
Adapting Optimization Techniques to
Description Logics with Concrete Domains

Anni-Yasmin Turhan and Volker Haarslev

Department of Computer Science, University of Hamburg, Germany

Email: {turhan, haarslev}@kogs.informatik.uni-hamburg.de

Abstract
In this paper, we demonstrate that the main standard optimization

techniques dependency directed backtracking and model merging can be
adapted to description logics with concrete domains. We propose al-
gorithms for these techniques for the logics ALC(D) and ALCRP(D).
Important results of this study are (1) a new requirement for concrete
domains in order to enable dependency directed backtracking for all clash
types of description logics with concrete domains, and (2) the flat and
deep model merging techniques can be fully adapted to ALC(D) but their
applicability to the logic ALCRP(D) is limited.

1 Motivation

In recent years dramatic advancements in developing new optimization tech-
niques for expressive description logics (DLs) have been achieved. The require-
ments derived from practical applications of DLs ask for more expressive lan-
guages. It is well-known that reasoning about objects from other domains (so-
called concrete domains, e.g. the real numbers [1]) is very important for practical
applications as well. However, it was unknown whether the new optimization
techniques can be adapted to DLs with concrete domains. This paper reports on
the first study [7] which analyzes this problem and proposes adapted algorithms
for two important optimization techniques, dependency directed backtracking
and model merging [4],[3], in the context of TBox reasoning for ALC(D) and
ALCRP(D). We assume that the reader is familiar with ALC(D), ALCRP(D)
and their calculi (see [1], [6] and [2] respectively).

1.1 The Description Logics ALC(D) and ALCRP(D)
In this section we briefly introduce the logicsALC(D) and its extensionALCRP(D).
Both DLs can be parameterized with an admissible concrete domain D. A con-
crete domain (CD) consists of a domain and a set of predicates. A CD is

Syntax Semantics
ALC(D) ∃u1, . . . , un.P {a ∈ ∆I | x 1, . . . , xn ∈ ∆D :

(a, x1) ∈ uI
1 , . . . , (a, xn) ∈ uI

n, (x1, . . . , xn) ∈ PD}
ALCRP(D) (∃(u1, . . . , un) {(a, b) ∈ ∆I ×∆I | ∃x 1, . . . , xn, y1, . . . , ym ∈ ∆D :

(v1, . . . , vm).Q) (a, x1) ∈ uI
1 , . . . , (a, xn) ∈ uI

n,
(b, y1) ∈ vI

1 , . . . , (b, ym) ∈ vI
m,

(x1, . . . , xn, y1, . . . , ym) ∈ QD}

Throughout this document we use this naming convention:
C ,D : concept terms R : primitive or complex role P ,Q : predicates f : feature
u i,v i : feature chains a,b : abstract individuals x ,y : concrete individuals

Table 1: Predicate exists restriction and Role-forming predicate exists restriction

called admissible if (1) the set of predicates for the elements of the domain is
closed under negation, (2) the set of predicates contains a predicate for domain
membership and (3) the satisfiability problem for conjunctions of predicates is
decidable.

The DL ALC(D) extends the standard logic ALC with features and so-called
predicate exists restrictions. The latter ones are concept terms, which allow to
refer to objects of the concrete domain by feature chains and to state that a
predicate from the concrete domain holds between these objects (∃u1, . . . , un.P).

The DL ALCRP(D) in turn extends ALC(D) with a so-called role-forming
predicate exists restriction. It allows one to specify roles based on role terms
using concrete domain predicates (e.g. Rc

.
= ∃(u1, . . . , un)(v 1, . . . , vm).P). Such

a complex role Rc has some feature chains (the ui’s) starting from the role
predecessor a and some feature chains (the v i’s) starting from the successor b
of the complex role. All of these chains are referencing concrete domain objects
and if the predicate P holds between these objects, the complex role Rc holds
between a and b. Complex roles can be used in value and exists restrictions in
ALCRP(D) concept terms. Whenever we mention ALCRP(D) in this paper
we always assume its syntax restricted version (see [2]). For the unrestricted
concept terms satisfiability is not decidable. The interpretation of ALC(D) and
ALCRP(D) concept terms (and role terms) requires two disjoint domains: the
abstract domain ∆I and the concrete domain ∆D. Due to lack of space we omit
a further introduction to the semantics and to concrete domains and refer to [1,
2] for details. The syntax and semantics of the new language elements are shown
in Table 1.

