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Zusammenfassung. Ein wesentlicher Schritt zur Erkennung von Objekten mit symmetrischem Umriss — wie zum Beispiel
planare, symmetrische Objekte, aber auch Rotations-Körper — ist die Berechnung der Transformation, welche die beiden
Seiten des Umriss aufeinander abbildet. Innerhalb eines komplexeren Erkennungssystems muss im Rahmen der Hypothesen-
Generierung eine große Zahl derartiger Berechnungen durchgeführt werden. Es ist von daher zwingend erforderlich, dass
diese Berechnungen sowohl schnell als auch möglichst korrekt durchgeführt werden können. In diesem Bericht werden
verschiedene Methoden verglichen und gezeigt, dass die Wahl der Methode erheblichen Einfluss auf die Zuverlässigkeitdes
Ergebnisses haben kann. Die beschriebenen Methoden lassensich auch auf Straight Homogeneous Generalized Cylinders
anwenden, obwohl deren Umriss im allgemeinen keinerlei Symmetrien aufweißt.
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Abstract

Calculating the projective transformation which maps the
two sides of a symmetric contour onto each other is an
important step in the recognition of objects with symmet-
ric contours, such as planar symmetric objects or surfaces
of revolution. Within a more complex recognition system,
many such calculations have to be performed as part of the
hypotheses generation process, and it is therefore essential
that the calculations are both fast as well as accurate. This
paper compares different approaches and shows that the
method selected can critically influence performance. The
discussion trivially extends to finding the axis of a straight
homogeneous generalised cylinder, even though its contour
will not, in general, exhibit any symmetries.

1. Introduction
Objects with a symmetric contour form an important class
for computer vision [3, 4, 6, 7, 10, 11, 13, 14, 17, 20] (see
Sec. 2.1 for the definition of symmetry used in this paper).
There are basically two families of such objects, namely
planar (2D) symmetric objects and surfaces of revolution
(SORs). However, many other man-made objects can be
considered symmetric for practical purposes, including air-
planes viewed from a distance [1], tools like a pair of pliers
or scissors [3, 10], objects like spoons or ashtrays [11], or
individual faces of complex objects [6]. And although the
projections of straight homogeneous generalised cylinders
(SHGC) generally exhibitno symmetry [15], we will later
see that much of the methodology used for symmetric ob-
jects also applies to SHGCs.

Recognising symmetry in images can usually be divided
into the following three steps: first (1) corresponding curve
segments from each side of the contour need to be identi-
fied, e. g. based on projective invariants [4,16], a necessary
condition for symmetry. Next (2) an approximation of the
transformation between the two sides of the contour will
be computed, a harmonic homology [14]. Finally (3) we
can refine our initial approximation of that homology, us-
ing, e. g., the snake-like algorithm given in [20]. This last

(and time-consuming) step will, however, only be necessary
if the contour tested successfully in the previous step.

This paper is only concerned with the second step. As
complex scenes like the ones shown in [13, 20] can con-
tain several hundred concavities, which in turn can lead to
several hundred putative symmetries, it is important that
the initial test for symmetry should be fast, reliable (only
few false positives, and, if possible, no false negatives),and
should provide a good initial estimate of the harmonic ho-
mology (so that the algorithm in the last step will require
fewer iterations). This becomes even more important where
automatic classification is applied to several thousand or
even million images, such as with image-databases or web-
crawlers. In our analysis of 48 competing algorithms we
will see that the naive approach can create results which
are grossly wrong and effectively unusable, and that even
the algorithm used in [12,14,20] is not necessarily optimal.
Although most of the algorithms have not previously been
used for the detection of symmetry they are by no means
new and used frequently for a range of computer vision
tasks (most notably the detection of vanishing-points and -
lines). It should therefore be instructive for the computervi-
sion community as a whole to analyse their respective mer-
its and weaknesses — this is particularly true as we will see
the most widespread algorithm perform poorest.

The remainder of this paper is organised as follows: Sec-
tion 2 gives a brief overview over the terminology and ge-
ometric constraints used, leading up to a description of the
actual algorithms in Section 3. Section 4 gives a compari-
son and Sec. 5 a discussion of the results obtained.

