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Topological Equivalence between a 3D Object anc
the Reconstruction of its Digital Image

Peer Stelldinger, Longin Jan Latecki and Marcelo Siqueira

Abstract— Digitization is not as easy as it looks. If . INTRODUCTION
one digitizes a 3D object even with a dense sampling
grid, the reconstructed digital object may have topologica A fundamental task of knowledge representation and
distortions and in general there exists no upper bound processing is to infer properties of real objects or situa-
for the Hausdorff distance. This explains why so far no {iong given their representations. In spatial knowledge
algor'thnl. has been known which guarantees topology representation and, in particular, in computer vision
preservation. and medical imaging, real objects are represented in

However, as we will show, it is possible to repair the & pictorial way as nite and discrete sets of pixels or
obtained digital image in a locally bounded way so that VOXels. The discrete sets result by a quantization process,
it is homeomorphic and close to the 3D object. The in which real objects are approximated by discrete sets.
resulting digital object is always well-composed, which ha In computer vision, this process is called sampling or
nice implications for a lot of image analysis problems. digitization and is naturally realized by technical degice
Mqreovgr, we will shovy that the surface of the origirjal like computer tomography scanners, CCD cameras or
object is_homeomorphic to the result of the marching .o ment scanners. A fundamental question addressed
cubes algorithm. This is really surprising since it means . . L . .

in spatial knowledge representation is: Which properties

that the well known topological problems of the marching . ; d f di . f | obi
cubes reconstruction simply do not occur for digital images Inferred from discrete representations of real objects

of r-reglar objects. Based on the trilinear interpolation Ccorrespond to properties of their originals, and under
we also construct a smooth isosurface from the digital What conditions this is the case? While this problem is
image that has the same topology as the original surface. well-understood in the 2D case with respect to topoology
Finally we give a surprisingly simple topology preserving [1]-[6], it is not as simple in 3D, as shown in [7]. In

reconstruction method by using overlapping balls instead  this paper we present the rst comprehensive answer to
of cubical voxels. This is the rst approach of digitizing thjs question with respect to important topological and
3D objects which guarantees topology preservation and oo, matric properties of 3D objects. Some of the results

gives an upper bound for the geometric distortion. Since . .
the output can be chosen as a pure voxel presentation, apresented here can also be found without proofs in [8]-

union of balls, a reconstruction by trilinear interpolation, a 0].

smooth isosurface or the piecewise linear marching cubes The description of geometric and, in particular, topo-

surface, the results are directly applicable to a huge class logical features in discrete structures is based on graph

of image analysis algorithms. theory, which is widely accepted in the computer science

community. A graph is obtained when a neighborhood

. -~ relation is introduced into a discrete set, e.g., a nite sub-

volume and the surface area of 3D objects by looking set 0fZ2 or Z3. whereZ denotes the integers. On the one

at their digitizations. Measuring volume and surface area ' )

of digital objects are important problems in 3D image hand, graph _theory a_tllows investigation _into connectivity
analysis. Good estimators should be multigrid convergent, @nd separability of discrete sets (for a simple and natural
i.e. the error goes to zero with increasing sampling density de nition of connectivity see Kong and Rosenfeld [11],
We will show that every presented reconstruction method for example). On the other hand, a nite graph is an
can be used for volume estimation and we will give a elementary structure that can be easily implemented
solution for the much more dif cult problem of multigrid- ~ on computers. Discrete representations are analyzed by
convgrgent surfa_ce area estimation. Our solution is based algorithms based on graph theory, and the properties
on simple counting of voxels and we are the ISt to be o,y a0ted are assumed to represent properties of the
able to give absolute bounds for the surface area. . . . . C

original objects. Since practical applications, for exaenpl
in image analysis, show that this is not always the case,
it is necessary to relate properties of discrete representa
tions to the corresponding properties of the originals.

Moreover, we show how one can ef ciently estimate the

Index Terms—r-regular, topology, digitization, 3D,
marching cubes, trilinear interpolation, well-composed.



Since such relations allow us to describe and justifjuestion how to guarantee topology preservation during
the algorithms on discrete graphs, their characterizatidigitization in 3D remained up to now unsolved.
contributes directly to the computational investigation In this paper we provide a solution to this question.
of algorithms on discrete structures. This computationdle use the same digitization model as Pavlidis and Serra
investigation is an important part of the research mmsed, and we also useregular sets (but iiR®) to model
computer science, and in particular, in computer visidghe continuous objects. As already shown in [7] the
(Marr [12]), where it can contribute to the developmergeneralization of Pavlidis' straightforward reconstiant
of more suitable and reliable algorithms for extractinmethod to 3D fails since the reconstructed surface may
required shape properties from discrete representationst be a 2D manifold. For example, Fig. 3(a) and (b)
It is clear that no discrete representation can eghows a continuous object and its digital reconstruction
hibit all features of the real original. Thus one has twhose surface is not a 2D manifold. However, as we
accept compromises. The compromise chosen depends show it is possible to use several other reconstruc-
on the speci c application and on the questions whidiion methods that all result in a 3D object with a 2D
are typical for that application. Real objects and theinanifold surface. Moreover we will show that these
spatial relations can be characterized using geometrconstructions and the original continuous object are
features. Therefore, any useful discrete representatttomeomorphic and their surfaces are close to each other.
should model the geometry faithfully in order to avoid The rst reconstruction method, Majority interpola-
false conclusions. Topology deals with the invariand®n, is a voxel-based representation on a grid with
of fundamental geometric features like connectivity arbubled resolution. It always leads to a well-composed
separability. Topological properties play an importarget in the sense of Latecki [13], which implies that a lot
role, since they are the most primitive object featured problems in 3D digital geometry become relatively
and our visual system seems to be well-adapted to capmple.
with topological properties. The second method is the most simple one. We just
However, we do not have any direct access to spatiade balls with a certain radius instead of cubical voxels.
properties of real objects. Therefore, we represent réhen choosing an appropriate radius the topology of an
objects, as commonly accepted from the beginning ofregular object will not be destroyed during digitization.
mathematics as bounded subsets of the Euclidean spackhe third method is a modi cation of the well-known
R3, and their 2D views (projections) as bounded contimMarching Cubes algorithm [14]. The original Marching
uous subsets of the plafR#. Hence, from the theoreticalCubes algorithm does not always construct a topologi-
point of view of knowledge representation, we will relateally sound surface due to several ambiguous cases [15],
two different pictorial representations of objects in thEL6]. We will show that most of the ambiguous cases can
real world: a discrete and a continuous representatiomot occur in the digitization of am-regular object and
Already two of the rst books in computer visionthat the only remaining ambiguous case always occurs in
deal with the relation between the continuous object aad unambiguous way, which can be dealt with by a slight
its digital images obtained by modeling a digitizatiommodi cation of the original Marching Cubes algorithm.
process. Pavlidis [1] and Serra [2] proved independenilyius the generated surface is not only topologically
in 1982 that arr-regular continuous 2D s& and the sound, but it also has exactly the same topology as the
continuous analog of the digital image &f have the original object before digitization.
same shape in a topological sense. Pavlidis used 2[Moreover we show that one can use trilinear interpo-
square grids and Serra used 2D hexagonal sampliaon and that one can even blend the trilinear patches
grids. smoothly into each other such that one gets smooth
An analogous result in 3D case remained an opebject surfaces with the correct topology.
question for over 20 years. Only recently one of the Each of these methods has its own advantages such
authors proved together withdthe that the connectivity that our results are applicable for a lot of very different
properties are preserved when digitizing a BBegular image analysis algorithms.
object with a suf ciently dense sampling grid [7]. But We also analyse the question if these reconstruction
the preservation of connectivity is much weaker thamethods are suitable to estimate object properties like
topology. They also found out that topology preservatiorolume and surface area. We show that all the reconstruc-
can even not be guaranteed with sampling grids tén methods can be used for multigrid convergent vol-
arbitrary density if one uses the straightforward voxelme estimation, but that surface area estimation requires
resonstruction, since the surface of the continuous anatutper methods. We analyse the problem of multigrid
of the digital image may not be a 2D manifold. Thus theonvergent surface area estimation and suggest that one