In order to determine if D subsumes C the concept term (C ¬D) is tested
for unsatisfiability. First the term is unfolded with respect to the TBox.1 In

1For DLs with concrete domains concept satisfiability is decidable only for unfoldable
TBoxes. Therefore, we consider only terminologies without cyclic or multiple definitions or
general concept inclusions.

case of ALCRP(D) also the complex roles need to be unfolded. Then the term
is transformed into negation normal form, resulting in an equivalent term with
negation only appearing in front of concept names. It is well-known that the
satisfiability of concept terms can be reduced to ABox consistency.

Def. 1 (ABox) An ABox A is a finite set of assertional axioms. The following
expressions are assertional axioms: a : C (Concept assertion),
(a , b) : R (Role assertion), (a , b) : f , (a, x) : f (Feature assertions),
(x 1, . . . , x n) : P (Predicate assertion).

ALC(D) ABoxes contain only role assertions for primitive roles, while the ABoxes
for ALCRP(D) also allow role assertions for complex roles.

So in order to test if C is satisfiable, the ABox A ={a : C} is checked for
consistency with the tableaux calculus. We only do sketch some properties of
the tableaux calculi here. The trace technique is a control structure for tableaux
provers, which allows them to discard parts of a model during a proof, by ex-
ploiting that models of some DLs can be represented as trees and therefore
partitioned into ”sub-tableaux”. Currently many DLs for which optimization
techniques have been applied use a partitioning allowing for sub-tableaux with
a single individual. In contrast to this ALC(D) sub-tableaux have to be be
partioned into feature-complete sub-tableaux in order to use the trace technique
(see [6]). A feature-complete sub-tableau contains all individuals that are con-
nected via a feature-chain (with possibly a single feature) starting from the root
individual of the sub-tableau and it contains their concept, feature and predicate
assertions.

For ALCRP(D) models the tree model property does not hold due to the
phantom edges which are implicit role-filler relationships established by the use
of value restrictions for complex roles (see [2] for details). Some of the tableaux
rules have properties needed for the application of optimization techniques: Non-
deterministic rules are tableaux rules that yield more than one successor ABox.
Rules with required assertions have preconditions which require assertions to
be present in the ABox in addition to the assertion which is expanded by the
rule. Generating rules are tableaux rules, which generate new individuals in
the ABox. The non-deterministic rules and the required assertions are needed
for dependency directed backtracking, while the generating rules are important
for the model merging technique. These properties of the completion rules of
ALC(D) and ALCRP(D) are recapitulated in Table 2.

non-deterministic required assertions generating
ALC(D) R� R∀C R∃C, R∃P
ALCRP(D) R�, RChoose R∀C, RChoose R∃C, R∃P, Rr∃P

Table 2: Properties of the tableaux rules

The assertions in the ABox are expanded until no tableaux rule is applicable
or a clash occurs and no more alternatives are to be explored. In DLs with CDs
we have the following clash types:

Def. 2 (Clash types, culprit) An ABox is called contradictory if any of the
following culprit sets is a subset of A:

• primitive Clash {a : C , a : ¬C} ⊆ A
• Feature Domain Clash {(a , x) : f , (a , b) : f } ⊆ A
• All Domain Clash {(a , x) : f , a : ∀f .C} ⊆ A
• Concrete Domain Clash
{(x (1)

1 , . . . , x
(1)
n1) : P 1 , . . . , (x

(k)
1 , . . . , x

(k)
nk) : Pk} ⊆ A and

the conjunction
∧k

i=1 P i(x
(i)) is not satisfiable in D.

A culprit is an assertion that is an element of a culprit set.