2. Notation
2.1. Projective Symmetry
In 2D Euclidean space (Euclidean) symmetry is usually de-
fined in terms of angles and lengths (this paper mainly deals
with symmetry with respect to a line — also called axial-,
reflectional- or mirror-symmetry). Angles and lengths are,
however, inherently non-projective features — so much so
that [5] explicitly denied the term symmetry for the very
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Figure 1: Euclidean symmetry (left), affine symmetry (middle),
and projective symmetry (right).

same outlines for which we are now going to claimprojec-
tive symmetry.

What we mean by the termprojective symmetryis the
existence of a non-trivial transformationH so that for corre-
sponding pointsx andx′ on the two sides of the contour we
getHx = x′, Hx′ = x, and consequentlyHHx = I3x = x

(the matrixI3 is the identity matrix). It can be shown that
only if H is a so calledplane harmonic homology

H = I3 − 2
vℓ

T

vTℓ
(1)

is it possible to find a projective transformation which will
turn the outline into one exhibiting Euclidean symmetry. In
(1) vectorℓ is the image of theaxis of symmetry, and vec-
tor v, which we will call thevertex, denotes the direction
of symmetry. It will be at infinity foraffine symmetry(also
calledskewed symmetry) and orthogonal to the axis forEu-
clidean symmetry. The cross-ratio between the two contour-
pointsx andx′, the point on the axis between the twop,
and the vertexv is cr = px/px′ · vx′/vx = −1, which is
calledharmonic separation.

2.2. Distinguished Points
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Figure 2: Features used: bitangent intersections are marked i,
crosspoints are markedc. The points markedi′ andc′ are inter-
pair features.

It is generally not trivial to decide which points from
each side of the contour correspond to each other. Only for
a small number of so calleddistinguished pointsis this cor-
respondence easily found. Particularly useful in this respect
are points of bitangency, i. e. tangent points of a line tangent
at two points on the contour; the line is called a bitangent-
line. Corresponding bitangent-lines will intersect each other
on the (projection of the) axis of symmetry [5] — we will

call this point the (bitangent)intersectionthroughout the re-
mainder of this paper. It is markedi in Fig. 2. Additionally,
for any two pairs of distinguished points{x1,x

′

1
}, {x2,x

′

2
}

the lines through the point-pairs{x1,x
′

2
} and{x2,x

′

1
} will

intersect on the axis too (except for SHGCs), we will call
this point acrosspoint. It is markedc in Fig. 2.

So far we considered each bitangent-pair separately, cal-
culating onlyintra-pair features. However, if more than two
distinguished points on each side of the contour are known,
each pairing of two points and their corresponding points
on the other side of the contour can be used to calculate
additional intersections and crosspoints. Figure 2 shows a
selection of suchinter-pair features markedi′ andc′.

2.3. Object Classes
While planar symmetric objects will by definition have a
symmetric outline, this is actually not the case for SHGCs
and not immediately obvious for SORs, which can be de-
scribed as a special SHGC. These are therefore described
in more detail in the next two sections.

2.3.1 SHGCs

Straight homogeneous generalised cylinders (SHGCs) can
be constructed from an arbitrarily shapedreference cross-
sectionwhich gets scaled according to ascaling function
while being swept along a straight axis (note that the axis
need not even pass through the reference cross-section, in
which case banana-like shapes would be the result). The
contour of a SHGC will in general not display any kind of
symmetry or even only qualitative symmetry [15], nor is
there any straightforward transformation which would map
one side of the contour onto the other without additional
information. However, some properties which are true for
symmetric contours also hold for SHGCs, and it is in par-
ticular the case that bitangents form distinguished points
which can in general be identified and matched on both
sides of the contour. What is more, for SHGCs too bitangent
intersections will lie on the image of the SHGC’s axis [15].
Unfortunately crosspoints donot lie on the axis, and results
relating to those therefore cannot be used, nor is it possi-
ble to calculate the axis from any contour points other than
distinguished points. This makes an accurate algorithm of
particular interest for SHGCs.