should usesemi-localalgorithms, since local algorithmsx and eitherB%(c)  A° or B%(c)  (A©)°. Since all
do not seem to be multigrid-convergent and there exigifthe known topology preserving sampling theorems in
no proof for any global algorithm. We give an exampl@D require the object to be-regular [1], [2], [7], we
of a semi-local surface area estimator and prove thawitll use the 3D generalization for our approach (refer to

is multigrid-convergent. Fig. 1):
De nition 1: A setA R?is calledr-regular if, for
Il. PRELIMINARIES each poinx 2 @A there exist two osculating open balls
The (Euclideanylistancebetween two points andy of radiusr to @Aat X 'such_ that one lies entirely iA
in R" is denoted byl(x; y), and the (Hausdorfijlistance 2nd the other lies entirely iA®. 3

between two subsets &" is the maximal distance Note that the boundary of a 3D-regular set is a 2D

between each point of one set and the nearest pdﬁ]ﬁm'fc’ld surfac_e. . .
of the other. LetA R" and B RM be sets. A ANy setS which is a translated and rotated version of

rO 3 . . O_ . .
functionf : A | B is called homeomorphisnif it the set%z is called acubic r*grid and its elements

is bijective and both it and its inverse are continuou@ré calledsampling poir;tsNote that the distanag(x; p)
If f is a homeomorphism, we say that and B are from each pointx 2 R° to the nearest sampling point

homeomorphicLet A, B be two subsets oR3. Then S 2 S is at mostr® The voxel Vs(s) of a sampling

a homeomorphisni : R® | R® such thatf (A) = B Points 2 Sis its Voronoi regionR3: Vs(s) = fx 2 R3j
and d(x; f (x)) r, for all x 2 RS, is called anr- d(x;s) d(x;q); 892 Sg, i.e., Vs(s) is the set of all
homeomorphisnof A to B and we say thaf and B points of R which are at least as close $oas to any
are r-homeomorphicA Jordan curveis a set]  R" other point_inS. !n particular, note thays(s) is a cube
which is homeomorphic to a circle. Lét be any subset WNose vertices lie on a sphere oforaQrL?sand centes.
of R3. The complementof A is denoted byA®. Al De nition 2: Let S be_a cubicr *grid, ar_1d letA b_e
points in A are foregroundwhile the points inA¢ are 2Ny subset oR®. The union of all voxels with sampling
called background The open ballin R3 of radiusr and points lying inA |§thed|gltal reconstruction ofA with

centerc is the setB%(c) = fx 2 R®j d(x;c) < rg, respectlos, A= " g Vs(s). 3
and theclosed ballin R3 of radiusr and centerc is 1 His method for reconstructing the object from the set of

the setB,(c) = fx 2 R®j d(x;c) rg. Whenever included sampling points is the 3D generalization of the
c=(0:0; ro) 2 R, we write B? ahdﬁr. We' say thad 2D Gauss digitizatior(see [17]) which has been used by
is openif, for eachx 2 A, there exists a positive numbe>auss o compute_the area Of discs a_nd which has also
r such thatB%(x)  A. We say thatA is closedif its been used by Pavllldls [1] in his sampling theorem.
complementA€, is open. Theboundaryof A, denoted v For\\e/my ‘W.O ptc}:ntsp a?d qof S, we ha\:e th%t
@A consists of all pointg 2 R® with the property that if s(P)\V s(q) s either empty or a common vertex, edge

B is any open set aR3 such thak 2 B, thenB\ A 6 ; or face of both. IVs(p)\V s(q) is a common face, edge,

andB\ A6 ;. We de neA® = An@AandA = A[ @A or 'vertex, then we say thats(p) and Vs(Q) arefgce-
adjacent edge-adjacentor vertex-adjacentrespectively.

O Two voxelsVs(p) andVs(q) of A areconnected inf if

® -t there exists a sequend&(s1);:::;Vs(sk), withk 2 Z
andk > 1, such thats; = p, sk = g, ands; 2 A
2D) 3D) (or equivalently,Vs(si) A), for eachi 2 f 1;::::kg,

and Vs(sj) and Vs(sj+1) are face-adjacent, for each

Fig. 1. For each boundary point of a 2D/3Bregular set exists an j2fL:k 1g. A (connectedcomponenof A\ IS a

outside and an inside osculating opedwlisc/ball. maximal set of connected voxels A
Note thatA° is open andA is closed, for amA  R®. .;I ' F'
Note also thatB(c) = (B(c))? and B;(c) = BY(c). '
Ther-dilation A B ? of a setA is the union of all open (@) (b)

r-balls with center inA, and ther-erosionA B 0 is _ L . . .

h t of all center points of opanballs Iving inside Fig. 2. (a) Critical con_guratlon (C1). (b) Critical con guration
the se P p X ying (C2). For the sake of clarity, we show only the voxels of foreground
of A. We say that an open bali?(c) is tangentto @A or background points.

at a pointx 2 @AIf @A @(c) = fxg. We say that

an open balB(c) is anosculating open ball of radius  De nition 3: Let S be a cubicro-grg, and letT

r to @Aat pointx 2 @AIf BY(c) is tangent to@Aat be any subset of. Then, we say that o7 Vs(t) is



well-composedf @SIZT Vs(t)) is agsurface iRR3, or is(r )-regular withr  >r % andA B has the
equivalently, if for every poink 2 @ ,,1 Vs(t)), there same digital reconstruction a. In what follows, we
exj§ts a positive numbar such that the intersection ofwill locally characterize the topology and geometry of
@ o7 Vs(t)) and BO(x) is homeomorphic to the openA
unit disk inR?, D= f(x;y) 2 R?jx?+ y?< 1g. 3
Well-composed digital reconstructions can be char-
acterized by two local conditions depending only
on voxels of points ofS. Let s;;:::;54 be any
four points of S such that [, Vs(si) is a com-

..... ; ; . Fig. 4. The surface of an object only needs to have an arbitrarily
set fVS(Sl)’ Tt ’VS(S4)9 is an instance Of thecrit small, but nonzero curvature in order to make occurrences of the

ical con guration (C1) with regpect to Vs(t)  critical con guration (C1) possible in the digital reconstruction.
if two of these woxels are in ,; Vs(t) and the

other two are in( gr Vs(t))¢, and the two voxels

Consid be iR® wh ight i
in > Vs(t) (resp.(o . Va(t)?) are edge-adjacent, onsider any cube ifRR3® whose (eight) vertices are

points of S whose corresponding voxels share a common
Y vertex. By our above assumption, each vertex of such a
cube is either inside (i.e., a foreground point) or outside
(i.e., a background pointh. So, there are at mog56

. . : distinct con gurations for a cube with respect to the
con guration (C2?§N'th respect to tgr Vs(t) if t\(/:vo of binary “status” of its vertices. However, it has been
these voxel§ are N iog Vs(t) (rescp.( tZTQ/S(t)) ) and shown [18] that up to rotational symmetry, re ectional
the other six are 'r(StZT Vs(1) (respS 1 Vs(D)), symmetry, and complementarity (switching foreground

and the two \{oxels N o7 VS(t). (rqsp.( 21 V(1)) . and backgroud points), thes256 con gurations are
are vertex-adjacent, as shown in Fig. 2(b). The fOIIOWII"é;’quivalent to thel4 canonical con gurations in Fig. 5.

theorem from [13] establishes an important equivalenﬁ? ell-composed sets only cases 1 to 7 can occur
between well-composedness and the (non)existence oﬁ\v order to analyse the local topology changes due

critical con gurations (C1) and (C2): to digitization, we need to de ne certain paths and