A test for a clash type is performed after every application of a completion rule
that might generate a clash of that type. An ABox A contains a fork iff either:
{(a, b) : f , (a , c) : f } ⊆ A or {(a, x) : f , (a , y) : f } ⊆ A. A fork is eliminated
by replacing all occurrences of b in A with c (x with y resp.). Tests for forks
are carried out after application of a generating rule which created a feature
successor.

Def. 3 (complete ABox) A fork-free ABox A is complete iff no completion
rule is applicable to any assertion and if it contains no clash.

2 Dependency Directed Backtracking

Non-deterministic completion rules are branching points for the expansion of an
ABox. If a clash occurs in an ABox of inherently unsatisfiable concept terms,
naive backtracking would cause thrashing by checking all possible branching
points. Dependency directed backtracking (DDB) is an efficient technique which
avoids thrashing because it only examines alternatives at branching points in-
volved in a clash (see [4], [5]). For DDB each assertion has to be associated
with a dependency set (D) which contains dependency numbers denoting the
branching points the assertion depends on.

Currently most of the optimized DL systems using DDB apply the trace
technique, where each sub-tableau contains concepts asserted for the current
individual and only these concepts are associated with dependency sets. The
role and feature assertions do not have to be represented explicitly.2 DLs with
concrete domains have feature-complete sub-tableaux or no partitioning into
sub-tableaux at all. Due to this a reasoner for a DL with concrete domains has
to deal with sub-tableaux which contain several individuals in a sub-tableaux
and with assertions instead of only concept terms.

2They are given by the recursive use of the satisfiability function.

define Compute Dependency Set
(New Assertion, Rule applied , Expanded Assertion, required Assertions)

DNew Assertion := DExpanded Assertion

for all R Assertion in required Assertions do
DNew Assertion := DNew Assertion ∪ DR Assertion

if non-deterministic-p (Rule applied) then
increase(current Dependency Number)
DNew Assertion := DNew Assertion ∪ {current Dependency Number}

return (DNew Assertion)

Figure 1: Computation of dependency sets

2.1 Dependency Directed Backtracking for ALC(D)
When applying DDB to ALC(D), the existing methods have to be adapted in
two ways: (1) Concept assertions and also feature and predicate assertions have
to be associated with dependency sets and (2) the capabilities of a tester for an
admissible concrete domain have to be extended in order to allow DDB after
every kind of clash. Calculi for DLs with concrete domains have (at least) four
kinds of clashes after which backtracking might be necessary. A clash is always
due to at least one culprit (Def. 2). Note that in contrast to other DLs, for
ALC(D) (and therefore in all DLs with CDs) feature assertions and predicate
assertions may be culprits as well. So for ALC(D) dependency sets assigned are
not only concept assertions but also feature and predicate assertions.

Dependency numbers in the dependency set of an assertion identify branching
points the assertion depends on. After a clash the union of dependency sets of all
culprits Dculprit is built. The highest dependency number in Dculprit denotes the
branching point to be backtracked to. If Dculprit = ∅ the initial concept term is
unsatisfiable. A procedure to compute the dependency set of a new assertion is
shown in Figure 1. If a tableaux rule expands an assertion, say a : (C D), then
the dependency set Da:(C�D) is a subset of the dependency setsDa:C and Da:D of
the new assertions. If the applied rule has required assertions, the dependency
numbers of all required assertions are also dependency numbers for the new
assertions. In case an assertion added by a rule with required assertions turns
out to be a clash culprit, then the expanded assertion or a required assertion
may be retracted from the ABox A in order to avoid the clash, if they depend
on a branching point.

If a non-deterministic rule is applied during the tableaux expansion, a new
branching point is encountered and a “fresh” dependency number is added to
the dependency set of a new assertion.