2.3.2 Surfaces of Revolution

A surface of revolution (SOR) can be constructed from a
circle which is translated along an axis through its centre
and orthogonal to the circle’s plane, and which is scaled
at the same time by the so called scaling function orgen-
erating function. It is obvious from the above description
that SORs are a special kind of SHGCs, and it is clear that
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any result valid for SHGCs will also hold for SORs, but not
vice-versa.

An SOR’s contour generator will generally be a com-
plicated, non-contiguous, non-smooth curve in 3D. It can
nonetheless be shown that the corresponding 2D-contour
will exhibit projective and, to a very good approximation,
even affine symmetry [14]. This allows us to treat the con-
tour of an SOR exactly like that of a planar symmetric ob-
ject.

2.4. Error Measure

For contours related by a planar harmonic homology, it is
directly possible to quantify the quality of thecalculated
planar harmonic homology even without ground truth —
we can simply useH to map one side of the contour onto
the other side, and use some error measure between the two
curves to assess the goodness of fit. This is often done us-
ing the Hausdorff distance of the two contours, basically
the maximum distance between the two sets. This is, how-
ever, not a very intuitive or descriptive measure, and we use
instead the area between the two contours divided by the
height of the object. This gives us the average difference
between edgels on each side of the contour. Note that even
for perfect symmetry this error-measure or residual will not
be zero, as the position of the edgels along the contour will
be noisy. We can therefore only expect a value in the same
order as the standard deviation of our edge detection algo-
rithm (or, more accurately,

√
2 times the standard deviation,

as both sides will be subject to measurement errors). Here
we use a very simple implementation of the Canny edge
finder [2] to extract the edges. Its standard deviation on
grey-level images is in the order of0.1 pxl ≤ σ ≤ 0.3 pxl.

3. Algorithms

Rather than trying to solve for the plane harmonic homol-
ogy all at once (for which usually no closed form solution
exists), it is far easier to compute separate results for the
axis and vertex. Doing so basically means to compute a
best-fit line through a number of points (the axis), and the
most likely intersection of a number of lines (the vertex).
This is a standard problem in computer vision (and conse-
quently should have a standard solution), but nonetheless
many different algorithms for the solution of this problem
are in widespread use — we will see in Sec. 4 that the most
commonly used algorithm also tends to be the least reliable.
In the following, we distinguish algorithms by geometric-
and error-model; a further subdivision is possible by the
number and type of features used. All these different as-
pects are discussed below for the calculation of the axis.

3.1. Axis Calculation

Crosspoints and intersections, which we will use to calcu-
late the axis, are basically measurements in the image-plane
(although not necessarily within the image) and as such can
be characterized by their position and an error-distribution
describing the measurement error. The position is in the
following represented by triplesp = (x, y, z)T, where the
location in the image plane is calculated as(x/z, y/z). For
a unique representation an additional constraint is needed,
and we usez = 1 to represent Euclidean coordinates or
x2 + y2 + z2 = 1 for homogeneous coordinates, which rep-
resents point in 2D as points on a 3D unit-sphere. As for
the error-distribution, we distinguish between two models:
a modelimplicit in algorithms which minimise the sum of
squared distances, namely independently, identically, and
isotropically distributed (iiid) features with Gaussian dis-
tribution, and anexplicit model which uses standard er-
ror propagation to derive the intersections’ and crosspoints’
covariance matrices from iiid Gaussian distributed bitan-
gent points. More complicated models will be discussed
in Sec. 5 and 6. Although different geometric- and error-
models are used we can nonetheless for all four combina-
tions calculate the best-fitting axisℓ through some intersec-
tions and crosspointspi by minimising

F (ℓ) =
1

N

N∑

i=1

ℓ
T
pip

T

i
ℓ

ℓ
T
Σp

i
ℓ

+ λ(ℓT
Wℓ − 1) (2)

for different values ofW andΣp
i
. The W is either the

identity-matrixI3 (for homogeneous coordinates) or has its
last diagonal element set to0 (for Euclidean coordinates);
the Σp

i
is either the same matrix asW (implicit error

model), a full covariance-matrix (explicit model, homoge-
neous coordinates) or a covariance-matrix with it’s last row
and column set to0 (explicit model, Euclidean coordinates).
The minimum can be calculated explicitly if an implicit
error-model is used, or else using Kanatani’s unbiased es-
timator [9].