. . 0_ .
b TheorerE 4t(£3]T).hLet§ be<\51/c1:b|_d gr:ld and IetTd surface patches spanned between sampling points and
e any subset o8. Then, —,1 Vs(t) is well-composed i inside which these can be localized:

iff the set of voxelsfV (s) j s 2 Sg does not contain
any instance of the critical con guration (C1) nor any

insgance of the critical con guration (C2) with respect = el ﬁg Eg
to o1 Vs(t). Kg[ \<g - |

setfVs(sy);:::;Vs(ss)g is an inétance of theritical

(1) (2 3) (4)
[1l. DIGITAL RECONSTRUCTION OFR -REGULAR +~7 1 ] —r
SETS El; K@ E@ ‘<E

(5) (6) (7) (8)

“ 0 g Ofg 0Od
oo o O

(13) (14) (9to 11) (12 to 14)
Fig. 3. The digital reconstruction (b) of anregular object (a) may

not be well-composed, i.e. its surface may not be a 2D manifold gy, 5. There are256 distinct con gurations for neighboring
can be seen in the magni cation. sampling points that are either inside or outside a digitized set.
However, up to rotational symmetry, re ectional symmetry, and

Let A R3 be anr-regular object, leS be a cubic complementarity (switching foreground and backgroud points), these
' 256 con gurations are equivalent to the abo%é canonical con g-

0 - - - - .
r=grid, and consider the digital reconstructiénof A urations. Con guration® to 11 (resp.12 to 14) can be summarized
with respect toS. Assume that no sampling point & in special cases with “don't care” sampling poinis and ps (resp.

lies on@A This assumption is not a restriction, as ther and ps).
always exists an > 0 such that the -openingA B



De nition 5: Let x;y be two points inR3. Further let Pg(x;y) is a simple cut set for any with % d(x;y)
s >d(x;y). Then, the intersectioﬁs(ﬁ;-y) of all closed s < r. Now, suppose there exists a poipton the
s-balls containingk andy, Ps(x;y) = fBs(v) jX;y 2 direct path lying outside oPs(x;y). Then the outside
Bs(v)g, is calleds-path region betweem andy. Now, osculating open-ball of A in p must cover eithex or

let x;y;z be three points irR%, and assume that >
%maxfd(x;y);d(x;z);d(y;z)g. Then, the intersection
Ps(x;y;z) of §Ilgloseds—balls containingx, y and z,
Ps(x;y;z) =  fBs(V) j X;y;2 2 Bs(v)g, is calleds-
surface region betweex, y and z. Further, a nonempty
convex setB such that at no poink 2 @Bexists an
inside osculating -ball, is called arr-simple-cut set3

y which implies that they cannot lie o@Aor inside
A. Thus, the direct path has to be insi@g(x;y). If
X;y 2 A€ the analog is true by looking at tHe ")-
regular sefA  B-)c for a suf ciently small" > 0, since
there alway exists ah such thatx andy remain outside
A B-rands< (r "). [
Lemma 9:Let A be anr-regular set and leB be an

As we will show below (Lemma 8) under certain Condié-simple-cut set withs < r . Further. letB°\ AC 6 -

tions Ps(x;y) is anr-simple-cut set

Theorem 6:Let A be anr-regular set and;y be two
different points inA with d(x;y) < 2r. Further, letL be
the straight line segment fromto y. Then, the function
f mapping each point of to the nearest point iA is
well-de ned, continuous and bijective, and the range
f is a simple path fronx toy.

Proof: Each pointL\ A is its own nearest point in

A. Due tor -regularity there exists for each pointimA

exactly one nearest point @ Asince each of these points

has a distance smaller thanto the boundary. Thu$
must be a continuous function sincefifwould not be
continuous at some point, this point would have mo
than one nearest point i@ A Note that any point of.
lies on the normal vector o® Ain its nearest boundary
point. Now suppose one poimt of @Awould be the
nearest point to at least two different poimisandl, of
L. Thenly andl, both lie on the normal of@Ain p.
This implies that any point il. including x andy lies
on this normal. Since the normal vectors of lengtbf
anr-regular set do not intersect, the distance betwee
andy has to be at leagtr which contradictgd(x;y) <
2r. Thusf is bijective. Since every bijective continuou
function of a compact metric space is continuous in b

(0]

re

OE
ordan curve.

andB \ A€ 6 ;. Then the intersectio@A @ Bof the
boundaries is a Jordan curve.

Proof: Let ¢; and c, be two arbitrary points in
B\ A and letP be the direct path from; to c,. ThenP
Ii{as inside ofB due tolemma 8 anB  Pg(cy;c2). This
implies thatB \ A must be one connected component.
Now, consider the two points; andc; lying in B\ A°,
Then the direct path does not necessarily lidhsince
this set is open, but iA°. Thus for any open superset of
the intersection of alt-balls containingc; andc, there
exists a path front; to ¢, inside this superset having
a minimal distance to the direct path Af. Due to the
higher curvature, not only \ A° but also(B \ A¢)°
is such a superset. Thus bd&h\ A andB \ A€ have
to be one component and thus the intersection of the
boundaries] = @A @B must also be one component.
It remains to be shown thatis a Jordan curve. Sinde
separate€d Bin one part inside oA and one part outside
of A, it is a Jordan curve iff there exists no point where
B and A meet tangentially. Such a point would imply

That either the inside or the outside osculating balAof

at this point cover®8. Both cases are impossible since
enB%\ A%=": orB\ A®= ;. Thus,@A @Bis a
[ |

directions,f must be a homeomorphism and range is a

simple path fromx toy.
De nition 7: Let A be anr-regular set and;y be

De nition 10: Let A be anr-regular set and let;y; z
be three arbitrary points inside &° B,. Then, the

two different points inA with d(x;y) < 2r. Further, let Inner surface patchis(x;y;z) of x;y;z regardingA is
L be the straight line segment fromto y. Then, the the set dened by mapping each point of the triangle
range of the functiodi mapping each point of to the T spanned b_y pplntx;y;z to itself if it lies |n5|.de of
hearest point imA is called thedirect pathfrom x toy A and mapping it to the nearest boundary poini@ma
regardingA. 3 otherwise. Now, lex;y; z be three arbitrary points inside
Lemma 8:Let A be anr-regular set ana;y be two Of A® Br. Then theouter surface patctOs(x;y;2)
points both insideA or both outsideA with d(x;y) < ©f Xy;Z regardingA is the set de ned by mapping
2r. Then, Ps(x;y) is a simple-cut set for ang with each poinLtEetrianglé’ between the points to itself
1d(x;y) s<r,the direct path fronx toy regarding inside of (A B-)¢ and mapping them to the nearest
A lies insideA\ Ps(x;y) and the direct path from to boundary poini@A  B-)¢ otherwise, with" being half
y regarding(A  B-)¢ lies inside A\ Pg(x;y), for a the minimal distance from the sampling pointsAf to
suf ciently small " > 0. @A 3
Proof: First, letx;y 2 A. Sinced(x;y) < 2r, Lemma 11:Let A be anr-regular set andx;y;z



