reconstruction and put
them in a priority queue (the sorting is discussed below).

2. As long as the queue is not empty: Remove the topmost edge in the queue
from the boundary reconstruction when it is still simple (it may have lost
this property after removal of other edges). Put the edges in the triangle of
the removed edge in the queue if they have now become simple.

As far as region topology is concerned, the ordering of the edgels in the priority
queue is arbitrary. For example, we can measure the contrast (image gradient)
and remove weak edges first. Ordering by edge length is particularly interesting:



α = 4.5

β = 6.67

α = 1.56

β = 3.73

Fig. 3. Reconstructions before (red and black) and after (black only) thinning (note
edgels in lower left image). Connectivity errors can occur when α is too big (center).

Definition 8. A (not necessarily unique) minimal boundary reconstruction is
obtained from an (α, β)-boundary reconstruction by means of topology-preserving
thinning where the longest edges are removed first.

The resulting boundaries are illustrated in Fig. 3. Since region topology is pre-
served, a minimal boundary reconstruction is homotopy equivalent to B. The two
boundaries do not in general have the same topology, because the reconstruction
may contain short edges, which end in the interior of a region.

Since a minimal boundary reconstruction can be shown to be a shortest
possible one with correct topology, surviving edges connect edgels closest to each
other. Neighboring edgels optimally align on the thinned boundary. The length
dmax of the longest surviving edge is a measure of the density of the boundary
sampling. The maximum distance p from the true boundary to the nearest edgel
may be much larger than dmax/2 if the displacements of neighboring edgels are
highly correlated. This often occurs in practice: for example, Canny edgels along
a circular arc are consistently biased toward the concave side of the curve. An
(α′, β) reconstruction of the edgel set with α′ = dmax/2 + ǫ < p and arbitrarily
small ǫ is still correct in the sense of theorem 2: since a minimal reconstruction
is a subset of the (α′, β) reconstruction, no true regions can get merged. Since
α′ < α, no region can get lost, and since β remains unchanged, no additional
holes can be created. In fact, β′ = α′ +p+ q < 2p+ q would have been sufficient.

We found experimentally that undesirable holes (α-holes that are not (α, β)-
holes) are actually quite rare, and their largest triangles are hardly ever as large
as the maximal possible circumradius β allows. Therefore, an (α′, β′)-boundary
reconstruction with β′ even smaller than α′ + p + q often produces the cor-
rect region topology. We are currently investigating the conditions which permit
weaker bounds. This is important, because a smaller β leads to a correspond-
ingly reduced γ, i.e. the required size of the original regions is reduced, and more
difficult segmentation problems can be solved correctly.
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Fig. 4. (a) Where the boundary intersects the dual grid, the nearest sampling points
form the grid intersection digitization. (b) The supercover digitization contains all
sampling points whose pixel facets intersect the arc. (c) Canny’s algorithm produces
subpixel-accurate edgels from gray scale images.

4 Application to Sampling and Segmentation Schemes

In theorem 2, p and q are assumed given. We now make their meaning and conse-
quences more intuitive, by computing or estimating them for common sampling
and segmentation schemes. Let’s first look at grid intersection digitization:

Definition 9. Consider a plane partition P with boundary B and a square grid.
Compute all intersection points of B with the grid lines (i.e. with the lines con-
necting 4-adjacent sampling points) and round their coordinates to the nearest
sampling point. The set of edgels thus defined is called grid intersection digitiza-
tion of B, see Fig. 4a.

For simplicity, let the grid size (i.e. the smallest distance from one sampling point
to another) be unity. When each component of B crosses at least one grid line,
the distance p of any point of B to the nearest selected grid point is less than√

2, and the distance q of any grid intersection to its rounded coordinate cannot
exceed 1/2. Inserting this into the conditions of theorem 2, we get α ≥

√
2,

r ≥
√

2+ 1
2 , β ≥ 2

√
2+ 1

2 ≈ 3.3, and γ ≥ 2
√

2+1 ≈ 3.8. However, the worst case
configurations giving rise to the values of β and γ in the theorem cannot actually
occur in a square grid because Delaunay edges between grid points cannot have
arbitrary length. It can be shown that the largest circumradius in an undesirable
α-hole is below

√
34 ≈ 2.9, so that γ ≈ 3.4 (circle area 37 pixels) is sufficient.

Generally the grid intersection digitization of a connected curve is an 8-
connected digital curve. It is identical to Bresenham’s digital straight line in
case of a straight arc. Moreover the grid intersection digitization is a subset
of the supercover digitization on a square grid, which produces a 4-connected
digital curve for any connected curve:

Definition 10. Let P be a plane partition with boundary B and G a finite set
of sampling points such that the Voronoi cells of G have a radius of at most g.
The supercover digitization of B is the set of all sampling points whose Voronoi
cell intersects B, see Fig. 4b.