In addition to the geometric- and error-model we can fur-
ther subdivide algorithms by features used. Using only in-
tersections will result in an algorithm suitable to SHGCs
as well as symmetric contours, while the additional use
of crosspoints excludes most SHGCs. Finally we can dif-
ferentiate between algorithms which only use the infor-
mation from corresponding bitangent pairs (intra-pair re-
lations) and such which use all pairwise combinations of
bitangent-points (inter-pair). Throughout this paper we only
use bitangent-points, but the use of inflections would pro-
vide additional information and will be discussed in Sec. 6.
For symmetric outlines finally it is possible to construct an
arbitrary number of additional features, see [11].

We are coding the approaches as follows:

4



8 4 2 1
Error Model Geom. Model Object Model Combinations
expl./impl. xyz/xy1 SOR/SHGC inter/intra

1/0 1/0 1/0 1/0

This results in 16 different methods for the calculation of
the axis, numbered 0–15. Alg. 3 is the one most commonly
used, while Alg. 10 was, e. g., used in [12–14].

3.2. Vertex Calculation
So far we have only implemented three different algorithms.
We will, however, see in Section 4 that for SORs the actual
vertex-model chosen makes little difference (a more com-
plex model would be required for planar symmetric objects
which we didn’t actually test on). The three models are la-
belled 0 (an affine model without explicit error-model, im-
plemented as the average angle towards the vertex at in-
finity), 2 (a projective model using Euclidean coordinates
and no explicit error-model), and 14 (a projective model us-
ing homogeneous coordinates and an explicit error-model)
— the latter two are calculated by substitutingℓ with v

in (2) andp
i

with the line through two corresponding dis-
tinguished points. As for the number of features used, each
bitangent-pair creates exactly 2 lines through the vertex;
pairing non-corresponding distinguished points is not pos-
sible.

4. Results and Discussion
Each of the 16 algorithms for the calculation of the axis and
3 algorithms for the calculation of the vertex were run on
a total of 49 images1 of 6 SORs (see Fig. 3) which have
previously appeared in publications about the recognition
of SORs [12–14]. This resulted in 48 different values for
the harmonic homology in each image and48× 49 = 2352
different harmonic homologies overall. For each homology
we also calculated the residual as described in Sec. 2.4 and
used this to determine the relative goodness of fit for each
approach.

What are the results we would expect? As stated in
the previous section, algorithms basically differ in threear-
eas: by the number of features used (intra-pair versus inter-
pair and intersections only versus intersections and cross-
points); by geometric model (Euclidean coordinates versus
homogeneous coordinates); and by error model (no explicit
model versus simple explicit model). Generally speaking,
we would expect the algorithms to perform better which
use more features, homogeneous coordinates and an ex-
plicit error-model. However, it is important to realise that
here, as everywhere else, no silver bullet exists — we will
in fact later see that the particularities of most of the imaged
objects considerably skew the outcome. We therefore use

1The relevant contours and bitangents were selected by hand,so as not
to confound the comparison with additional issues.

Figure 3: 45 of the 49 images of SORs used.

several different measures of fitness to assess the quality of
the algorithms. These measures are either based on the ac-
tual residual calculated, or on an algorithm’s relative perfor-
mance compared to all other algorithms, its ranking. Both
will be described in more detail in the next two sections,
while Sec. 5 discusses the reasons for some unexpected ob-
servations.