be three points insideA with maxfd(x;y); d(x;z); the boundings-path regions. Since both and p, lie
d(y;2)g < 2r. ThenPs(x;y;z) is a simple cut set for outside Ps(pz1; ps; ps), the path fromc to p, must go
anys with % d(x;y) s <r andthe inner surface patchthrough the surface patch and thus there has to exist a
is homeomorphic to a disc, lies insidd Ps(x;y) and is point lying both inA and A°. It follows that c cannot
bounded by three paths, one going franto y inside of be in the foreground. Analogouslg, cannot be in the
Ps(x;y;z)\ Ps(x;y), another going frony to z inside background sincePs(c;p;) intersectsPs(pz; ps; ps) in
of Ps(x;y;z)\ Ps(y;z) and the third going fronz to the same way as can be seen in Fig. 6(c). Thus cases
x inside of Ps(x;y;z)\ Ps(z;x). The analog is true for 12 to 14 cannot occur in the digital reconstruction of an
x;y; z lying outside ofA and the outer surface patch. r-regular object if2ro<r . [ ]
Proof: The mapping used in de nition 10 is a Theorem 13:Con gurations 9 to 11 in Fig. 5 cannot
direct generalization of the mapping in de nition 7 anaccur in the digital reconstruction of anregular object
it is a homeomorphism for the same reasons;ij;z with a cubicr2grid with 2r°<r .
lie inside A andmaxf d(x;y);d(x;z);d(y;z)g < 2r. Its Proof: We only have to show that the con guration
boundaries are equal to the direct paths between eabtlown in Fig. 5(9 to 11) is impossible since this is a
two of the three points. Ik;y;z lie outside of A the generalization of the three mentioned cases. The proof
proof is analog. B is analog to the previous one. The surface patch between
The problem of topology preserving digitization is thathe pointspi, ps, ps and pz which can be de ned by
several of the 14 cases are ambiguous, which meamsnbining the two triangular surface patches between
that there are more than one possibilities to reconstrymgt ps and ps, respectivelyp;, ps and ps has to be hit
the object locally. This is not true for suf ciently denseby the direct path fronp, to p; (which both lie outside
sampledr-regular objects, as shown by the followinghe regionPs(pz1; ps; Ps) [ Ps(p1; p3; ps)) as can be seen

theorems: in Fig. 6(a). Thus, the cases 9 to 11 cannot occur in the
digital reconstruction of am-regular object if2r®<r .
(3 B -
L \{ s Theorem 14:In the digital reconstruction of am-
(a) (b) regular objectA with a cubicr%grid such thar®<r ,

case 8 always occurs in pairs, one con guration having

Fig. 6. Cases 9 to 14 in a dense digitization would imply thg background voxels and the other having 6 foreground
existence of a foreground path intersecting the background. voxels (refer to Fig. 7(a))

Theorem 12:Con gurations 12 to 14 in Fig. 5 cannot
occur in the digital reconstruction of anregular object
with a cubicr2grid with 2r<r .

Proof: We only have to show that the con guration
shown in Fig. 5(12 to 14) does not occur. In the followingig. 7. Case 8 only occurs in complementary (a) and not in equal
let the red sampling points in Fig. 5(12 to 14) be inairs (b).
the foreground and the white sampling points in the
background. Further, let the sampling poipispy;:::ps Proof: Since case 8 is the only remaining case with
be numbered as shown in Fig. 5(12 to 14). Supposeachessboard con guration, i.e. four sampling points on
the contrary, such a con guration occurs in the digitadne facet such that one pair of opposing sampling points
reconstruction of an-regular objecA. Further, suppose lies inside and the other outside #&f, case 8 has to
the point ¢ in the center of the con guration is inoccur in pairs. There are two possibilities: Both con gu-
the foreground. Since the distance framo p, is r® rations have a different number of foreground voxels (see
there exists a foreground path between these poifig. 7(a)) or they have the same number (see Fig. 7(b)).
lying completely insidePs(c; p2). On the other side, the We only have to show that both con gurations cannot
three background points:; ps; ps have each a distancehave the same number of foreground voxels. Without
being smaller thar2r. Thus, due to Lemma 11, therdoss of generality let them have each 6 background and
exists a surface patch between them lying completelyforeground voxels, see Fig. 7(b). The proof for the
outsideA. This patch lies insidé€s(p:; pa; pe) With its other case (2 background and 6 foreground voxels) is the
surface boundary lying inside the union Bf(p:;ps), Same, we simply have to look at the digital reconstruction
Ps(p1; pe) andPs(pa; ps). Fig. 6(b) shows thaPs(c;p) of (A  B-)¢ for a sufciently small" > 0 in order to
goes through thes-surface region without intersectingget the rst case. The proof is analog to the previous




ones. The surface patch between the popmtsps, po, con gurations of type 8 is divided by the boundary
p12, ps and ps which can be de ned by combining of the reconstructed object into two parts, each
triangular surface patches, each de ned by Lemma 11, being homeomorphic to a ball (i.e. the boundary
has to be hit by the direct path fropg to p; as can be part inside the cube is homeomorphic to a disc),
seen in Fig. 6(a). Thus, this combination of two case 8 such that the part representing the foreground of
con gurations cannot occur in the digital reconstruction  the reconstruction contains all the sampling points
of anr-regular object if2rP<r . [ ] of the con guration which are inside the original set
Theorem 13 tells us tha cannot contain an instance of ~ and none of the sampling points which are outside
the critical con guration (C2), as the presence of an in-  the original set.

stance of (C2) would imply the occurrence of the canon- 3

ical con guration 9 in Fig. 5 during the reconstruction

of A. In additi(_)n, Theorem 12 a_1r_1d Theorem 1_4 tell us ﬁcﬁ Fij ‘/ﬁa( ‘qu
that A has an instance of the critical con guration (C1) |</\ | | L /j

iff the canonical con guratiorB in Fig. 5 occurs during (1) Tzf 3) 4)
the reconstruction ofA. Furthermore, each instance of o . . it
(C1) is de ned by the voxels of the four points &f in [ : [ ﬁkﬁ m ‘l PL‘

the common face of two cubes having complementary
: : - 5) (6) (7) )

types of the canonical con guratio®, as shown in

Fig. 7(a). A§ already S_hown n [_7]’ con gu_fa“c_’” 8_Car?:ig. 8. The surface of the result of a topology preserving recon-

even occur irr-regular images with an arbitrarily big struction method is homeomorphic to a disc inside any of the cubes

with respect to the sampling constaﬁ(see Fig. 4). This of case 2 to 7 and the double-cube of case 8. The cube of case 1

implies that the digital reconstruction of amregular 90S notintersect the surface.

set cannot be guaranteed to be well-composed just by )

restricting the sampling density — in contrast to the 2D 'heorem 16:Let A be anr-regular object an& be a

case. Since the surfaces of non-well-composed sets f8icr-grid with 2r=<r . Then the result of a topology
not 2D manifolds and since the surface of mregular Preserving reconstruction methodrishomeomorphic to

object is always a 2D manifold, one has to considéY
other reconstruction methods than the straightforward

way of reconstructing the object by taking the union of . . ‘W s
voxels corresponding to the sampling points (i.e. digital %/ . : 7
reconstruction). There are a lot of other methods known (@) (b) (c) (d)

to reconstruct a 3D object given the set of samplin
) g P rgg. 9. In order to construct a surface between three sampling points

points lying inside of the _Or'gmal object. Some of the_rBeing not all in the foreground (a), we combine the inner (b) and the
reconstruct the volume, like voxel based reconstructi@oter surface patch (c) such that the result (d) is cut@#into

methods, some reconstruct the surface of the volume, exgctly two parts.

the marching cubes algorithm [14]. With the knowledge

of which con gurations can not occur in the digitization Proof: Due to Theorems 13, 12 and 14, the only

of anr-regular image by using arf-grid with 2r%<r, cases which can occur in the digitization of mnegular

we can derive a sampling theorem which can be applietiject with a cubicr %grid with 2r°< r are cases 1 to

to a big variety of such reconstruction methods, whic®, with case 8 always occurring in complementary pairs.

we call topology preserving Now consider a con guration of case 2 to 7 and (&t

De nition 15: A reconstruction method is calleddenote the cube de ned by the eight sampling points. In

topology preservingf it behaves in the following way these cases the intersection @Cand the boundary of