The constraint on the size of the Voronoi cells implies that p = g and q < g.
Hence, α > g, r > 2g, β > 3g and γ > 4g are required. For example, in a unit
square grid we have q < p =

√
2/2 and γ > 2

√
2 ≈ 2.8. Thus, the supercover

digitization imposes weaker constraints on the original plane partition P than
the grid-intersection digitization. This is mainly due to the denser sampling of
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Fig. 5. The interpixel boundary (dashed) can be extracted from the subset digitization
(a). It includes both the midcrack digitization (b) and the endcrack digitization (c).

the boundary (smaller spacing of the edgels) in the former. As stated in [8], the
supercover digitization is a Hausdorff discretization, i.e. a set of sampling points
which minimizes the Hausdorff distance max(p, q) to the boundary B. Thus
the given bounds for α, β and γ are sufficient for all Hausdorff discretizations.
Another interesting question is what can be said about region based digitization:

Definition 11. Let P be a plane partition with regions R = {ri} and G a fi-
nite set of sampling points such that the Voronoi cells (i.e. the pixels) of G have
a radius of at most g. The subset digitization r̂i of region ri is the union of
all Voronoi cells whose sampling point is in ri, see Fig. 5a. The union of the
boundaries of all r̂i is called the interpixel boundary. A boundary digitization
scheme where all edgels are on the interpixel boundary B is an interpixel dig-
itization. Two examples are the the midcrack digitization (Fig. 5b) where the
center points of all pixel edges inside B are chosen as edgels, and the endcrack
digitization (Fig. 5c) where all pixel corner points inside B are used.

Thus, boundary-based digitizations like endcrack and midcrack digitization can
be derived from the region-based subset digitization. While the maximal distance
q of any edgel to the nearest boundary point cannot exceed g, the distance p
from any boundary point to the nearest edgel can be arbitrary large: An r-stable,
but non-binary plane partition is never r-regular. Consequently, r̂i is generally
not topologically equivalent to the closure of ri and may even be disconnected.
The distance of the components of r̂i may approach the diameter of ri when ri

has a long narrow spike. Obviously, this is not a useful practical bound for the
value of p. We need a restriction that is stronger than r-stability, but weaker
than r-regularity and which prevents these undesirable spikes:

Definition 12. Let P be a plane partition with boundary B. We say two points
x1, x2 ∈ B delimit a (θ, d)-spike, if the distance from x1 to x2 is at most d and
if every path on B from x1 to x2 contains at least one point with ∠x1yx2 < θ.
We say that P has no (θ, d)-spikes if for any pair of boundary points x1, x2 ∈ B
with distance of at most d, there exists a path Y ⊂ B between x1 and x2 such
that ∠x1yx2 ≥ θ for all points y ∈ Y .

Intuitively, two points delimit a (θ, d)-spike, if the shortest boundary path be-
tween them does not differ too much from a straight line, i.e. it lies inside the
shaded region in Fig. 6.

Note that r-regular partitions have no (θ, d)-spikes for d ≤ r and θ =
2arctan

(

d/(2r −
√

4r2 − d2)
)

(e.g. for θ = 90◦, 60◦ we get d = r and d =
√

3r
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2

Fig. 6. Any point which encloses an angle of at most
θ with x1 and x2 must lie inside the shaded region.
The shown y is the one with the maximal distance
to the nearer one of x1 and x2. Thus there is a path
from x1 to x2 inside the shaded region and each of
its points has a distance of at most d/(2 sin θ

2
).

respectively). By sampling dense enough one can enforce the angles to be arbi-
trarily flat. But in general, absence of (θ, d)-spikes does not imply r-stability, so
we will require both. The fact that the boundary cannot be too far away from
the edgels can be used for estimating p and q, e.g. in the midcrack and endcrack
digitization case:

Theorem 3. Let G be a square grid with sample distance h (pixel radius g =
h/

√
2), and let P be a plane partition such that every region ri ∈ P contains a

closed g-disc and the boundary B has no (θ, d)-spikes. Then the endcrack digiti-
zation is a (p, q)-boundary sampling with q = h/

√
2 and p = q +

(

h
2 + q

)

/ sin θ
2 ,

provided that h ≤ d/(1 +
√

2), and the midcrack digitization is a (p, q)-boundary
sampling with q = h

2 and p = q +
(

h
2 + q

)

/ sin θ
2 , provided that h ≤ d

2 .