If a fork {(a, b old) : f , (a, b new) : f } ∈ A is eliminated by replacing b new
with b old in the ABox A, the dependencies in D’(a,b old):f must be computed:

If (D(a,b old):f = ∅) ∨ (D(a,b new):f = ∅)
then D’(a,b old):f = ∅
else D’(a,b old):f = D(a,b old):f ∪ {n| n ∈ D(a,b new):f ∧ n < max(D(a,b old):f)}

If both dependency sets are empty, the feature assertion is not due to a choice at
any branching point. In the other case the dependency numbers of D(a,b new):f

can be omitted, if they denote branching points encountered “later” than the
branching point from which (a , b old) : f originated.3 Backtracking to one of
these branching points would not retract the first feature assertion from the
ABox.

Provers for DLs with admissible concrete domains consist of the DL reasoner
and the CD consistency tester. In order to perform DDB after a concrete domain
clash (Def. 2) it is necessary that the CD tester can identify all clash culprits.
Such an identifying concrete domain tester, which finds all minimal, inconsistent
sets of predicate assertions is the prerequisite for applying DDB efficiently to
ALC(D) (and thereby for all DLs with a CD) after every kind of clash. It is
not sufficient to identify just one set of inconsistent predicate assertions, as the
Example 1 illustrates.

Example 1 Assume adding the assertion (x 1, x 2) : P1 with D(x1,x2):P1
= {1}

causes two concrete domain clashes in the ABox. The first clash results from
the combination with (x 1, y) : P2 and the second clash from the combination with
(x 2, z) : P3, where D(x1,y):P2

= {5} and D(x2,z):P3
= {3}. If the CD tester finds

only one minimal inconsistent set of predicate assertions, it may return the set
{(x 1, x 2) : P1, (x 2, z) : P 3}. The DL reasoner computes DCulprit = {1, 3}, back-
tracks to the branching point 3 and omits illegally the alternatives at branching
point 5.

However, an alternative to using an identifying CD tester is to restrict the ap-
plication of DDB to the remaining three clash types. Then, in case of a concrete
domain clash naive backtracking on the branching points, which added predi-
cate assertions, must be performed. This assumes that a CD test is performed
whenever a predicate assertion is added and would thereby lead to many more
CD consistency tests and to thrashing in some cases.

For the most most admissible CDs of interest the complexity of a CD consis-
tency test without identification of the culprits is at least in PSpace and even
worse, see [6]. So requiring an identifying CD and thus having an increase of
complexity is a somewhat daunting result.

2.2 Dependency Directed Backtracking for ALCRP(D)
The tableaux calculus for ALCRP(D) does not partition the ABox into sub-
tableaux, so all kinds of assertions have to be associated with dependency sets.

3This branching point is denoted by the highest dependency number in D(a,b old):f .

In ALCRP(D) the RChoose rule is yet another non-deterministic rule, which
introduces new dependency numbers. This rule adds alternatively a predicate
assertion or its negated counterpart to the ABox. So it is to be expected that
more CD tests will be necessary and many more concrete domain clashes will
occur for ALCRP(D) than for ALC(D). So the use of an identifying concrete
domain is even more mandatory for ALCRP(D). The dependency sets are
determined and in case of fork elimination recomputed as described for ALC(D).

3 Model Merging and Caching

Model Merging (MM) is a very effective optimization technique for speeding up
subsumption tests during the classification of a TBox. For each subsumption test
(C � D) a satisfiability test (sat?(C ¬D))) is performed. Each concept name
mentioned in the TBox might be involved in many satisfiability tests, where the
concept terms for C (¬C) are expanded repetitively by the tableaux prover,
if it is tested whether C is the subsumee (subsumer) of other concept names
occurring in the TBox. MM re-uses the information (so-called pseudo models)
cached from complete ABoxes, which were computed for previous subsumption
tests by the tableaux prover. The MM technique is a sound but incomplete
technique for testing the satisfiability of a conjunction of concepts by combining
their pseudo models (see [4]). The conjunction C ¬D is satisfiable if the pseudo
models of C and ¬D can be merged by the MM algorithm. If these pseudo
models cannot be merged, the tableaux prover must be applied for testing the
satisfiability of the conjunction. MM algorithms for DLs with CDs based on
the tableaux calculus, must take into account all clash types defined in Def 2 in
order to determine if pseudo models are mergable.