(see Fig. 8): a topology preserving reconstruction is a Jordan curve.
Any cube de ned by the sampling points of conNow each faceF; of the cube can be constructed by
guration 1 contains no boundary part or the retwo triangles. Since the cube with diametr® < r
constructed object. The cube lies completely insidetersects@A every of its boundary points lies inside
or outside of the reconstructed object regarding tled A° B 0. Thus both the inner and the outer surface
sampling points lying inside or outside of it. patch are de ned. We de ne a new surface patch for such
Any cube de ned by the sampling points of con g-a triangle between three sampling points in the following
uration 2 to 7 and any double cube de ned by theay: If all three sampling pointgs; p2; ps lie inside
sampling points of the pair of two complementarpf A, we take the inner surface patch. Analogously if



all three sampling points lie outside &f, we take the is always well-composed, no such criterion is known for
outer surface patch. If only one sampling popitlies the 3D case. In [7] it is proven thatregularity does
inside of A, we use the mapping of the inner surfaceot enough to imply well-composedness. To deal with
patch for each point lying inside the smaller triangléhis problem there are two different approaches known:
4 (p1; F“sz; ‘“Tm) and the mapping of the outer surfac&irst, as suggested by two of the authors together with
patch otherwise, see Fig. 9 for an illustration. In ordésallier in a previous paper, nondeterministic changing
to get a connected surface, we further add the straigtitthe voxels at positions where well-composedness is
line connections between the inner and the outer surfat& ful lled [19], and second, interpolating voxels on
patch for any point lying on the straight line froﬂﬁgﬁ a grid with higher resolution in a well-composed way.
to WTW If one sampling point lies outside and the otheFhere is a method known for the 2D case using this
two inside of A, we de ne the mapping analogouslyapproach [20], which can directly be generalized to three
This leads to a surface patch between the three poidimensions in order to guarantee 3D well-composedness.
which is always homeomorphic to a disc. Furthermore, The advantage of the rst approach is that it does
since any of the added straight line connections followt need to increase the number of sampling points. The
a normal of @Aand thus cuts@Aexactly once, the disadvantage is that changes can propagate which makes
intersection of the surface patch wit®Ais a simple it impossible to guarantee the preservation of topology.
curve. By combining the surface patches of the cullhe second approach is purely local and deterministic,
faces we get a surface homeomorphic to the cube surfagel thus control of topology is possible, but it has the
intersecting@Ain a Jordan curve. For case 8 we simplgisadvantage that it requires to increase the sampling
look at the union of the cube pair. This box also cuigensity. In case of the mentioned method [20] the reso-
the surface of the topology preserving reconstruction figtion has to be tripled in any dimension, i.e. there are
one Jordan curve, see Fig. 10(8)a+b. By using surfag times as much sampling points used as in the original
patches in the same way as above we get a surfagRl. We show that this is also possible by only doubling
homeomorphic to the box intersectir@Ain a Jordan the resolution in any direction, i.e. using 8 times as much
curve. If we have a cube of case 1, we also can take #jisxels and give a guarantee for topology preservation for
above surface patch construction, since it only consisfigitizations ofr-regular objects.

of triangles lying completely inside respectively outside pe pition 17: Let A R3 be a binary object and

of A and thus the surface patches are well-de ned. The 5 cubic sampling grid. Further 1&° denote the grid
resulting combined surface does not inters@ohat all.  of doubled resolution in any dimension containisg
Thus we have partitioned the whole space into regiopsnew sampling point inS°n'S lying directly between
separated by the surface patches. The original objechi® old ones is called &ace pointsince it lies on the
homeomorphic to the result of the topology preservinghmmon face of the two voxels of the sampling points. A
reconstruction inside each of the regarded cubes/cuQ&y sampling point lying directly between 4 face points
pairs. The combination of the local homeomorphisms callededge pointsince it lies on the common edge of
(each being ar(2r®+ ")-homeomorphism) leads to a4 old sampling points and a new sampling point lying
global r-homeomorphism fromA to the reconstructed girectly between 6 edge points is calledrner point
set. B since it lies on the common corner of 8 old sampling
Now we are able to de ne reconstruction methods, whighbints. Now themajority interpolation (MI)of A on S

guarantee to preserve the original topology of @an s the union of voxels of all sampling points 2 S°
regular object if one uses a cuhibgrid with 2r°<r . fyllling one of the following properties:

s is an old sampling point inside &, or
IV. WELL-COMPOSEDDIGITIZATION BY MAJORITY s is a face point and both neighboring old sampling
INTERPOLATION points are inside oA, or

sis an edge point and at least 4 of the 8 neighboring
old sampling and face points are insideAof or

s is a corner point and at least 12 of the 26
neighboring old sampling face and edge points are
inside of A.

As shown in [13], a lot of dif cult problems in 3D
digital geometry are much easier if the images are well-
composed, e.g. there exists only one type of connected
component, a digital version of the Jordan-Brouwer-
theorem holds and the Euler characteristic can be com-
puted locally. Unfortunatlely most 3D binary imagedhe Ml surfaceis the boundary of the MI. Theomple-
are not well-composed. In contrast to the 2D casment majority interpolation (CMIdf A is de ned as the
where the digital reconstruction of anregular shape complement of the Ml ofA® and analogously thEMI



surface 3 from their complements, so here we have to consider
Theorem 18:The majority interpolation of any setsubcases a and b. As Fig. 10 shows, the requirements
A R®is well-composed. are ful lled in every of the 8+4 cases. [ ]
Proof: It only needs to be shown that the Ml is Corollary 20: The CMI algorithm is a topology pre-
well-composed for every local con guration of 8 neighserving reconstruction method and thus the result of the
boring old sampling points. The proof simply followsCMI algorithm isr-homeomorphic to the original object
with checking all cases, see Fig.10. Thus the resultiifgA is r-regular and the sampling grid is a cubiégrid
digital binary image is well-composed. m with 2r0<r .
Note that for all cases except of case 12b a simpler
de nition of MI is possible: A new sampling point
simply is regarded as foreground if more than half of _
the neighboring 2, 4, respectively 8 old sampling points, The MI approach needs 8 times as much voxels as
i.e. at least 2,3 respectively 5 sampling points are in tﬁémp“ng points in order to guarantee topology preser-
foreground. Only in case 12b this leads to a differeN@tion. We will now show that this is not necessary if
result which is not well-composed. But if one deals witRN€ Uses balls instead of cubical voxels: An object with
the digitization of arr -regular image with a cubicgrid  CO'Tect topology can also be constructed by using the
(2r® < r), this simpli cation always leads to a well- Union of balls with an appropriate radius at the positions

composed set, since then case 12b can not occur.  ©f the original sampling points. This idea is related to
splat rendering in computer graphics [21]. The radius

of the balls has to be chosen such that the result inside
any of the eight cube con gurations ful lls the criterion

V. BALL UNION

(Da (L)b (2)a (2)b of a topology preserving reconstruction. Thus since in

L~ —— et —— case of con guration 1, When all eight sampling points

ﬁ \;-g ;‘ & are inside the sampled object, the whole cube has to be

) . .

(3)b (4)a (4)b (5) covered by the balls, their radius has to be at ledst
N __ Otherwise the radius has to be smaller than the distance
1 1™ r ] r . . : . :

| L 3 LAl i of two neighboring sampling points since a ball centered

(\7) (8)a (g)b (g)a (9)b in one of the points must not cover the other. This upper

H H 0 . 0
ﬁﬂ ; rjr - bound for the radius |392—§r 1:155° For any ball
L i E[ﬂ e ‘/iﬁ radius in between these values, we will show that the

(10)a (10)b (12) ”’(\ié)a K"'(lz)b result is topologically the same. For our illustrations we
% e — use the mean value = 3 + pl—é 1:077
3 \,J‘/\ \/ De nition 21: Let A RS2 be a binary object an&
(13) (14 (8)a+b a cubic sampling grid. Theall union (BU)of A on S
is the union of all ballsBy(s) with s 2 S\ A and
Fig. 10. The 22 different cases of Majority Interpolation (14 casgP< m < 10 3

plus complementary cases). The complementary occurences (8)a an 3 .. . .
(8)b of case 8 can be combined such that the surface inside the doublt-erheorem 22'_The BU algorithm is a topology preserv-
cube is homeomorphic to a disc (8)a+b. ing reconstruction method and thus the result of the BU
algorithm isr-homeomorphic to the original object A
Theorem 19:The MI algorithm is a topology preserv-is r-regular and the sampling grid is a cubftgrid with

ing reconstruction method and thus the result of the Nro<r .

