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ABSTRACT
The existing algorithms for 3D surface reconstruction from
point clouds require objects with smooth surfaces and ex-
tremely dense samplings with no or only very few noise
in order to guarantee a correct result. Moreover they can
only be applied to single object reconstruction and not
to segmentation of three or more regions. We have de-
veloped an alternative surface reconstruction method wich
preserves the topological structure of multi-region objects
under much weaker constraints. It is based on the Delaunay
complex and α-shapes and uses a local thinning algorithm
for the reconstruction of region boundaries. In this work we
give a detailed analysis of its behaviour and we compare it
with other approaches.
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1 Introduction

A fundamental question of image analysis is how closely a
computed image segmentation corresponds to the underly-
ing real-world partition. Existing geometric sampling the-
orems are limited to binary partitions, where the space is
split into (not necessarily connected) fore- and background
components. In this case, the topology of the partition is
preserved under various reconstruction schemes when the
original regions are sufficiently smooth and the sampling is
dense enough, e.g. see [4, 5]. Some approaches can also
deal with noisy samplings, e.g. see [11, 12].

To our knowledge, all existing approaches for topo-
logically correct surface reconstruction need an object to
have a smooth surface, i.e. the surface curvature has to be
everywhere bounded. This is often given by a bound on the
so-called local feature size, which is the minimal distance
of a surface point to the nearest point on the medial axis
[4, 5, 11], but also by giving global smoothness constraints
[12]. This is impossible for surfaces with edges (like e.g. a
cube). Moreover they can deal only with binary partitions
of the space, i.e. the problem of separating an object from
its background by reconstructing the object boundary. Out
aim is to be able to separate objects in more complicated
configurations, i.e. to segment the 3D space into several
regions, each being topologically correctly reconstructed.

2 Topologically Correct Reconstruction

Since edges naturally occur when three or more regions
meet, a reconstruction algorithm for multi-object segmen-
tation tasks must be able to deal with non-smooth bound-
aries. Therefore we introduced the concept of r-stable par-
titions:

A partition of the space R3 into several regions ri is
called r-stable when its boundary B =

⋃
∂ri can be di-

lated by a closed ball of radius s without changing its ho-
motopy type for any s ≤ r.

Thus, regions in an r-stable partition do not change
their topological information when one thickens the bound-
ary moderately. Note, that r is also known as “homological
feature size” [8]. Now, a sampling of the boundary is a set
of (sampling) points which lie near the boundary B:

A finite set of sampling points S = {si ∈ R3} is
called a (p, q)-sampling of the boundary B when the dis-
tance of every point b ∈ B to the nearest point in S is at
most p, and the distance of every point s ∈ S to the nearest
point in B is at most q.

Thus, p denotes the sampling density, whereas q de-
notes the samplig accuracy. A sampling with q = 0 (i.e. all
sampling points lie on the boundary) is called a strict sam-
pling. Having a set of sampling points, we can construct
the Delaunay complex and the α-complex.

The α-complex Dα(S) of a set of points S is defined
as the subcomplex of the Delaunay complex of S which
contains all cells C such that (1) the radius of the smallest
sphere containing the sampling points of C is smaller than
α, and it contains no other point of S, i.e.C0∩S = ∅, or (2)
an incident cellC ′ with higher dimension is inDα(S). The
polytope |Dα(S)|, i.e. the union of all elements of Dα(S),
is called α-shape.

In case of sufficiently smooth surfaces and dense,
noisefree samplings, the α-shape gives a good reconstruc-
tion of the original surface without changing topology
[4, 5, 15]. But in other cases, the α-shape can not directly
be used, it needs to be modified.

