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Abstract

Volume based digitization processes often deal with non-manifold shapes. Even though many
reconstruction algorithms have been proposed for non-manifold surfaces, they usually don’t preserve
topological properties. Only recently, methods were presented which—given a finite set of surface
sample points—result in a mesh representation of the original boundary preserving all or certain
neighbourhood relations, even if the sampling is sparse and highly noise corrupted.

We show that the required sampling conditions of the algorithm called “refinement reduction”
limit the guaranteed correctness of the outcome to a small class of shapes. We define new locally
adaptive sampling conditions that depend on our new pruned medial axis and finally prove without
any restriction on shapes that under these new conditions, the result of “refinement reduction”
corresponds to a superset of a topologically equivalent mesh.

1 Introduction

This work is an extended version of the paper to appear in Proceedings of Computational Topology
in Image Context, CTIC 2010 [TBM10]. In comparison with our CTIC 2010 article, this contains the
observation 2.6 and its proof.

Surface reconstruction from boundary points is a well known problem for which many algorithms
have been proposed. We are interested in algorithms for which topological correctness of the result can
be guaranteed. Recent development has been headed toward guarantees under less strict assumptions
on the sampling points.

In [ABK98] the concept of e-samples is introduced in order to give a provably correct algorithm for
reconstructing smooth surfaces. A finite set S of sampling points on the boundary is an e-sampling if
every boundary point b has a sampling point in a distance of at most €lfs(b), where the local feature size
(Ifs) denotes the distance from b to the medial axis (MA). Similar restrictions by the maximal value of
the ratio of the sampling density and local curvature have been made in [Att97, ACDL00] in order to
prove the topological correctness of the resulting reconstructions. The results proposed in [CLO7] and
independently in [ST09Db] allow reconstructions of non-smooth surfaces from noise-corrupted samples
assuming a known global bound on the sampling density. This is based on the weak feature size (wfs),
which denotes the distance between the boundary of the shape and the set of criticals on the distance
transform. In [ST09b], this was explicitly extended to handle the reconstruction of non-manifold surfaces.
Later [ST09a], the assumptions on sampling density were based on a local region size (Irs), which has
the advantage to be a locally adaptive measure based on the boundary points and the local maxima on
the distance transform. The associated algorithm termed “refinement reduction” deals with highly noise
corrupted samplings of non-manifold boundaries and results in a refinement of the original boundary
leading to the well known concept called oversegmentation in the 2D case.

In this work, we show that the sampling density based on Irs limits the guaranteed correctness of
the reconstruction to shapes having only one maximum on the distance transform in each connected
region. We introduce a new pruned medial axis called homotopical azris and use it to propose new
sampling conditions. Finally, we prove that under these new sampling conditions the above-mentioned



“refinement reduction” algorithm results in a superset of a topologically equivalent approximation of the
original non-manifold boundary. In this way, we extend the guaranteed correctness of the reconstruction
to any kind of shapes.

The paper is structured as follows: After introducing some preliminary concepts in Section 2, we
propose our new homotopical axis in Section 3 and give new sampling conditions in Section 4. In Section
5, we recall the “refinement reduction” algorithm [ST09a]. Finally, we discuss the above-mentioned
limitation of the Irs-based approach in Section 6 and give the central proof that our new sampling
conditions lead to a superset of a topological equivalent of the original boundary, even for arbitrary
non-manifolds.

2 Basic Definitions

The focus of this work is the reconstruction of surfaces of multiple regions, given a sampling of their
boundary. So, we do not only consider the 2-manifold surface of a single solid, but a partition of the 3D
space into different regions.

The following definition is adapted from [ST09a]:

Definition 2.1 (Space Partition) In 3D, a space partition R is defined by a finite set of pairwise
disjoint regions R = {R; C R3} such that each region R; € R is a connected open set and the union of
the closures of the regions covers the whole space, i.e. |J;, R; = R3. The boundary of the partition is

In order to investigate the volumetric information about the space partition, we make use of the well
known concept of the distance transform. The reversed distance transform delivers for each input point
the touching points of the maximal inscribed ball with the boundary.