4.1. Residual

Figure 4 shows the range (minimum, median, and maxi-
mum) of residuals encountered for each of the 48 combi-
nations of axis- and vertex-model, ordered by axis-model.
In the following we will mostly be interested in the maxi-
mum residual calculated, as some algorithms could clearly
result in unacceptably wrong results, which of course needs
to be avoided if the number of false negatives is to be
kept small; only then will we consider the median resid-
ual, which gives information about the algorithms’ average
performance. The minimum residual is of little interest to
us, as it will always be in the order of

√
2 times the edgels’
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Figure 4: Range of residuals. For each algorithm the minimum,
median and maximum residual are plotted — note the discontinu-
ity along the ordinate. The table shows the numerical valuesfor
the second best vertex-model.

variance for any algorithm worth considering.
A number of things can be learned from Fig. 4: first, the

choice of the axis-model has a much bigger influence on
the overall performance than the choice of the vertex-model
— this can be seen from the fact that for each axis-model
the error-bars for all three vertex-models are very similar,
while differing wildly between different axis-models. We
will therefore group algorithms by axis-model in the fol-
lowing.

Next, it is instructive to look for any systematics in the
maximum residuals — in order to avoid false negatives and
to speed up subsequent processing the residual should not
become too big. Ignoring axis-model 3 for now, we will
observe that the axis models number 1, 5, and 13 can give
quite unreliable results. These are the algorithms which use
all inter-pair combinations of bitangent-points but no cross-
points (and are therefore suitable for SHGCs too). Only
axis-model 9, which is the forth model in that series does
not follow this trend. However, it too can give unacceptable
results as can be seen from Fig. 5, middle. The counter-
intuitive observation that models using more points (1, 5,
and 13) perform worse than models using fewer points (0,
4, and 12) is due to errors in those additional points and will
be explained in Section 5.

Ignoring the axis-models 1, 5, 9, and 13 from Fig. 4 we
next concentrate on the models 3, 7, 11, and 15; these mod-
els all use inter-pair intersections and crosspoints, i. e.the
maximum number of features. It is therefore interesting to
note that the models 11 and 15, which use an explicit er-
ror model, perform extremely well (as we expected them
to do), while the models 7 and 3 in particular perform ex-

Axis-model 3
Vertex-model 2
r = 122.763

Axis-model 9
Vertex-model 2
r = 14.5296

Axis-model 15
Vertex-model 14

r = 5.03427

Figure 5: Cases of maximum residual for three axis-models (using
the best vertex-model). The graphs show the left contour mapped
onto the right one — ideally only one contour would be visible.

tremely poor. Again, an explanation for this will be given
in Section 5. It should be noted that the axis-model num-
ber 3 (quadratic distance error model, Euclidean geometry,
using all possible combinations of bitangent-intersections
and crosspoints) is the model most commonly used for the
calculation of a line through several points — but clearly
the solutions found by this approach cannot be relied on at
all. Even the median residual calculated with this method is
higher than that from any other model.

We can now ignore axis-models 3, 7, 11, and 15 too
and concentrate on the remaining models, which use solely
intra-pair intersections (0, 4, 8, 12) orintra-pair intersec-
tions and crosspoints (2, 6, 10, 14). Now three more inter-
esting observations can be made: first, we notice that all
models from the second set (using cross-points) perform
better than the corresponding algorithms from the first set
(without crosspoints). This is in keeping with the assump-
tion that more features are better. Secondly, we notice that
the algorithms without an explicit error model (0–7) actu-
ally exhibit smaller maximum errors than the ones based on
such a model (8–15), which is counterintuitive (the median
and minimum error however behave roughly as expected).
It is not clear to us what conclusions can be drawn from this.
Finally, it is interesting to note that for the axis-models 0, 4,
8, and 12, which use only intra-pair intersections, the affine
vertex-model (0) results in a considerably smaller maxi-
mum residual than the other two models, while for axis-
models which also use crosspoints it results in higher max-
imum errors. Again, the median and minimum error do not
mirror this behaviour, and the implications are unclear.

For SHGCs finally only the Alg. 0, 1, 4, 5, 8, 9, 12, and
13 can be used. Based on Fig. 4 we notice that the maxi-
mum error seems to be best contained using only intra-pair
intersections, and seems otherwise quite independent from
the geometric- or error-model used. However, if we also
take the median and minimum residual into consideration,
things change and the two axis-models 9 and 13 (inter-pair,
explicit error model) perform best.

To sum up: as expected a high number of features is in-
deed preferable, but only if used together with an explicit
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Table 1: Histogram of how often out of 49 runs each algorithm
was among the best 3.