We have developed algorithms for DLs with concrete domains for flat and
deep MM as well. Due to the lack of space we only cover the flat model merging
methods in this paper. For full details see [7].

3.1 Flat Model Merging

Flat model merging is used in the DL system FaCT for the description logic
ALCf HR+ (see [4]) and in RACE for the description logic ALCNHR+ (see
[3]). Flat MM compares the set of atomic and negated atomic concepts asserted
for the initial individual a and the assertions for the direct role and feature
successors of a from the pseudo models to be merged. A label set LA(a) for an
individual a is a set of all concept terms from all concept assertions for a in a
completed ABox A.

Def. 4 (Flat ALC(D) Pseudo Model) Let D be an ALC(D) concept and let
A be the ABox A = {a : D}. The flat ALC(D) pseudo model M for D consists
of the following cache sets:

SM
CN = {CN|CN ∈ LA(a)}, SM

¬CN = {CN|¬CN ∈ LA(a)},
SM
∀R = {R | (∀R.C) ∈ LA(a)}, SM

∃R = {R | (∃R.C) ∈ LA(a)},
SM
∀f = {f | (∀f .C) ∈ LA(a)},

SM
∃f = {f | (∃f .C) ∈ LA(a)} ∪ {f | f = first(ui), ui used in(∃u1, . . . , un.P),

(∃u1, . . . , un.P) ∈ LA(a)}

Flat pseudo models contain four cache sets with the names of roles or features
“referring” to successors of the initial individual a of the ABoxA. There are two
cache sets for roles (as well as for features) based on concept terms that trigger
successor generating tableaux rules and that trigger non-generating rules. Flat
MM is performed for two flat ALC(D) pseudo models M 1 and M 2 by testing
the following conditions: Are there interactions for

1. the atomic concepts? ((SM 1
CN ∩ SM 2

¬CN �= ∅) ∨ (SM 1
¬CN ∩ SM 2

CN �= ∅))
2. role successors? ((SM 1

∃R ∩ SM 2
∀R �= ∅) ∨ (SM 1

∀R ∩ SM 2
∃R �= ∅))

3. feature successors?
((SM 1

∃f ∩ SM 2
∃f �= ∅) ∨ (SM 1

∃f ∩ SM 2
∀f �= ∅) ∨ (SM 1

∀f ∩ SM 2
∃f �= ∅))

If all three conditions are false there is no interaction between the pseudo models,
they can be merged and the conjunction of concept terms is satisfiable. If one of
the conditions is true, the tableaux prover must be used to test the satisfiability
of the conjunction.

3.1.1 Flat Model Merging for ALCRP(D)
The applicability of MM for ALCRP(D) is limited due to the phantom edges
caused by value restrictions for complex roles. The problem is that a new phan-
tom edge may be established “across” the complete ABoxes the pseudo models
are derived from, as the following example illustrates.

Example 2 Assume we test if C 1 and C 2 are satisfiable as a conjunction, with
C 1

.
= ∃R1. ((∃f 1 ◦ f 2, f 3.P2) (∀ (∃(f 1 ◦ f 2, f 3)(f 4, f 3 ◦ f 1).P1) .¬D))

C 2
.
= ∃R2. (D (∃f 4, f 3 ◦ f 1.P3)). We derive ABoxes for C 1, C 2 and C 1 C 2

as shown in Figure 2. However, the ABox of C 1 C 2 contains a phantom edge
causing a primitive clash at the R2 successor individual. Neither the phantom
edge nor the clash can be detected by flat MM.

MM is therefore only applicable to ∀Rc-free models.4 A model is ∀Rc-free iff it
is cached from a complete ABoxA where no individual a and no complex role Rc

exists such that a : (∀Rc . C) ∈ A. Please note that restricting MM to ∀Rc-free
models does not restrict it to concept terms without value restriction for complex

4Even deep model merging, the recursive variant of flat MM, cannot handle the phantom
edges in a efficient way.

f 1f 1

f 1f 1 f 2f 2

f 3f 3

f 3 f 3 f 4f 4

P1

P2P2 P3P3

D

D ,
¬D

C 1 C 2 (C 1 C 2)

R1

R1
R2

R2

(∃(f 1 ◦ f 2, f 3)

(f 4, f 3 ◦ f 1)P1)

Figure 2: Phantom edge across models

roles. If a concept term uses such a value restriction only in disjunctions, MM
might still be used for the resulting model.

