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Abstract. We define strong r-similarity and the morphing distance to
bound geometric distortions between shapes of equal topology. We then
derive a necessary and sufficient condition for a set and its digitizations
to be r-similar, regardless of the sampling grid. We also extend these
results to certain gray scale images. Our findings are steps towards a
theory of shape digitization for real optical systems.

1 Introduction

In order to make image analysis algorithms more reliable it is desirable to rigor-
ously prove their properties, if possible. As object shape is of particular interest,
we would like to know to what extend the information derived from a digi-
tized shape carries over to the analog original. In this paper we analyse under
which circumstances analog and digital shapes will have the same topology and
bounded geometric distortions. For simplicity, we ignore the effect of gray-level
quantization, and only consider spatial sampling.

The problem of topology preservation was first investigated by Pavlidis [4].
He showed that a particular class of binary analog shapes (which we will call
r-regular shapes, cf. definition 6) does not change topology under discretization
with any sufficiently dense square grid. Similarly, Serra [6] showed that the homo-
topy tree of r-regular sets is preserved under discretization with any sufficiently
dense hexagonal grid. Both results apply to binary sets and the so called subset
digitization, where a pixel is considered part of the digital shape iff its center is
element of the given set. Latecki et al. [2] generalized the findings of Pavlidis to
other digitizations including the square subset and intersection digitizations.

Geometric similarity can be measured by the Hausdorff distance. Pavlidis
[4] proved a rather coarse bound for the Hausdorff distance between the analog
and digital sets. Ronse and Tajine [5] showed that in the limit of infinitely
dense sampling the Hausdorff distance between the original and digitized shapes
converges to zero. However, they did not analyse topology changes.

In this paper, we combine topological and geometric criteria into two new
shape similarity measures, weak and strong r-similarity. We prove that r-regu-
larity is a necessary and sufficient condition for an analog set (i.e. a binary image)
to be reconstructible (in the sense of both measures) by any regular or irregular
grid with sampling distance smaller than r. These findings also apply to certain
gray-scale images that result from blurring of binary images.
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Fig. 1. Examples for weak similarity: L and ¢ have the same topology, but large Haus-
dorff distance dg. The two ¢’s have a much smaller dg (when overlaid). Between ¢ and
o, dg is still quite small, but they differ by topology. The distinction between o and e
is not so clear: Their topology is equal, and dg still relatively small.

2 Shape Similarity and Digitization

Given two sets A and B, their similarity can be expressed in several ways. The
most fundamental is topological equivalence. A and B are topologically equiva-
lent if there exists a homeomorphism, i.e. a bijective function f : A — B with f
and f~! continuous. However, this does not completely characterize the topol-
ogy of a set embedded in the plane IR?. Therefore, [6] introduced the homotopy
tree which encodes whether some components of A enclose others in a given em-
bedding. Both notions are captured simultaneously when the homeomorphism
f is extended to the entire IR? plane. Then it also defines a mapping A° — B¢
for the set complements and ensures preservation of both the topology and the
homotopy tree. We call this an IR?-homeomorphism.

Geometric similarity between two shapes can be measured by the Hausdorff
distance dg between the shape boundaries. We call the combination of both
criteria weak r-similarity:

Definition 1. Two bounded subsets A, B C IR® are called weakly r-similar if
there exists a homeomorphism f : R®> — R? such that x € A & f(x) € B, and
the Hausdorff distance between the set boundaries dg(0A,0B) < r € R U{oo}.

In many cases, weak r-similarity captures human perception quite nicely. Fig.
1 demonstrates this for the shape of some letters. However, it is not always
sufficient. This can already be seen by comparing the letters “o” and “e” in fig.
1, but fig. 2 shows even more striking examples: These sets are topologically
equivalent and have small Hausdorff distance, yet the shapes and meanings are
percieved as very different. The reason for the failure of weak r-similarity is the
following: Topology preservation is determined by an IR?>-homeomorphism that
maps each point of A to a unique point of B. In contrast, the Hausdorff distance
is calculated by mapping each point of A to the nearest point of B and vice versa.
Both mappings are independent of each other and, in general, totally different.
We can improve the similarity measure by using the same transformation for
both the determination of topological equivalence and geometric similarity:

Definition 2. Two sets A, B C IR? are called strongly r-similar and we write
A & B, if they are weakly r-similar and V& € OA : e — f(z)] < r. Such a
restricted homeomorphism is called r~-homeomorphism. The morphing distance
is defined as dy (A, B) := inf ({oo} U{r|A ~ B})
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Fig. 2. Failure of weak similarity: (a) and (b) have the same topology and small
Hausdorff distance, but large morphing distance. Their shapes and symbolic mean-
ings (s vs. €) are perceived as very different. Likewise (c) and (d).