Definition 2.2 (Distance Transform) The distance transform dg of a set B C R? is defined as
dp(z) = mingep ||z — y||. The distance transform is called continuous if B is infinite, and discrete
otherwise. The reversed distance transform is defined as rdg(z) = {y € OR | |z — y|| = dp(z)}. T is a
local maximum of the distance transform iff 3¢ > 0Vz' : (|l2’ — z|| <€) — (dp(2’) < dg(x)).

Since the distance transform is a non-smooth function in general, regular gradient methods cannot be
applied to define the critical points and the steepest ascent on dp. Lieutier [Lie04] extends the definition
of gradients:

Definition 2.3 (Gradient and Criticals [Lie04]) Let O(z) be the center of the smallest closed ball
enclosing rdp(x). Then the gradient on x is defined as

x — O(x)
dg(z)

and the set of critical points of V is given by F(R) = {x € R||V(z)|| = 0}. More generally, F3(R) =
{z e R[[IV(2)] < 5}

Obviously, limg_o (Fg(R)) =F¢(R) =F(R) and 8 < ' = F3(R) C Fg (R).

Then V gives the direction of the steepest ascent, i.e. the direction which maximizes the growth
of dg. Note that V is not continuous. However, Lieutier [Lie04] proves that Euler schemes using the
vector field V converge uniformly when the integration step decreases. Integrating V then results in a
continuous flow

V(z) =

¢
¢:RTxR+—R with @(t,x)=x+/V(€(T,x))dT
0

Throughout our research, the study of volumetric conditions inside the regions is done by following
simple paths. A simple path is characterized by means of the values of the distance transform along the
path:
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Figure 1: left: medial axis, right: our new homotopical axis (illustrated in 2D for simplicity)

Definition 2.4 (Simple Path) A continuous map m : [0,1] — R3 is also called a simple path. Further,
7 is an increasing (strictly increasing, decreasing, strictly decreasing) path on the distance transform
iff dp o w is increasing (strictly increasing, decreasing, strictly decreasing) on [0,1] respectively. 7 with
7(0) = x is a steepest path (starting at x) iff Vt € [0,1] I’ € RT : 7(t) = €(¢/, x).

In order to investigate which volumetric information about the space partition can be used to define
the new sampling criteria of the boundary, we refer to the well known concept of a complete shape
descriptor, the medial axis:

Definition 2.5 (Medial Axis [Blu67]) The medial axis of a set B C R? is defined as MA = {x €
R3 | #(rdp(z)) > 1}.

Let Q(z, €) be the intersection of an open ball placed on x with radius € and MA. z is a local maximum
on MA iff e > 0Va' € Q(z,¢) : dp(a’) > dp(x).

In the following, we will see that the maxima on the medial axis are congruent with the maxima of
the distance transform. We will use this fact to show the relation between stable and unstable results of
the reconstruction algorithm when applied on samplings taken with different conditions.

Observation 2.6 (Local Maxima on Distance Transform and MA:) x is a local mazimum on MAT
iff x is local mazimum on the distance transform (dp).

Proof: I. Let « be a local maximum on the distance transform. Then there is an € > 0 such that x is
the maximum of all 2’ in the open ball B,(z, €) centered on x with radius e. dg(x) is the distance to the
nearest boundary point b, so the maximal closed ball B,,,.(z) centered on z has the radius r = dg(z)
and touches the boundary at point b. Let us assume that there is only one boundary point on the
boundary of B,,.(x). So r can be increased to ' such that a closed ball on &’ touches another boundary
point. Since dg(z’) = v’ and r’ > r, there must be an increasing path between = and z’, which is a
contradiction to x being a maximum in B,(z,€). Thus the boundary of B,,.(z) must touch another
boundary point and so z € MA. Let Q(x,¢) be an intersection of any surface with B,(z,€). Since x is
maximal for all 2’ € B,(z, €), = is maximal for all " € Q(z, €). Thus z is a local maximum on MA.