In contrast to value restrictions, exists restrictions for complex roles can
be processed by flat MM. In a first step the tableaux rules expanding such a
term add a new role successor individual for the complex role to the ABox.
In a second step the chains of the role predecessor (the u i’s), the chains of
the role successor (the v i’s) and the predicate assertion are added. Because
the role successor is a new individual in the ABox all of its feature successors
are also new. Therefore, not both ∀Rc-free pseudo models to be merged can
refer to the same role successor individual for a complex role. Interactions can
only occur at the predecessor individual and along its feature chains. Therefore
the role predecessor individual and its feature-chains must be checked by MM.
Flat pseudo models for ALCRP(D) need to cache the first features of the u i’s
appearing in terms like (∀ (∃(u1, . . . , un)(v 1, . . . , vm).P) . C) in the cache set SM

∃f .
If these first features are added to the flat pseudo model, the same three test
conditions as for ALC(D) can be applied to perform flat MM for ALCRP(D).

4 Conclusion and Future Work

Experiences with other DLs have shown that the classification of realistic ap-
plication KBs demands provers supporting at least MM and DDB. Practical
applications (e.g. configuration tasks) ask for reasoning with CD objects such
as real numbers. We have shown that two of the most effective optimization
techniques can be adapted to the satisfiability test for ALC(D), which is the
basic logic of DLs with concrete domains. Unfortunately these results do not
hold for ALCRP(D) concepts in general. Only concepts with ∀Rc-free models
can be processed by MM.

Applying DDB to concrete domain clashes requires identifying CD testers.
Unless an identifying CD is used, the CD consistency test must be performed
after each tableaux rule which generates a predicate assertion. Without an iden-

tifying concrete domain DDB can only be performed after the remaining three
clash types. Using an identifying CD the “expensive” CD consistency test does
not have to be performed after every tableaux rule adding a predicate asser-
tion. This way of reducing the numbers of CD tests might lessen the increase of
computational effort due to the identification of all inconsistent sets of predicate
assertions. Which of these two ways of DDB turns out to be more efficient,
depends on the CD used and requires an implementation and empirical testing
of these methods by means of KBs using DLs with CDs.

A next step to further optimize provers for DLs with CDs is to investigate
dynamic backtracking. This backtracking technique does not discard intermedi-
ate results when backtracking to a branching point. So for DLs with CDs (and
especially ALCRP(D)) this method avoids the re-computing of satisfiable sets
of predicate assertions.

Acknowledgment

We would like to thank Ralf Möller and Michael Wessel for helpful discussions
and suggestions. We also thank the anonymous reviewers for valuable comments
on this paper.

References

[1] F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In Twelfth International Conference on Artificial Intelligence,
Darling Harbour, Sydney, Australia, pages 452–457, August 1991.

[2] V. Haarslev, C. Lutz, and R. Möller. A description logic with concrete domains
and a role-forming predicate operator. Journal of Logic and Computation, 9:351–
384, June 1999.

[3] V. Haarslev and R. Möller. Optimizing TBox and ABox reasoning with pseudo
models, August 2000. In this volume.

[4] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics.
PhD thesis, University of Manchester, 1997.

[5] I. Horrocks and P. Patel-Schneider. Optimising description logic subsumption.
Journal of Logic and Computation, 9:267–293, June 1999.

[6] Carsten Lutz. The complexity of reasoning with concrete domains (revised ver-
sion). LTCS-Report 99-01, LuFg Theoretical Computer Science, RWTH Aachen,
Germany, 1999.

[7] A.-Y. Turhan. Optimization methods for the satisfiability test for description
logics with concrete domains. Master’s thesis, University of Hamburg, Computer
Science Department, April 2000.