algorithm isr-homeomorphic to the original object A Proof: Changingm in between the given interval
is r-regular and the sampling grid is a cubiégrid with does not change the topology of the BU result for any
2r0<r . of the con gurations, since a topology change would

Proof: We only have to check if in any of the 8require that at least two of the eight, resp. twelve
cases the result of the Majority interpolation algorithraampling points have a distance d to each other with
ful lls the requirements for a topology preserving red or 2d being inside this interval. Thus we only have to
construction method. Since majority interpolation is naheck the eight con gurations for one suah. Fig. 11
dual (i.e. the reconstruction of the complement of a sgltows the reconstruction for the different con gurations
is different from the complement of the reconstruction ofith m = %+ p% As can be seen the requirements of a
a set), we also have to check the complementary casgsology preserving reconstruction are ful lled for any
of the 8 con gurations. Only con gurations 1 to 4 differcon guration. [ ]
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changed: As already stated byiidt [15], it is suf cient
to add the two triangles making up the quadrilateral
Da Db (2)a (2)b (the four intersection points along the edges of the
ambiguous face, see Fig. 12(8) and (8)MC). Nielson
and Hamann [16] mentioned that this method may lead
(3)a (3)b (4)a (4)b to edges being part of more than two triangles and
thus non-manifold surfaces, but this does not happen
for the only possible occurrence of case 8. Since we
need only one quadrilateral in such a con guration we
() (6) (7) (8) . . :
simply have to differentiate between the complementary
Fig. 11. Cases 1 to 8 with complementary subcases for ball unid}@ts of con guration 8 and add the quadrilateral (i.e.
two triangles) only to the list of triangles of one of
the two parts. In the following this slight modi cation
VI. M ARCHING CUBES: POLYGONAL SURFACE of the original marching cubes algorithm will be called
REPRESENTATION modi ed marching cubes (MMC)
Theorem 23:The result of the MMC algorithm is-
One of the most common reconstruction method®meomorphic to the surface of the original objecAif
is the marching cubes algorithm, introduced 1987 hyr-regular and the sampling grid is a cubiégrid with
Lorensen and Cline [14]. This algorithm analyses local%<r .
con gurations of eight neighboring sampling points in Proof: As can be seen in Fig. 12, the MMC surface
order to reconstruct a polygonal surface. Although ndivides in any of the eight cases the cube/double-cube
mentioned in the initial publication [14] the algorithmregion into two parts, one containing all foreground and
does not always produce a topologically consistent siwhe containing all background sampling points (except
face and might produce holes in the surface. In order ¢ the rst case). If one lls the foreground part, one
deal with these problems one has to introduce alternattyets a volume reconstruction method which is topology
con gurations and decide in a non-local way, whiclpreserving. Since the marching cubes result is just the
of the ambiguous con gurations t together [15], [16].surface of such a reconstruction, theorem 16 implies that
Thus a lot of research has been done on how to dea¢ MMC result has to be-homeomorphic to the surface
with these ambiguous cases and to guarantee that ¢fiehe original object. [
resulting surface is topologically consistent [15], [16],
[22]-[26]. But topological consistency only means that
the result is always a manifold surface — none of the
proposed modi cations of the marching cubes algorithm (1)a 2 3) 4) (5)
guarantees that the reconstructed surface has exactly the
same topology as the original object before digitization.
The ambiguous cases of the marching cubes algorithm (6) ) (8) (8)MC
are exactly the cases which can not occur in a 3D
weII-composed image. Thus using the above presenf@_@l,lz- Casgs 1 to 8 for thg MMC algorithm and case 8 for the
. . . . original Marching Cubes algorithm.
majority interpolation algorithm to generate a well-
composed image and then applying marching cubes on
this new set of points would lead to a polygonal surface
representation with no ambiguous cases. But this would
require to double the resolution in any dimension which If one wants to reconstruct a continuous object from a
leads to approximately four times as much triangulaiscrete set of sampling points, one often uses interpola-
surface patches than in the original resolution. Forttion. The simplest interpolation method in 3D is the tri-
nately this is not necessary: Since cases 9 to 14 can lo¢ar interpolation which can be seen as the combination
occur in the suf ciently dense digitization of anregular of three linear interpolations, one for each dimension.
image and since the only remaining ambiguous casdrBour case only the binary information if a sampling
always occurs in a de ned way, a slight modi cationpoint is inside or outside of the sampled object is given.
of the original marching cubes algorithm is all we needhus we take the values for the foreground and 1
to guarantee a reconstructed surface without any hol&s. the background sampling points and interpolate the
Only the triangulation of the eighth case has to hgrayscale values in between. Then thresholding With

VII. TRILINEAR INTERPOLATION
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will lead to a continuous representation of the sampledanyC?! functions fromR3 to R is called apartition of
object. The interpolation result consists of smooth anghity on R3 if it satis es two conditions. First, for each
nice looking patches. As we will show, the result of the 2 N, ' ¢ is a nonnegative and compactly supported
trilinear interpolation of the sampled version of an function, i.e.," k(p) 0 for every p 2 RS, and
regular object has the same topology as the originalfisupp(' «)gk2n iS a locally nite cover of R, where
the sampling grid is am®grid with 2r°<r . supp( k}is the closure of the sép 2 R® | " «(p) 6 0g.

De nition 24: LetA RS be a binary objectan8 a Second, ' «(p) = 1, for everyp 2 R3. A parti-
cubic sampling grid. Then thteilinear interpolation (TI) tion of unity is typically used to blend locally de ned
of A onS is the zero level set of a functiam: R®! R functions into one global function. More speci cally,
with u being 1 at any sampling point inside oA, u suppose that we have a partition of unftyy,gkon ON
being 1 at any sampling point outside #f andu being R® and we want to smoothly blend overlapping patches
trilinearly interpolated between the eight sampling peinbf functionsfy : supp( k) ! R into each other. This
of the surrounding cub€y (see Fig. 13 for the different leads to a globally de ned functioi : R® ! R in
possible cases). 3 terms of ttlx_e seffgkon Of local patches anfl' gkon

Theorem 25:The Tl algorithm is a topology preserv-asf (p) = o' k(P)fk(p), for all p 2 R3. Since the
ing reconstruction method and thus the result of the Tilinear interpolation leads to smooth (i& ) zero level
algorithm isr-homeomorphic to the original object 4 sets, the smoothness of the resulting surface does solely
is r-regular and the sampling grid is a cubiégrid with depend orf' gkon-
2r0<r . The above partition of unity approach has long been a

Proof: Since the trilinear interpolation inside ofkey ingredient of nite element meshless methods [27],
a cube con guration solely depends on the values and it has more recently been used for reconstructing
the cube corners, we only have to check the eigtirfaces from point sets [28] and for approximating iso-
possible con gurations. As can be seen in Fig. 13 tigurfaces from multiple grids [29].
requirements of a topology preserving reconstruction areWithout loss of genergfity le€ = Z3 be the cubic
ful lled for any con guration. m sampling grid (i.e.r® = 73) and A be anr-regular
set with 2r% > r. Our goal is to de ne a function
f : R®! R, which locally approximates the trilinear
interpolationT | and which is as smooth as necessary. In
(1) 2) (3) (4) order to blend the trilinear patches into each other their
domains have to overlap, thus instead of using the non-
overlapping cube€y as in the de nition of the trilinear

interpolation, we choose bigger cub& = fp 2
5 6 7 8 - ) . ’ f .

©) © ") ®) R%ip1 Scaj p*dijpe Skal 3+ dips Scal
Fig. 13. Cases 1 to 8 for trilinear interpolation. 3+ dg with s, being the sampling points afi< d < 3

being the amount of overlap.