II. Let = be a local maximum on MAT. Let us assume the opposite: z is not a local maximum on
dp. Then there exists an increasing path m,, on dg between x and a local maximum on dp. Since x
is maximum on MAT and 7, is increasing, there is a ¢’ > 0 and a subpath = C 7, with 7(0) = = and
(1) = mn(t’), such that vt € (0,1] : w(t) ¢ MA. Let ¢ € (0,1] be a m-coordinate, then the maximal
closed ball B,,.(7(t)) touches the boundary in only one point b. The center points of all growing balls
touching b construct an increasing path m; with m(0) = 7(¢). The greatest ball on m; touches the
boundary in b and an additional point b, so m;(1) € MA.

Let fr : 7([0,1]) x [0,1] — MA be a function where for all ¢ € [0,1] the path fr(7(t),-) is increasing
with fr(7w(t),0) = 7w(t) and fr(7w(¢),1) € MA. Since the distance transform has a locally Libschitz
continuous gradient on R \ MA (see for proof [Wol92]), f» is continuous. So fr(w(t),1) with ¢ € [0,1] is
an increasing path in MA, which is a contradiction to the assumption 7(0) is a local maximum on MA.
Thus, z is a local maximum on dg. O



3 Homotopical Axis

We introduce the homotopical axis as a subset of the medial axis (cf. Fig. 1), bounded by 1) criticals of
the distance transform (@ and ®) and ii) points which can be reached by steepest ascent starting on
infinitesimal environments of criticals (points on thick line —):

Definition 3.1 (Homotopical Axis) The homotopical axis(HA) is defined as:

HA = lim Gg(R h
S, 3(R) where

Gs(R)={r e R|Ht e RTIy e F3(R) : z = &(t,y)}.

Gj(R) is the smallest superset of F 3 that contains all points reachable via the flow €; this concept and
notation has been introduced by Chazal and Lieutier [CL05a] together with the proof of the following
lemma:

Lemma 3.2 (Homotopy Type of G [CL05a]) Let O be a bounded open set. Then for any § > 0,
G3(O) has the same homotopy type as O.

This has the following implications relevant for our work:

Corollary 3.3 (Homotopy Type of HA on O) Let HAp be the homotopical azis of a bounded open
set O. Then, since HAp is defined with 5 > 0, HAp has the same homotopy type as O.

Corollary 3.4 (Homotopy Type of G(R)) Since R is the union of pairwise disjoint bounded open
sets, then for any B >0, Gg(R) has the same homotopy type as R

Corollary 3.5 (Homotopy Type of HA) Since HA is defined with 5 > 0 and Gg(R) has the same
homotopy type as R (corrolary 3.4), HA has the same homotopy type as R.

Notice that while the medial axis (MA) is a complete shape descriptor, an infinite class of different
smooth and non-smooth shapes can have the same homotopical axis.

If 5 is small enough, the closed set F3(R) can also be seen as the union of connected components
Fj(x) containing at least one critical « € Fo(R) each.

The gradient on criticals is zero, consequently the steepest path starting on an arbitrary point in
space stays in the critical reached first. For the definition of our new feature size, we will need the set of
local maxima that are reachable by steepest ascent. In order to be able to escape critical points (where
the gradient vanishes) and include maxima that can only be reached by passing other criticals, we use
the following recursive definition, starting in the ¢ environment of an arbitrary point = € R3:

F3(R.z) ={y € Fo(R) Ve e R" Iy € R : [ly' — x| <eAy = lim €(t,y)}

Fy(R,z) = {y € Fo(R) |y € Fy (R, 2) " € Fp(y) : y = lim €(t,3")}

Finally, the set of all criticals reachable by steepest paths starting on an arbitrary point = € R? is given
by F®(R,x) = limg_ o+ FF (R, ).