Let Dα(S) be the α-complex of a sampling S and
|Dα(S)| be its α-shape. Then the components of |Dα(S)|c
are called α-holes of |Dα(S)|. The (α, β)-holes of
|Dα(S)| are the α-holes H , where the largest radius of
some n-cell in H is at least β ≥ α. The union of the α-
shape |Dα| with all α-holes ofDα that are not (α, β)-holes



is called the (α, β)-shape reconstruction.
Filling spurious holes in the α-shape reconstruction is

a necessary step for getting a topologically correct bound-
ary reconstruction. But there are also other problems re-
garding topology: although the (α, β)-shape reconstruc-
tion separates the different regions from each other, these
regions may have small handles. In order to identify and
remove these cases, we apply a homotopy type preserving
thinning. We will denote an m-dimensional cell (m-cell)
C in a cell complex D as simple if the number of cells
of D which contain C is equal to one. Now the contain-
ing cell must be an (m + 1)-cell and the removal of the
two cells (also called collapse, see [9] does neither change
the homotopy type of the complex nor the topology of the
background regions. Now the thinning algorithm for the
(α, β)-shape reconstruction is as follows:

Minimal (α, β)-shape reconstruction algorithm:
1. Given a (p, q)-sampling S of the boundary of some

partition of the space, compute the α-complex of S
with some α > p.

2. Add all cells to the complex, which belong to an α-
hole which is no (α, β)-hole for β = α+ p+ q.

3. Find all simple m-cells (for any m with n > m ≥ 0)
of the given (α, β)-shape reconstruction and put them
in a priority queue by using the radii of the simple m-
cells as priority, i.e. m-cells with big radius are the
first to be removed.

4. As long as the queue is not empty:
(a) Get the m-cell e with the highest priority from

the queue.

(b) If e is not simple anymore, it has lost this prop-
erty during the removal of other cells. Skip the
following and recommence with step 4.

(c) Otherwise, remove e and the adjacent (m + 1)-
cell t ∈ R from the boundary reconstruction.

(d) Check whether the other cells adjacent to t have
now become simple and put them in the queue if
this is the case.

5. For m going from n− 2 to 0 do:
(a) Remove all m-cells of the complex, which do

not have an adjacent (m+1)-cell in the complex.

In [15] we proved that the minimal (α, β)-shape re-
construction algorithm is able to reconstruct the topologi-
cal information of multi-object segmenations even in case
of relatively coarse and noisy samplings:

Theorem 1 Let P be an r-stable partition of the space Rn,
and S be a (p, q)-sampling of P’s boundary B. Then the
minimal (α, β)-shape reconstruction algorithm results in a
cell complexD with |D| having the same homotopy type as
B, and the components of Bc are topologically equivalent
to the components of |D|c, if (1) p < α ≤ r − q, (2) β =
α + p + q and (3) every region ri contains an open γ-disc
with γ ≥ β + q > 2(p+ q).

3 Comparison to other Approaches

Surface reconstruction from sampling points has been of
great interest in the last years. An overviev is given in ta-
ble 1.

One of the first approaches which gives a proof about
the correct separation of an object from its background is
the crust algorithm[4]. The drawback of this algorithm is,
that it results in a triangle set, which only contains a cor-
rect triangulation of the surface instead of being one. This
was corrected in the cocone algorithm. Both algorithms re-
quire relatively dense samplings in order to guaranty their
correctness: while the crust algorithm requires a (p, 0)-
sampling with p being at most equal to 0.1 times the lo-
cal feature size (lfs), cocone needs p < 0.06lfs. In order
to have a more intuitive measure we do not directly com-
pare the necessary sampling density p, but the numberN of
sampling points one needs in order to reach such a density
in case of a unit sphere (in this case, the local feature size is
1 and we have simply p ≤ 0.1). To compute this number is
commonly known as the sphere covering problem and there
exist very tight lower bounds for estimating this minimal
number of sampling points for a given p, e.g. following
[13] we get N ≥ 2 + 2π/

(
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3
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− π

)
.