Two sets are ]R2—topologically equivalent iff they are (strongly or weakly) oco-
similar, and they are equal iff they are (strongly or weakly) 0-similar. The morph-
ing distance is symmetric, and the triangle inequality holds because the triangle
inequality of the Euclidien metric applies at every point when two transforma-
tions are combined. Therefore, dj; is a metric and an upper bound for the Haus-
dorff metric dg. It is easy to show that the existence of an r-homeomorphism
that maps 0A to @B implies the existence of an r-homeomorphism for the whole
plane. Under strong r-similarity, the topology is not only preserved in a global,
but also in a local manner: When we look at the embedding of A into IR? within
a small open region Uy, a corresponding open region Up with the same topo-
logical characteristics exists in the embedding of B, and the distance between
the two regions is not greater than r. The shapes in fig. 2 are examples for non-
local topology preservation: Morphing of corresponding shapes onto each other
requires a rather big r, and dg < djs in these cases.

Consider a set A € IR?. Its subset discretization is obtained by storing set
inclusion information only at a countable number of points, i.e. on a grid:

Definition 3. A countable set S C R? of sampling points where dgr ({x},S) <r
holds for all & € R? is called an r-grid if for each bounded set A € R? the subset
SN A is finite. The associated Voronoi regions are called pixels:

Pixels : S — P(IR?), Pixels(s):={x:Vs' € S\ {s}: |z —s|<|x— 5|}
The intersection of A with S is called the S-digitization of A: Digg(A) := ANS.

This definition is very broad and captures even irregular grids, provided their
Voronoi regions have bounded radius, see fig. 3.

As it is not useful to directly compare discrete sets with analog ones, we
reconstruct an analog set from the given digitization. This is done by assigning
the information stored at each sampling point to the entire surrounding pixel:

Definition 4. Given a set A C R? and a grid S, the S-reconstruction of
Digg(A) is defined as A = Recs(Digg(4)) = U,e(sna) Pixels(s).

The results of a reconstruction process will be considered correct if the recon-
structed set A is sufficiently similar to the original set A. Formally, we get

Definition 5. A set A C IR? is reconstructible by an r-grid S if the S-recon-
struction A is strongly r-similar to A, i.e. dy(A,A) <r.
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Fig. 3. Many different grid types are covered by our definition based on Voronoi regions,
including regular square (a) and hexagonal (b) ones, and irregular grids (c) as found
in natural image acquisition devices like the human eye.

3 Conditions for Shape Preserving Digitization

It turns out that shape preserving digitization is only possible if the shape fulfills
a regularity requirement developed independently by Pavlidis [4] and Serra [6]:

Definition 6. A compact set A C IR? is called r-regular iff for each boundary
point of A it is possible to find two osculating open balls of radius r, one lying
entirely in A and the other lying entirely in A°.

Using this definition, we prove the following geometric sampling theorem:

Theorem 1. Letr € Ry and A an r-regular set. Then A is reconstructible with
any r’-grid S, 0 <r' <r.

In a previous paper [1], we proved the same theorem, but reconstructible sets
were defined by means of weak r-similarity (simply called r-similarity there). Here
we will show that the theorem also holds when strong r’-similarity is required.
Moreover, theorem 2 shows that r-regularity is also a necessary condition.

Proof. From the weak version of the theorem in [1] we already know that the
reconstruction is ]Rz—topologically equivalent to A, and the Hausdorff distance
between the boundaries is at most r’. To tighten the theorem for strong 7’'-
similarity it remains to be shown that there even exists an 7’'-homeomorphism.

Due to the r-regularity of A, no pixel can touch two components of JA.
Therefore, we can treat each component A’ of A and its corresponding com-
ponent DA separately. The proof principle is to split 9A’ and dA' into sequences
of segments {C;} and {C’z}, and show that, for all i, C; can be mapped onto C;
with an r’-homeomorphism. The order of the segments in the sequences is deter-
mined by the orientation of the plane, and corresponding segments must have the
same index. Then the existence of an r'-homeomorphism between each pair of
segments implies the existence of the r’-homeomorphism for the entire boundary.
We define initial split points é; of QA as follows (see fig. 4a):

Case 1: A split point is defined where AA' crosses or touches dA'. Case la: If
this is a single point, it automatically defines a corresponding split point of
0A’. Case 1b: If extended parts of the boundaries coincide, the first and last
common points are chosen as split points.
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Fig.4. (a) Different cases for the definition of split points; (b) Partition refinement
and mapping for case 2b.