4 Sampling Criteria

The proof of correctness of previous surface reconstruction algorithms [ABK98, ACDL00] demanded a
local sampling density based on the so-called local feature size (Ifs). The local feature size lfs(b) of a
boundary point b is simply its shortest distance to the medial axis. Since the local feature size is zero
at non-smooth boundary points (e.g. corners), all reconstruction algorithms which require a sampling
density based on the Ifs can only be applied to smooth surfaces, as they need an infinite number of
sampling points at non-smooth surface parts.



A weaker condition on sampling density has been proposed to recover topological properties of a
bounded set [CLO5b]. The so-called weak feature size is defined as the distance between the boundary
and the set of criticals. Even though this feature size is suitable for non-smooth boundaries, the definition
is still global for the whole boundary.

In [ST09a], the sampling constraints are based on volumetric conditions of every region yielding local,
variable feature sizes for boundary points:

Definition 4.1 (Local Region Size [ST09a]) Let b € IR be a boundary point of R. Let H(R,b) C
F>(R,b) contain all local mazima of F>*(R,b). Then the local region size (Irs) of a boundary point b is
defined as:

Irs(b) = in d

rs(b) L B(Yy)
The local region size is based on the nearest center of the greatest of all maximal inscribed balls in each
adjacent region. This has two advantages. First, the sampling density of corners is no longer infinite.
Second, since any number of surrounding regions are taken into account, this definition is also suitable
for non-manifold surfaces (i.e. junctions).

Definition 4.2 (Stable Sampling [ST09a]) Let OR be the boundary of a space partition R = {R; C
R3} and S C R3 be a finite set of points. Then S is said to be a stable sampling of OR, if Vb € IR Is €
S |lb—s|| < 2lrs(b) and Vs € STb € IR : ||b— s|| < 3 1rs(b).

Obviously, the volumetric information between the local maxima in each region is lost in samplings based
on the local region size. Consequently, the surface parts corresponding to narrowings of the solid are
undersampled.

We extend Irs and introduce the local homotopical feature size (1hfs) based on the homotopical axis.
In particular, we take the smallest distance value of the reachable local maxima and the distance to HA
into account (cf. arrows in Fig. 1):

Definition 4.3 (Local Homotopical Feature Size) Let b € OR be a boundary point of R and x €
HA be its nearest point in HA. Then the local homotopical feature size of a boundary point b is defined
as
lhfs(b) = mi b—z|, i d
) = win (2l min | (05(5) )

Reconstruction algorithms which require a sampling based on the local homotopical feature size will
then be able to handle a locally adaptive sampling density and non-smooth shapes.

Now we define the sampling conditions in such a way that all sampling points are covered by the
lhfs-dilation of the boundary. The lower bounds on the sampling density affect the mesh construction
and obviously restrict the edges to a certain size.

Definition 4.4 (Locally Stable Sampling) Let OR be the boundary of a space partition and S C R?
be a finite set of points. Then S is said to be a locally stable sampling of OR, iff Vb € ORds € S :
||b—s|| < 2 1hfs(b) and Vs € STb € OR : ||b— s|| < 5 lhfs(b).

5 Refinement Reduction

In this section we recall the definition of the “refinement reduction” algorithm introduced in [ST09a].
Let S C R3 be a finite set of points. Then the convex hull of up to four points s, ..., s, € S is called an
n-simplex. Any simplex o1 based on the convex hull of a subset of the points defining the simplex o9, is
called a face of o5 and o5 is called a coface of o1. A face and a coface a called proper if their dimensions
differ by exactly one. A simplex is called centered, if it contains its circumcenter. A simplex is called
equivocal, if its circumball contains an other point of S. Notice, these definitions are equivalent to the
definitions given in [Ede03]. If r, and r, are the circumradii of o and 7 then we write o < 7 iff r, < 7.
Now a (simplicial) complez K is a set of simplices such that any face of a simplex in K is also a simplex
in IC.