In case of the crust and the cocone algorithm it follows
that N ≥ 484, respectively N ≥ 1344. Both algorithms
have been enhanced in several steps. E.g. power crust [6]
is faster than crust and guarantees to reconstruct a correct
surface in contrast to just containing one, and the modified
power crust algorithm [11] can even deal with q ≤ 0.1. All
three variants require p ≤ 0.1. Analogously tight cocone is
a variant of cocone guaranteeing to reconstruct a watertight
surface for the same bound as cocone, p < 0.06. In con-
trast to these approaches much better bounds are given in
[12]. Niyogi et al. use a global smoothness criterion instead
of a local one, but are able to give much better bounds. In
case of q = 0 only p < 0.48 is needed which is equiv-
alent to only 22 well distributed sampling points, while
p, q < 0.17157 (at least 165 sampling points) still allows to
resonstruct a correct surface. In [15] an even better bound
is given: by using the ball-pivoting algorithm the bounds
given in [12] can be improved for q = 0 to p < r, which
implies to use only 6 sampling points. As shown in the last
section, a homeomorphic surface can also be reconstructed
in case of highly noisy samplings, i.e. p + q < 1. Note,
that in case of a sphere the restriction given by γ requires
p + q < 0.5, but that in general the samplingdensity can
locally be lower since the γ-bound must only be fulfilled
somewhere in a region.

All these methods require smooth surfaces. In [7] a
method is given, which reconstructs “Lipschitz Surfaces”,
and thus allows certain nonsmooth surfaces, but corners
cannot have acute angles. The method works with locally
adaptive but noise-free samplings and requires more than
263 points to result in a surface which is isotopic to a unit
sphere boundary. To conclude, our approach gives better
bounds on the necessary sampling density, on the accept-



able amount of noise and on the generality of the type of
surfaces than previous approaches, and allowes for the first
time to regard non-manifold partitions.

sampling (p,q) # of
points

Crust [4] locally p ≤ 0.1 484
adaptive q = 0

Co-Cone [5] locally p < 0.06 1344
adaptive q = 0

Power Crust [6] locally p ≤ 0.1 484
Amenta et al. adaptive q = 0

2000
Tight Co-Cone [10] locally p < 0.06 1344

adaptive q = 0
[12] global p < 0.48 22

q = 0
[12] global p < 0.17157 165

q < 0.17157r
Modified locally p ≤ 0.1r 484

Power Crust [11] adaptive q ≤ 0.1r
Lipschitz locally p ≤ 0.13574r 263

Surfaces [7] adaptive q ≤ 0
[15] global p < r 6

q = 0
[14] global p < 0.5r 78

q < r − p

Table 1. Comparison of different surface reconstruction
algorithms.

4 Implementation and Timings

In the table below we show the breakup of the timings of
the thinning reconstruction algorithm for a number of data
sets on PC with 2000Mhz “Intel Centrino Duo” CPU and
2GB memory. The data sets [2, 1] were downsampled in
order to show that our method does not require high resolu-
tion sampling for topologically correct surface reconstruc-
tion. The experiments were performed twice i.e. first with
noise-free data, second with noise corrupted data. The cor-
responding p, q-values are to be found in the table. The cor-
responding results are demonstrated in Figures 5. As can
be seen, the topology can even be reconstructed in cases
when the geometry is heavily distorted by the noise. Please
notice, that our implementation of the algorithm was de-
signed for demonstration purposes. Thus, the timings are
not to be considered to be optimal.

data set points p q α-shape thinning
millisec millisec

Skeleton 29176 0.045 0 33828 18859
Hand 0.047 0.01 36921 18452

Dragon 28395 0.0026 0 32265 13390
0.0026 0.0011 25578 20297

Armadillo 34006 1.81 0 32226 15749
2.24 3.61 57605 37101

Angel 31478 0.22 0 36591 15719
0.27 0.18 28158 33736

Knots 23232 0.013 0 25141 10969
0.015 0.012 25323 18637

a) b)

c) d)

Figure 1. Surface of a unit sphere. The data set consists of
1001 nearly evenly distributed sample points with q = 0.45

We divided the reconstruction procedure into two
steps The “α-Shape” builds the data structure by comput-
ing the Delaunay Triangulation and fills the data structure,
“α-Shape” computation, which stores for every element of
the data structure the α-value and the Thinning procedure,
which performes the topologically correct surface recon-
struction.