Case 2: A pixel corner which is on A’ but not on &4’ becomes a split point
if the corner point lies in A (A°) and belongs to at least two pixels that
are in A° (A) Case 2a: If there are exactly two such neighboring pixels, a
corresponding split point is defined where A’ crosses the common boundary
of these pixels. Case 2b: Otherwise, the split point is treated specially.

In the course of the proof, the initial partition will be refined. The treatment
of case 1b is straigthforward: Here, two segments C; and C; coincide, so we can
define the r’-homeomorphism as the identity mapping.

Next, consider case 2b (fig. 4b). Let the special split point é; € A (A¢) be
a corner of pixels P;,, ..., P; € A (A) The orientation of the plane induces an
order of these pixels. The pixels P;, to P;_ , intersect DA’ only at the single
point ¢;. We must avoid that an extended part of A’ gets mapped onto the
single point é;. Thus, we change the initial partitioning: Replace ¢é; with two
new split points ¢ and ¢;”, lying on A’ to either side of é; at a distance ¢.
Define as their corresponding split points the points ¢} and ¢ where A’ crosses
the commen border of P;,, P;, and P;,_,, P;, respectively. Due to r-regularity,
lcié;| < r'" and |¢/é;| < ', and the same is true for all points between ¢/ and c/.
Therefore, € can always be chosen so that every point between ¢} and ¢} can be
mapped onto every point between ¢;' and ¢;" with a displacement of at most r'.
This implies the existence of an r'-homeomorphism between these segments.

After these modifications, the segments not yet treated have the following
important properties: Each C; is enclosed within one pixel P;, and the corre-
sponding segment C; is a subset of P;’s boundary. To prove the theorem for
these pairs, we use the property of Reuleaux triangles with diameter r’ that
no two points in such a triangle are farther apart than 7’ (fig. 5a). Due to -
regularity, A’ can cross the border of any r’-Reuleaux triangle at most two
times. We refine the segments so that each pair is contained in a single triangle,
which implies the existence of an r'-homeomorphism. Consider the pair C}, C;
and let the sampling point of pixel P; be s;. If this point is not on 9A’ (fig. 5b),
C; splits P; into two parts, one containing C; and the other containing s;. We
now place r'-Reuleaux triangles as follows: a corner of every triangle is located
at s;, every triangle intersects C; and C’i, and neighboring triangles are oriented
at 60° of each other, so that no three triangles have a common overlap region.
Since the pixel radius is at most r’, this set of triangles completely covers both



Fig. 5. (a) Any two points in a Reuleaux triangle of size r' have a distance of at most
r'; (b) Covering of corresponding segments with Reuleaux triangles; (c) Construction
for sampling points lying on A"

C; and C’i, and each consecutive pair of triangles shares at least one point of
either segment. Thus, we can define additional split points among the shared
points, so that corresponding pairs of the new segments lie entirely within one
triangle. The existence of an 7’'-homeomorphism for the refined segments follows.

If the sampling point s; of P; is on A’ (fig. 5¢), this Reuleaux construction
does not generally work. In this case, we first place two r'-Reuleaux triangles
such that both have s; as a corner point, one contains the start points ¢, és of
C; and C; respectively, the other the end points ¢, ée, and they overlap C; as
much as possible. If they cover C; completely, the Reuleaux construction still
works with s; as split point. Otherwise C; is partly outside of the triangles, and
the normal of A’ crosses C; in this outside region. We choose a point s, on
the opposite normal with distance € from s; and project each point ¢ of C; not
covered by either triangle onto the point where the line c_s; crosses C;. It can be
seen that this mapping is an r’-homeomorphism: Draw circles with radius & and
r' +¢ around sj. C; and C; lie between these circles, so that each point is moved
by at most 7’. The extreme points of this construction define new split points,
and the remaining parts of C; and C; can be mapped within the two triangles.
Thus, there is an r’-homeomorphism in this case as well. O

As the proof makes no assumptions about pixel shape, the geometric sampling
theorem applies to any regular or irregular r'-grid (cf. fig 3). Moreover, when a
set is resonstructible by some grid S, this automatically holds for any translated
and rotated copy of S as well. r-regularity is not only a sufficient but also a
nessessary condition for a set to be reconstructible:

Theorem 2. Let A be a set that is not r-reqular. Then there exists an r'-grid
S with 0 < r' < r such that A is not reconstructible by S.