Our construction is similar to the ones in [28] and [29],
as they also subdivide the Euclidean space into cubes,
and assign a weight function and a shape function with

While the surfaces of the above reconstruction metbach cube. However, the constructions in [28] and [29]
ods are only continuous but not necessarily differentiabdéfer from ours in two important ways. First, the support
at any point, they can not be used if one needs ¢ a weight function in [28] and [29] is a ball centered
compute local surface properties like tangents, curvatuat the center of the cube assigned with the function,
etc. Therefore we need to reconstruct a smooth surfagaad each shape function is either a general quadric, a
Depending on the application the surface shouldCBe bivariate quadratic polynomial in local coordinates or a
C2,C3,:::, or evenC? . In this section we will show piecewise quadric surface [28], or a radial basis function
how to construct such surfaces based on the triling®BF) interpolant [29]. Second, the zero level 5et(0)
interpolation. Again the resulting reconstructed objects f built by either construction is not guaranteed to be
will have the same topology as the original objects of lsomeomorphic to the surface one wants to reconstruct
is r-regular with suf ciently bigr. from a point set [28] nor to the iso-surface one wants to

The idea is to smoothly blend between the trilineapproximate from multiple grids [29].
patches (see Fig. 15) by using a partition of unity of There are different types of intersections of the cubes
weight functions. A sef' ygkon Of at most countably Cy (see Fig. 14):

VIII. SMOOTH SURFACE REPRESENTATION
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Center regions are the cubic regions of points whicH algorithm isr-homeomorphic to the original object if
lie in only one cube. They have three sides of length is r-regular and the sampling grid is a cubigrid

1 2d. The center region inside a cullg is noted with 2r%<r .

asC?.

Face regions are the cuboidal regions of points

which lie in exactly two cubes. They have two sides

of lengthl 2d and one side of lengtBd.

Edge regions are the cuboidal regions of pointsy. 15. Left: Examples of trilinear interpolation without blending.
which lie in exactly four cubes. They have one sidBight: The same examples with wih* -blending.

of lengthl 2d and two sides of lengtRd.

Vertex regions are the cubic regions of points which

lie in exactly eight cubes. They have three sides of

length 2d.
(a) (b) (c)
(a) (b) (c) (d)
Fig. 14. The intersections of neighboring cubes de ne Vertex (a),
Edge (b), Face (c) and Center regions (d). (d) (e) ()

The partition of unity blending function's, are de ned Fig. 16. Digitization of anr-regular object (a) with a cubiér-

as the product of three one-dimensional partition of umtyld (b) digital reconstruction (Note that the surface is not a manifold
— inside the circle) (c) ball union,(d) trilinear interpolation, (e) majority
functions’ «(p) = (ps Sk'l) (P2 Sk'2) (Ps Sk;3 ), interpolation and (f) modi ed marching cubes.

wheresy is the sampling point in the center Qi an
:R! R s given by
8

g 1 if jtj 2 d IX. VOLUME AND SURFACE ESTIMATION
(t) = 0 e ifjy 3+d In the previous sections we showed different methods
- jtj 7 . .
§ h 1 20 | to reconstruct a sampled object with only a small geo-
Th WG e g9 clse metric and no topological error. In this section we will

2d 2d

discuss how appropriate these reconstruction methods are
whereh : (0;1) ! R" is a bounded strictly mono-to measure the volume and the surface of the original
tonic increasing function starting in the origin, i.egbject.

limy; oh(x) =0. Possible choices fdn are: The estimation of object properties like volume and
h(x) = x for linear blending: This leads to @;- surface area given only a digitization is an important
continuous surface, problem in image analysis. In this section we will show
h(x) =2x2 3x2+1 for cubic blending: This leads that both can be computed with high accuracy if the
to aCs- contmuous surface original object isr-regular. At rst we show that the
h(x) = ex 1e ™+ ex 1 for C! -blending. This above reconstruction methods can directly be used for
leads to aC! and thus smooth surface. volume estimation and we give absolute bounds for the

Due to the de nition of' |, it is 1 inside of the Center difference between the reconstructed and the original
regionCZ and it isO outside ofC}. Inside a face region volume:
it is constant in any direction parallel to the regarded Let A° be the dlgltal reconstruction of anregular
face and similarly inside any edge region it is constanbjectA with a cubicr®grid S with 2r®< r . Without
in edge direction. loss of generality letS = Z3 (A and S can always
Lemma 26:Letd = 0:2. Then the zero level set of thebe transformed such that this is true). Now flefg =
smoothed functiori is homeomorphic to the zero levelzZ® 1 1 1) be the set ofcorner pointsof voxels
set of the trilinear interpolation inside any cug. centered |nsI 2 S. Then eachrZball Bo(c) has
The proof can be found in the appendix. exactly eight sampling points; on its surface. The
Corollary 27: The smooth blending is a topologyvoxels of these eight sampling points contain as
preserving reconstruction method and the result of therner point. Now letC f c¢g be the set of corner
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points whose eight sampling points are not all inside ¢ the grid size, sincém | ¢ OC ) = 1 . We will call
all outside the objecAA. Then the unionU of all r% such methodsemi-local Note that in their experiments
balls with centers inC supercovers the bounda®A Coeurjolly et al. used a xed minimal size for the used
since ther-homeomorphism constructed in the proof dbcal area, such that their implementation is not multigrid
Theorem 16 is equal to the the identity outsidelbf convergent.
Moreover U covers not only the surface of the digital We think that using a semi-local approach for surface
reconstruction, but also the surface of any topologyrea estimation is the right choice. In this paper we will
preserving reconstruction method for the same reasosisow that semi-local surface area estimation can be done
Thus the original set and all the different reconstructian a much more simple way than proposed by Coeurjolly
methods differ only inside dff and since/(U) nr @ et al. by simply counting certain sampling points. While
with n being the number of points i€, the difference in [33] the estimation of surface normals was used to
between the original volume and the volume of one afpproximate the surface area, we will measure the vol-
the reconstructions, i.e. the volume reconstruction ername of a thick representation of the surface. The idea is
is at mostnr . With lim,o ¢V(U) = 0 follows that that with the thickness of this volume going to zero, the
this volume estimation method is multigrid convergergurface can be approximated by dividing the volume by
for any r-regular image. the thickness. The volume can be estimated by counting
Multigrid convergence of a functiofi,c on a digital voxels. Since the volume estimation has to converge
representation of an object with sampling grid siZe faster than the size reduction of the surface, we have to
means thatlim;o of;o is equal to the value for theincrease the sampling density faster than decreasing the
continuous object. thickness of the surface representation. That is why our
Surface estimation is not as simple as volume estipproach is semi-local. The basic property which makes
mation. Kenmochi and Klette showed that local surfacr approach possible, the connection between surface
estimation methods are not multigrid convergent [304rea and volume, is given by the following lemma:
This is quite reasonable, since any local surface ared.emma 28:Let A be anr-regular object. Then the
estimation method (local means that the size of the armaface area\ (@A is equal tolimg ¢ 2—15 V(@A Bs),
around a local cube which is used for approximating thvehere @A Bg can be seen as a thick representation of
surface locally is xed relatively to the sampling gridthe surface@ Awith thickness2s.
size) based on binary images allows only a nite number Proof: Let f Txg be a polygonal surface approxi-
of different surface patches, while even the number ofation of @Asuch that each polygoin is a triangle
different orientations of planar surfaces is in nite. such that the distance between any two of the three
This means we need a non-local method in the sertsangle pointsty.1;tk.2;tk.3 2 @Ais bounded bys
that the size of the area around a local cube which is ugd@dhis can be done by using the MMC algorithm).
for approximating the surface locally has to increase witllow let ny.1; nk.2; Nk.3 be the normal vectors a® Ain
increasing sampling density. tk1; tk2; tkes, and letVi and Wy be the triangles which
In the literature, two main approaches for globalne gets by projectind along the normals onto the
surface area estimation exist. While Klette et al. [3Xjvo planes being parallel to the plane containingwith
use a digital plane segmentation process without givielstances. Further letPy be the convex hull of the six
a proof of multigrid convergence, Sloboda et al. [3%orner points oy, andWy. ThenPy is a prismoid and
de ne a multigrid convergent method based on thies volume isV(Py) = $(A(Vk) +4A(Tk) + A(Wy)).
relative convex hull of the discrete object, but no ef cienThe union of the prismoids approximatée§@A Bs),
algorithm exists to compute the relative convex hull. thus:
The rst and as far as we know up to now the X X