Axis Model Sum

V
er

te
x

M
od

el

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 3 2 7 2 2 4 8 14 4 9 5 8 3 7 5 8 91
2 2 2 1 3 2 1 2 1 1 1 6 22
14 3 3 2 2 1 2 2 5 1 2 2 9 34

Sum 3 7 7 7 2 5 13 18 5 12 9 14 4 10 8 23 147

error-model; without such a model the emphasis should be
put on accurate rather than numerous features — this is in
direct conflict with the assumption underlying many algo-
rithms that more features are always better. For objects with
a symmetric contour, Alg. 11 or 15, which use the most
features and an explicit error-model, are clearly the best
choice. For SHGCs no crosspoints can be used, and here
Alg. 9 and 13 (inter-pair intersections, explicit error-model)
will best contain the average error, although the maximum
residual can still be quite high, as can be seen from Figure 5.
There examples for the actual homologies computed in the
case of maximum error are given for three of the algorithms
(3, 9, and 15). We can see that even the algorithm with the
lowest maximum residual (axis-model 15, vertex-model 14
— the most refined model using the most features) will pro-
duce noticeable errors for some input-constellations. The
results are, however, much more usable, as can be seen from
Fig. 5, right, which shows the example with the maximum
residual for this algorithm. It should be noted that the ob-
ject is actually not quite symmetric, although in this partic-
ular case 8 out of the 48 algorithms tested performed better.
Ranking the relative performance of all algorithms is indeed
another possibility to determine fitness, and will be done in
the next section.

4.2. Rank
Although any algorithm might return the smallest residual
for one particular outline, we would nonetheless expect that
the better an algorithm is suited for the task, the more often
should it show up among the bestN algorithms; conversely
the more often it is placed among the worstN algorithms,
the more unsuitable will we deem this algorithm. Table 1
lists, for each algorithm, how often it was observed among
the best 3 algorithms. We see that Algorithm 15 (most fea-
tures, homogeneous coordinates, explicit error-model) isin-
deed the most performant algorithm, but closely followed
by Alg. 7 (most features, homogeneous coordinates,noex-
plicit error-model). As expected the Algorithm 11 (most
features, Euclidean coordinates, explicit error model) per-
forms quite reasonably too, while the good ratings of Alg. 6
and 9 come as a surprise. With regard to the vertex-model
it might seem surprising that the affine model performs so
well, but the two sides of an SOR are indeed to a very good

Table 2: Histogram of how often out of 49 runs each algorithm
was among the worst 3.

Axis Model Sum

V
er

te
x

M
od

el

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 8 11 1 19 5 2 1 2 1 1 2 1 2 2 1 59
2 5 11 19 1 1 1 1 1 1 4 45
14 6 11 18 1 2 2 1 1 1 43

Sum 19 33 1 56 5 4 1 5 2 1 5 1 2 4 7 1 147
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Figure 6: Histograms of rank for axis-models 6 (top left), 7 (top
right), 11 (bottom left), and 15 (bottom right).

approximation affinely related, as was shown in [14].
Additional insights can be gained if we group algorithms

by features used. Algorithms based on an explicit error
model account for 58 % of the best 3 algorithms; using ho-
mogeneous coordinates accounts for 56 %; using intersec-
tions and crosspoints accounts for 67 % of the best 3 al-
gorithms, and using inter-pair features for 65 %. All this
suggests that more features and better geometric- and error-
models do indeed improve the performance, but not consid-
erably.

The image becomes somewhat clearer if we also con-
sider the 3 worst algorithms, shown in Table 2. Here, using
no explicit error-model accounts for 84 % of the worst 3 al-
gorithms; using Euclidean coordinates for 80 %.