“CGAL” [3] library and its build in data structure was
used for sampling represention, computation of the Delau-
nay triangulation and the ”α-shape”. As it is descriped in
the algorithm we have to delete simple cells from the recon-
struction. For complexity reasons we used labels to classify
the appropriate elements of the Delaunay Triangulation in-
stead of changing the entire data structure. Thus, in the
process of “deletion” we just remove the labels.

We do not recommend to use the build-in function of
sorting the triangulation elements in a list and use this list
as a data structure. Though the usage of “filter iterators”
is tempting for clean coding, the implementation of the re-
quired predicates is inefficient. We observed, that the thin-
ning procedure required fourfould of the time given in the
table above.

Since the worst case complexity of computing α-
shapes in 3D is O(n2), and efficient priority queue imple-
mentations need O(log n) time both for push and pop, we
get a worst case complexity of O(n2 log n) for our algo-
rithm. Nevertheless in case of typical surface sampling data
we observe subquadratic time complexity.



Figure 2. Marked are some of irregularities of the α-shape:
concavities (C), tunnels (T), bridges (B)

5 Experimental Evaluation

First we are going to investigate which problems our algo-
rithm has to solve due to the high amount of noise and also
due to the fact that we allow non-smooth surfaces. To illus-
trate the subject matter we create a sampling data set cor-
rupted by a great amount of noise. We sampled the surface
of the unit sphere and added q = 0.45 error to the sample
points. The original noise-free sampling is demonstrated as
black triangulation in figure 1a, while the noisy triangula-
tion is shown in blue. The result of surface reconstruction
is shown in b. Geometrically it lies inside the dilation of ra-
dius q of the original surface (which is approximated in c),
although the geometrical distortion is relatively high due to
the linear dependence on the amount of noise. As shown in
d, the α-shape contains cavities (spurious holes), which are
filled by our algorithm. Figure 2 demostrates the alpha-
shape of the surface. Some of the irregularities of the are
marked i.e. α-shape concavities (C), tunnels (T), bridges
(B).

Figure 3 demonstrates the ability of our method to re-
construct the boundary of non-smooth and non-binary par-
titions with junctions and corners. We divided a cube into
8 equal regions by three intersecting squares. As it may be
observed in Figure 3 the regions could be correctly recon-
structed.

6 Conclusions and Future Work

Our method results in topologically equivalent components
of the boundary. The given bounds are much better than
previous ones, although in reality one often has to deal
with even worse samplings. In fact in most of our experi-
ments we had to estimate the values of p and q empirically,

Figure 3. Reconstruction of a cube containing 8 regions

Figure 4. Surface Reconstruction in case of undersampled
boundary

but the algorithm behaved well even in cases where espe-
cially the bound given for γ was not fulfilled. Moreover
for the first time it is possible to guaranty a topologically
correct boundary reconstruction in case of non-smooth sur-
faces and in case of partitions into more than two regions.
Nevertheless our approach is not robust to undersamplings,
since the thinning algorithm strictly requires a sufficiently
dense sampling of the whole surface. The result of such
reconstruction may be seen in figure 4. The top left pic-
ture shows the undersampled part of the region which re-
sults in a hole in the surface. The thinned reconstruction
is demonstrated in the top right picture. We see that the
reconstruction containes only 7 regions du to the fact that
the boundary of one region is completely removed by the
thinning algorithm. In future we will try to overcome this
problem. In addition to that we will try to adapt our method
to adaptive sampling schemes.
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Figure 5. Noise-free and noise corrupted reconstruction
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