s
only approach giving a multigrid convergent algorithm V(Py) = §(A(V") FAAM) + A(Wi))
was introduced by Coeurjolly et al. [33]. They estimate k2N X k2N X X

the surface pormals and use this to compute a surche = §( A(Vi) + 4 A(Ty) + A(Wy))
area approximation. They prove that their algorithm is K2N K2N K2N

multigrid convergent if the size of the local area which ilg rs! Othe vectors of any triangi& become parallel

used to estimate a surface normal vector decreases vgl .
— . o thusA(Vk) ! A(Ty) andAW,) ! A(Ty). This
O(% ), where is a measure for the grid size. Thu eads to (V) (T (Wi (T

their approach is local in the sense that the used area X
converges to zero relatively to the object size, but it is lim i\/(@A Bs) = lim V(Pw)
global in the sense that it converges to in nity relatively s 02s st0 ., 28
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!
X X X ! 0.y 0 73 i
ANVO+4 - AT+ AW, s; of ther2grid p%r Z3 with A. .
KN N KON (5) Compute the seC of center pointsc of the
[ cubic neighborhood con guration§; which consist of
X X both foreground and background sampling points.
6 AM) =lm — A(Tk) = A(@A: (6) Count the numbeN of sampling pointss; with
k2N k2N distance smaller thas to someg; 2 C.
(7)) An=# N; n=n+1
(8) loop until convergence oA, .
(9) returnA,.

The presented method is local relatively to the regular-
ity constraintr, i.e. relatively to the object size, but it is
global relatively to the size of the sampling grid. That's

why we call our approackemi-local We think that the
Now we can use the measurement of volumes for surfage;, of 4 semi-local method is the best choice for dealing
area estimation. In order to get a multigrid convergeqyiii, the problem of surface area estimation, since local
method for surface estimation, we must measure tie.ihods are not multigrid convergent and it seems to be
volume of a thick representation of the surface ang it to prove the convergence of global methods. Our
we must guarantee that (1) the thickness parametegq,tion to the problem of multigrid convergent surface
converges to zero and (2) the estimation accuracy gf, estimation is extremely simple. In order to nd the
its vol_umg also converges torozero. ThIS is possible l%‘émpling points with distance smaller than(step (6)
choosinglim s = 0 and lim 'c = 0, i.e.T converges o e aigorithm), one can use a linear-time algorithm
faster to zero thars. The last remaining problem isfor Euclidean distance transform [34]. Then the above
to estimate the volume of a thick representation of th@gorithm only needs linear time for a given sampling

surface by using only the information which samplingesolution relatively to the number of sampling points.
points are inside the object and which sampling points _ _
are outside. This is done as follows: We know that the Although the class of-regular objects is very general,

unionU of all r®balls with centers ifC covers@AThus & lot of objects of interest are notregular for anyr.
the s + rdilation of C covers@A B, i.e. the thick Nevertheless our algorithm is multigrid convergent if the

representation of@Aof thickness2s. Otherwise since s_urface of an object is almost everywhere diff_erentiable,

@A By C for anyr-regular setA with ro<r, we SInce then 'the percentage of the surface which bgha_lves
know that@A E(r°+(s oy Covers the(s r9)-dilation r-regulgr (i.e. there exists an outside ans an inside

of C. Thus the volume o@A Bs can be approximated osculatingr-ball) goes t0100%for r ! 0. Note that

by counting the sampling points insi@® Bs (see Fig. this is true for nearly any object of interest.

17). WithN :=] s jsi ¢j s;g 2C followsfor  Theorem 29:Let A be a continuous object with

Fig. 17. C Bs appoximates@Awith increasingn.

the volume of the thick representation: bounded curvature with except a detthat is a nite
_ 2 union of curves of nite length (sharp edges). Then the
V(@A Bs)= LimopgrQ N: above surface area estimation algorithm converges to
Thus ' A(@A, i.e., the mulitgrid convergence is true fAr.
A(@A = lim iV(@A B.) ~ Proof: LetB;= @A(E B) be the surface ok
sl 02s without at-neighborhood o . ThenB; is a nite union
_ 12 & _ r® of compact surface patchds[ [ An. The patches are
= lim ?FEV N= lm p— N disjoint, and their curvature is bounded by some constant
st 0t 04S 3 st 0,10 3S

u. Takingr = min(t;u), B¢ is anr-regular surface,
Thus the output of the following algorithm converges toe., for every surface interior point 2 By, there exist

the true surface area: two differentr-balls that intersecB; in exactlyx. This
implies the convergence of the above algorithrA{@®,).

(1) Let A be anr-regular set; n=0 If t goes to zero, the error due to the wrong surface area

(2) do measurement insid@A (E B;) converges to zero

3) r0= % " s= % " and the surface area 8f; goes to the surface area Af

(4) Compute the intersection of the sampling poinfBhus the algorithm converges &(@ A. [ ]



X. CONCLUSIONS

(2]

We have analysed the problems of topology presegs,

vation during digitization ofr-regular objects in 3D.

We showed that with a suf cient sampling density sev-

eral foreground-background-con gurations of neighbor14

ing sampling points are not possible. We used this to
derive the rst sampling theorem for topology preserving[s]
digitization in 3D. Since this theorem is not restricted

to a certain method for digital reconstruction, we in-[6]

troduced several different methods which do all ful ll

the requirements of the sampling theorem. That makes

our theorem directly applicable to a large variety o

approaches.

f[7]

The rst presented method is suitable for voxel-based
approaches. Since the straightforward voxel reconstruc-

we introduced Majority Interpolation, a method to in-
terpolate new voxels at doubled resolution such that thie]

topology is always well-de ned and in case ofregular

objects even identical to the original topology. Since tlﬁ:O]
resulting digital object is always well-composed, several

3D digital geometry problems are much simpler.

We also modi ed the Marching Cubes algorithm such!]

that the generated surface has exactly the same topology
as the original surface. This is the rst modi cation

of the Marching Cubes algorithm which guarantees [¥2]
surface with exactly the same topology as the origin&?l

object instead of only a topologically sound surface.

[14]

In addition to that we showed that the trilinear interpo-
lation also ful lls the requirements of the theorem and
that it is even possible to blend between the trilinear
patches in order to get a surface which is everywhens;

smooth without changing the topology.

Finally we showed that one can simply use balls with©!
an appropriate radius instead of cubical voxels and it is

also guaranteed that the topology is exactly the same as

for the original object.
Further on we showed that every of these methods

[17]

Q] A. Lopes and K. Brodlie.

be used for multigrid convergent volume estimation of
r-regular objects. We discussed why it is not possible to
use our reconstruction methods for surface area estima-

algorithm which we proved to be multigrid-convergent.
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Proof: To proof the lemma, we will construct a

homeomorphism of the spad®®, which maps the zero
level sets onto each other, for any Center, Face, Edge
and Vertex region separately.

Inside a Center regio€?, the blending function
is 1 and all other' ; are zero. Thug is equal to the
trilinear interpolation and the homeomorphism is given
by the identity.

Inside a Vertex region the homeomorphism can also

be chosen as the identity if it is guaranteed that the zero
level set does never touch a Vertex region. Suppose the
sampling point inside a Vertex region has vall€rhen

the smallest possible value of the trilinear interpolant
inside the Vertex region is achieved at the pdiitd; d)

if all surrounding sampling points have the valud.
This value is2 (1 d)® 1=0:024> 0. Analogously

for a background sampling point (valuel) the trilinear
interpolation inside the Vertex region is always smaller
or equal to 0:024 Sincef is at any point a convex
combination of trilinear interpolants which have all the