Now, if each region of the space partition represents an object of the real world, the reconstruction
task is to reconstruct a second space partition from a discrete set of sampling points of the first partition,
such that the two partitions share as much as possible properties of the objects and the relations between
them. The following definitions are adapted from [ST09a].

Definition 5.1 (Reconstruction) Let K be a simplicial complex based on a set of points S € R3. Then
a simplicial complex partition D is a set of disjoint subsets D; of K, such that the regions |D;| covered
by the sets D; define a space partition |D| := {|D;|}. In case of K being a Delaunay triangulation, the
subcomplex 0D C D, 0D := K\ |J; D; is called the result of a reconstruction. Then, |0D| is called the
reconstructed boundary, and the pairwise disjoint components D; interiors of reconstructed regions. For
each D;, the underlying space |D;| is the reconstructed region. A simplex o is called a boundary simplex
if at least two of its cofaces lie in different interiors of reconstructed regions. Given the radii r; and r;
of the greatest simplices in the regions |D;| and |D;| we write |D;| < |Dj| iff r; < rj,

In order to avoid degenerate cases of the Delaunay triangulation, the points in S are assumed to be
in general position, which means that no three points are collinear, no four points are cocircular and
no five points are cospherical. In addition to that, we assume that no two triangles of the Delaunay
triangulation have the same circumradius.

In order to investigate the properties of the resulting reconstruction let us first recall the refinement
reduction algorithm proposed in [ST09a]. Let a simplex be called simple if it has exactly one proper
coface. Let a simplex o be called critical if more than one proper face contains a further point of ¢ in
its circumball. We call such faces the critical faces.

Let o be a boundary simplex between two neighbouring reconstructed regions D;, D;, and let r,
denote its circumradius. Further let 7, € D; and 7; € D; be the centered tetrahedra with greatest
circumradius r,, and r,; respectively in the interiors of the reconstructed regions. Then o is called an
undersampled simplex if 2r, > r., or 2r, > T

The refinement reduction algorithm

Given a sampling S of the boundary of a partition of the space,

compute the 3D Delaunay triangulation IC of S

Delete all centered tetrahedra from K.

Delete all simple equivocal, not critical simplices.

Delete all simple criticals in lexicographic order with respect to their circumradius.

Delete all undersampled simplices lexicographically according to pairs (r.,—r,) in increasing order,
where 1, s the circumradius of the undersampled simplex o, and T is the tetrahedron with the greatest
circumcenter r, in the reconstructed region.

Grds fo o~

6 Stability of Reconstruction

The contribution in [ST09a] is that the refinement reduction algorithm results in a refinement of the
original space partition:

Definition 6.1 (Refinement [ST09a]) Given the space partition R, the continuous distance trans-
form dor on R, the stable sampling S, and the discrete distance transform dg on S, let x be the
local mazimum of dapr and H(S,z) be its set of reachable local mazima on dg. Then, we call y =
arg max,/cp(s,0) ds(y’) the associated discrete maximum of x.

The discrete complex partition D is called a refinement of R, if for any two local mazima x1,z2 of
dar lying inside different regions R;,, R;, of R, the discrete maxima y1,y2 being associated to x1,x2 lie
in different reconstructed regions Dy, D;;, of D.

As we may see on Fig. 2 (b), the reconstruction is a refinement of the original region Fig. 2 (a), but
its topology deviates from the original. Any further deletion of a simplex destroys the neighbourhood
relation. The narrowing was so sparsely sampled that the resulting mesh intersects the homotopical
axis. The goal of a topologically correct reconstruction is to preserve all topological properties. So



(a)

Figure 2: (a): original surface; (b): irreducible refinement; (c): stable refinement

the refinement of a space partition must be reducible to a topological equivalent of the original space
partition. The reconstruction of locally stable sampled surface based on lhfs is demonstrated in Fig. 2 (c).