Proof. We explicitly construct such a grid. There are two cases: Case I: If A is
not r”’-regular for any r'’ > 0, then it contains at least one corner or junction.
In both cases it is possible to place sampling points so that the reconstruction
of a connected set becomes disconnected, and the topology is not preserved (fig.
6 a and b). Case 2: Let A be r''-regular with 0 < r" < r' < r. Then there is a
maximal inside or outside circle of radius r'" with center py that touches 9A in



Fig. 6. Examples where the topology of the reconstruction by an r-grid (balls and lines)
differs from the topology of the original set (gray area) because it is not r-regular.

at least two points. Draw a circle with radius r’ around py. Case 2a: If the r''-
circle coincides with a component of A, a component of A or A€ is completely
inside the r’-circle, and we can place sampling points on this circle such that
the enclosed component is lost in the reconstruction. Case 2b: Otherwise, an 7’
can be chosen so that part of the r’-circle is in A, part in A°. If these parts
form more than two connected components, we can place a sampling point in
each component, and the reconstruction contains a junction whereas the original
shape does not. Case 2c: If there are exactly two components, we can move the
r'-circle a little so that it will either no longer intersect with A, which brings
us back to case 2a, or the number of components will increase, which brings us
to case 2b. In any case, the topology of A is not preserved (fig. 6 c and d). O

The geometric sampling theorems do not only hold for binary images, but also
for all r-regular level sets of gray-level images. In particular, we proved in [1]
that theorem 1 also applies if r-regular sets are subjected to blurring with a
circular averaging filter before digitization. Such images are approximations of
what could be observed with a real camera (albeit real point spread functions
are more complicated). We proved the following theorem:

Theorem 3. Let A be an r-regular set, ky a circular averaging filter with radius
p <r,and fa = kpxxa the blurred image of A (xa is A’s characteristic function,
* denotes convolution). Further let L; be any level set of fa and S an r"-grid
with ' < r —p. Then the S-reconstruction L; of Ly is (p +r'")-similar to A.

In [1], reconstruction referred to weak r-similarity, but the theorem can be ex-
tended to strong r-similarity. The original proof first showed that any level set
L; of fa is (r — p)-regular and p-similar to A. Then it followed from theorem 1
that L; is reconstructible by any grid with pixel radius " < r — p. Since theorem
1 has been tightened for strong r-similarity, it remains to be shown that the first
part of the proof can also be tightened:

Proof. We must show that there exists a p-homeomorphism between A and any
level set L; after blurring. We already know that there is an IR*-homeomorphism.
Consider a p-wide strip A, around 0A. Due to r-regularity, the normals of A4
cannot cross within A,. Therefore, every point in A, is crossed by exactly one
normal, and the starting point of the normal is at most at distance p. Since the



level lines OL; always run in the strip A, without crossing any normal twice (see
[1], lemma 5), we can define a p-homeomorphism from 9A to any level line by
mapping each point along its normal. O

4 Findings

In this paper we proved a powerful geometric sampling theorem. In intuitive
terms, our theorem means the following: When an r-regular set is digitized, its
boundaries move by at most half the pixel diameter. The number of connected
components of the set and its complement are preserved, and the digital sets
are directly connected (more precisely, they are well-composed in the sense of
Latecki [3]). Parts that were originally connected do not get separated. As these
claims hold for any regular or irregular r'-grid, they also hold for translated
and rotated versions of some given grid. Thus, reconstruction is robust under
Euclidian transformations of the grid or the shape.

Since strong r-similarity is also a local property, we can still apply our results
if a set is not r-regular in its entirety. We call a segment of a set’s boundary
locally r-regular if definition 6 holds at every point of the segment. Theorem 1
then applies analogously to this part of the set because the boundary segment
could be completed into some r-regular set where the theorem holds everywhere,
and in particular in a local neighborhood of the segment.

Our results can be generalized to gray-level images in two ways: First, they
apply to all level sets or parts thereof that are r-regular. This is usually the case
at edge points that are sufficiently far from other edges or junctions. Second,
when a binary image is first blurred by a circular averaging filter, the theorem
still holds with » = r' + p, where r’ and p are the radii of the pixels and filter
respectively. This is similar to Lateckis work ([2,3]), as his v-digitization amounts
to blurring with a square averaging filter. Our findigs are important steps towards
a geometric sampling theory applicable to real optical systems. In the future, we
will try to extend them to more general filter classes. We will also analyse what
happens in the neighborhood of junctions (where the r-regularity constraint
cannot hold), and under the influence of gray-level quantization and noise.
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