Proof. First, we prove the bounds on q. Let x, y be two 4-adjacent square grid
points. Their common pixel edge is in the interpixel boundary if and only if x
and y lie in different regions ri and rj , i.e. the grid line between x and y intersects
the boundary B in at least one point v. The endcrack edgels are exactly the end
points of these pixel edges, and their distance to v is at most h/

√
2. It follows

that q = h/
√

2 for the endcrack digitization. The midcrack edgels are the center
points between x and y, so their maximum distance to v is h

2 . Hence, q = h
2 for

the midcrack digitization. The maximum distance between neighboring edgels is
h in both cases.

Now, we prove the bound on p given q. By definition B =
⋃

∂ri, where ∂ri

is the boundary of region ri. Since every region contains a closed disc of radius
g = h/

√
2, and every such disc contains at least one grid point, every region ri

contains a grid point, i.e. r̂i is not empty, and there exist at least four edgels
near ∂ri. Due to the nonexistence of (θ, d)-spikes, any two components (∂ri)j

and (∂ri)l of the boundary ∂ri must have a distance of more than d ≥ 4q. So,
for every component there exists a set of edgels which are closer to (∂ri)j than
to any other component. Obviously every component (∂ri)j is a closed curve.
Thus by mapping every edgel to the nearest point of B, one gets a cyclic list
of points [bk](ij) for every component (∂ri)j , and each point bk has a distance
of at most h + 2q to its successor bk+1 in the list. For endcrack edgels, we have
h + 2q = (1 +

√
2)h ≤ d, and for midcrack edgels h + 2q = 2h ≤ d. Thus, the

boundary part between bk and bk+1 includes no point with an angle smaller
than θ. As shown in Fig. 6, this implies that the distance from any boundary
point between bk and bk+1 to the nearer one of these two points is at most
(

h
2 + q

)

/ sin θ
2 . Thus, the maximum distance to the nearest of the two edgels

which are mapped onto bk and bk+1 is p = q +
(

h
2 + q

)

/ sin θ
2 . ⊓⊔
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Fig. 7. (a) Koch Snowflake; (b) subset digitization (note the topology violations);
(c) (α, β)-boundary reconstruction from marked midcrack edgels. Areas where the
edgels do not unambigously determine the boundary shape pop out by remaining thick.

E.g. if a plane partition has no (60◦, d)-spikes for sufficiently big d, we get q =
h/

√
2 and p = (1 + 3

√
2)h

4 ≈ 1.31h for endcrack digitization and q = h
2 and

p = h for midcrack digitization. It follows that midcrack digitization should be
favoured over endcrack digitization. The nonexistence of shape spikes allows us
to topologically correctly digitize even objects having a fractal boundary like the
Koch Snowflake (see Fig. 7): let K be the object bounded by the Koch Snowflake
based on a triangle of sidelength 1. Then it can be shown that K is r-stable for all
r < 1/

√
3 and it has no (60◦, d)-spikes for d < 1/

√
3 and it contains a γ-disc for

any γ ≤ 1/
√

3. Thus the (α, β)-boundary reconstruction based on the midcrack
digitization with a square grid of grid size h is correct for all h < 1/

√
27 ≈ 0.192.

Our sampling theorem can also be applied to commonly used edge detectors
on real images (see Fig. 8), like Canny’s algorithm [3]. In [12] we derive the
following bounds: suppose the original partition is r-stable and free of (60◦, 2r)-
spikes, and the combined PSF and edge detector scale is at most σ = 0.8r, with
pixel distance h ≤ r. Then q does not exceed 0.9σ + 0.3 ≈ 1.1 pixels when the
boundary contains corners or junctions and SNR = 10 (noise at this level is
already quite visible), and q ≈ 0.2 pixels when the partition is (4-pixel)-regular
and SNR = 30. Note that the average error is much lower and approaches zero
along straight edges. When the edgels are not represented with subpixel accuracy,
a maximal round-off error of h√

2
must be added, and the average error cannot

fall below h√
6
≈ 0.4h pixels even in case of straight edges.

5 Conclusions

To our knowledge, this paper proposes the first geometric sampling theorem
that explicitly considers measurement errors. Moreover, the theorem applies to
a much wider class of shapes (r-stable partitions) than existing ones (r-regular
partitions). The situation in real images is thus modeled much more faithfully
because shapes may now have corners and junctions, and standard segmentation
algorithms can be used. The resulting segmentations are similar to what one
gets from traditional heuristic edgel linking, but their properties can now be
formally proven due to their theoretical basis in Delaunay triangulation. We



Fig. 8. Real images, (α, β)-boundary reconstruction (center) and minimal reconstruc-
tion after thinning (right). Edgels have been computed by Canny’s algorithm on a color
(top) and intensity (bottom) gradient.

showed that many known digitization and segmentation methods can be analysed
and applied in the new framework by simply determining their error bounds. Our
approach (including boundary thinning) provides a novel way for computing a
combinatorial map representation [2] of the boundaries in real images.
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