Definition 6.2 (Stable Refinement) Given a space partition R with boundary OR and a sampling
S of OR. Let HA be the homotopical axis of OR. Then a refinement D built on S is called a stable
refinement of R, if the underlying space of its boundary 0D does not cut HA.

In the following, we show that the result of the refinement reduction algorithm is reducible to stable
refinement if the boundary sampling is locally stable as defined in 4.4 and that a stable refinement is
reducible to a topologically correct reconstruction.

The main idea of the proof is based on two facts. First, we already have a refinement which means
that all maxima are correctly separated and all decreasing paths starting on the homotipical axis meet
the reconstructed boundary. Second, increasing paths starting in the homotopical axis stay in the
homotopical axis. So after we have outlined the arising trivial cases in I, in IT we cover the case of
the homotopical axis cutting the reconstructed boundary. We show that all increasing paths from the
cutting point to maxima of different reconstructed regions belong to the homotopical axis of one original
region.

So, removing the cutting simplex will preserve the topological properties of the original region.
Assuming the opposite will lead to a contradiction. The result of III is that every path to the different
original region goes through the boundary and needs to be partly decreasing. In contradiction, I'V shows
that there is an increasing path between the cutting point and the maximum of neighbouring region,
which falsifies the assumption.

Theorem 6.3 (Stability of the Minimal Refinement) Let S be a locally stable sampling of OR and
D be the result of refinement reduction with no undersampled simplices in the boundary 0D of D. Then
the boundary 0D contains the boundary of a stable refinement.

Proof: We need to show that removing all simplices of 0D which cut or touch the homotopical axis
result in a space partition which is still a refinement.

I The result of refinement reduction is a minimal refinement D without undersampled simplices.
Obviously, if D is a stable refinement, the theorem holds. So let D not be a stable refinement. Let |0D)|
be the underlying space of 9D and HA be the homotopical axis of IR, then |0D| NHA = X # @.

Let |D| and |D’| be two reconstructed regions such that there is an « € X in the common boundary
of |D| and |D’|. There are two cases to consider: First, at least one reconstructed region contains no
continuous maximum, then merging the reconstructed regions does not destroy the refinement condition.
Thus, we only have to consider the second case: each reconstructed region contains at least one continuous
maximum.

IT All continuous local maxima are also local maxima of MAT (observation 2.6) and so are in HA.
Let y € |D] and 3 € |D’| be two nearest local maxima on HA reachable by steepest paths starting on z.
We have to show that there is a path 7 in |D| between = and y and a path 7’ in |D’| between = and
with 7, 7’ entirely contained in HA.



ITT Let us assume that there is no such 7. Since for each continuous region R the intersection HAN R
is continuous (corrolary 3.5),  and y must belong to different continuous regions. It follows that any
path between z and y must cross OR. Therefore, for all paths 7., in |D| between x and y there is a
t such that m,,(t) = b € OR and dg(b) < 3 lhfs(b), since by definition of the locally stable sampling
VW e OR3s € S: ||V — s| < 5 Ihfs(b)).

IV Let b be the nearest boundary point to x, then, since x € HA, dypr(x) > lhfs(b) and dg(z) >
%lhfs(b). But by construction of the refinement reduction algorithm, the circumradius of the previously
deleted simplices in D are greater than dg(z), and so there exists a path 7, , between x and y through
the circumcenters of the deleted simplices which fulfills V¢ € [0,1] : dg(7(t)) > ds(z) > 1 Ihfs(b), which
contradicts the previous paragraph.

Obviously the same is valid for 7’ and for all z € X which are also in the boundary of |D| and
|D’|. Since m and «’ exist, there is a continuous path between y and 3’ in HA. Consequently, the
local maxima of the continuous distance transform lying inside D and D’ lie in the same continuous
region. Then, after removing the simplex containing x, no local maxima lying in different continuous re-
gions will lie in one reconstructed region, and the resulting discrete space partition is still a refinement. [

The consequence of theorem 6.3 is that neither elementary thinning nor undersampled merge result
in a reconstructed region containing points of the homotopical axis belonging to different continuous
regions.

In fact the stable refinement does not make any conclusions about the reconstructed regions which
do not contain any points of HA. Such regions are often called voids, since they do not contribute to
the topologically correct separation of the space. It is possible to get rid of these voids by reducing the
refinement incrementally into the desired result using so-called “Euler Operators” [Man88].

7 Conclusions

We illustrated that the result of the “refinement reduction” algorithm does not correspond to a superset
of a mesh which is topologically equivalent to the original boundary, even if the sampling conditions
based on lrs are fulfilled. We introduced the concept of a homotopical azis that is a homotopy equivalent
subset of the medial axis and used this to propose the local homotopical feature size (lhfs), for the first
time supporting locally adaptive sampling of arbitrary non-manifold surfaces. Finally, we proved that
the “refinement reduction” can be reduced to a topologically equivalent approximation of the original
boundary under new sampling conditions based on the lhfs.

References

[ABK98] N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi-based surface reconstruction
algorithm. In SIGGRAPH ’98: Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 415-421, New York, NY, USA, 1998. ACM.

[ACDLO00] N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple algorithm for homeomorphic surface
reconstruction. In SCG ’00: Proceedings of the sizteenth annual symposium on Computational
geometry, pages 213-222, New York, NY, USA, 2000. ACM.

[Att97] D. Attali. r-regular shape reconstruction from unorganized points. In SCG ’97: Proceedings
of the thirteenth annual symposium on Computational geometry, pages 248-253, New York,
NY, USA, 1997. ACM.

[Blu67] H. Blum. A transformation for extracting new descriptors of shape. Models for the perception
of speech and visual form, 19(5):362-380, 1967.

[CL05a] F. Chazal and A. Lieutier. The ” A-medial axis”. Graph. Models, 67(4):304-331, 2005.



[CLO5D)

[CLO7]

[Ede03]

[Lie04]

[M:n88]

[ST09a]

[STO9D)

[TBM10]

[Wol92]

F. Chazal and A. Lieutier. Weak feature size and persistent homology: computing homology
of solids in R™ from noisy data samples. In SCG ’05: Proceedings of the twenty-first annual
symposium on Computational geometry, pages 255-262, New York, NY, USA, 2005. ACM.

F. Chazal and A. Lieutier. Stability and computation of topological invariants of solids in
R™. Discrete and Computational Geometry, 37(4):601-617, May 2007.

H. Edelsbrunner. Surface reconstruction by wrapping finite sets in space. Discrete and
Computational Geometry. The Goodman-Pollack Festschrift, pages 379-404, 2003.

A. Lieutier. Any open bounded subset of has the same homotopy type as its medial axis.
Computer-Aided Design, 36(11):1029-1046, September 2004.

Martti Méantyld. An Introduction to Solid Modeling. Computer Science Press, Rockville,
Maryland, June 1988.

P. Stelldinger and L. Tcherniavski. On simultaneous reconstruction of multiple regions based
on locally adaptive boundary samples. In Proceedings of Computational Topology in Image
context, CTIC 2009, 2009.

P. Stelldinger and L. Tcherniavski. Provably correct reconstruction of surfaces from sparse
noisy samples. Pattern Recogn., 42(8):1650-1659, August 2009.

L. Tcherniavski, C. Baehnisch, and H. Meine. Improved locally adaptive sampling criterion
for topology preserving reconstruction of multiple regions. In Proceedings of Computational
Topology in Image Context, CTIC 2010, 2010.

F. E. Wolter. Cut locus and medial axis in global shape interrogation and representation.
Technical Report 92-2, MIT Dept. of Ocean Engineering, 1992.



	Introduction
	Basic Definitions
	Homotopical Axis
	Sampling Criteria
	Refinement Reduction
	Stability of Reconstruction
	Conclusions