The usefulness of an explicit error-model becomes even
more apparent if we look at a histogram of the ranks
achieved with the Algorithms 6, 7, 11, and 15 (which, ac-
cording to Tables 1 and 2, all performed similarly, while
in theory 11 and 15 should exhibit superior performance).
Figure 6 shows a clear difference between the algorithms
which do not use an explicit error model (6 and 7, top row)
on the one hand and the ones which do (11 and 15, bot-
tom row) on the other. The former (as do most other mod-
els) show a nearly uniform distribution, which means that
they are similarly likely to be among theN best as well as
theN worst algorithms, while the latter’s distribution looks
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Figure 7: The accuracy with which bitangent-points can be located
depends on the contour’s curvature in that region. This has little in-
fluence on bitangent-intersections, but can considerably influence
the position of crosspoints and inter-pair intersections.

Figure 8:Inter-pair intersections can be quite inaccurate for many
common objects, yet at the same time far enough away from the
object to have considerable influence on the location of the axis.

somewhat like a Poisson distribution, with good ranks much
more likely than bad ones. This shows that the overall likeli-
hood of an acceptable result is much higher for axis-models
which use as many features as possibletogetherwith an ex-
plicit error-model.

We believe this to be strong evidence that the use of an
explicit error-model, at least when used together with many
features of varying quality, can considerably improve an al-
gorithm’s performance. Only the use of an explicit error
model can prevent the extremely erroneous results exhib-
ited by Alg. 3, and the use of an explicit error-model to-
gether with many features will in most cases give better re-
sults than any other approach.

5. Discussion
We have seen in Section 4.1 and 4.2 that using more features
and an explicit error-model will indeed overall improve the
performance of an algorithm (as we expected). However,
we also noticed some inconsistencies, and these will be ex-
plained in the following.

Considering only the maximum residuals in Fig. 4 we
noticed that the axis-models 1, 5, and 13 (inter-pair inter-
sections, no crosspoints) can perform noticeably worse than
the models 0, 4, and 12 (intra-pair intersections only), even
though for the former many more features can be calculated.
Although counterintuitive at first, this is easily explained
based on the particular shape of most of our test-objects.
Consulting Fig. 3 we notice that most objects contain sec-
tions of extremely low curvature (nearly straight in fact),
and that in most cases a bitangent will touch the object in
that area. This is true for the neck of the first object and
the foot of the second and sixths, which together contribute
about 66 % of all contours. The position of a bitangent-

point along such a low-curvature segment can only be cal-
culated quite inaccurately, see Fig. 7. This has very littlein-
fluence on the direction of that particular bitangent (whose
accuracy basically depends on the distance between the two
points of tangency), and consequently little influence on the
position of the bitangent-intersection (and, in consequence,
little influence on the axis-models 0, 4, 8, and 12); it can,
however, greatly influence the position of inter-pair inter-
sections (1, 5, 9, and 13) — Figure 8 gives an example.
GivenN bitangent-pairs, only 1 intersection (containing the
erroneous bitangent-point) will be calculated correctly,but
2(N − 1) intersections will be incorrect (compare Fig. 2).
Additionally, many of those intersections will be far away
from the object, and will consequently have high influence
on the final result (in particular if Euclidean coordinates
were used). It is therefore not surprising that results can
become nearly arbitrarily wrong. Using crosspoints (mod-
els 3, 7, 11, 15) can mediate this effect; while their posi-
tion will be wrong too, they will actually be on the other
side of the axis and therefore offset some of the effect. The
correct solution of course would be an error model which
correctly computes a point’s accuracy along the bitangent
based on the contour’s curvature around the point. How-
ever, as curvature is impossible to compute accurately for
low-curvature contours [19], such a model will be difficult
to implement (see Sec. 6).

6. Conclusions and Outlook

A computer-vision system which aims to locate, identify
and possibly reconstruct planar symmetric objects, SORs or
even SHGCs needs to calculate the objects’ axes and, for the
first two classes of objects, the harmonic homology relating
the two sides of the contour. A very accurate algorithm for
the calculation of the harmonic homology has been known
for a long time [20], however, this algorithm is based on nu-
merical minimisation and, depending on the initial estimate
of its parameters, might require many iterations in order to
converge. While not a problem for a single outline (each
iteration is quite fast), this can nonetheless severely limit its
usefulness in the case of cluttered images containing many
possibly symmetric objects, or in the case where huge num-
bers of images need to be analysed, as for image-database
applications or within webcrawlers. Having a faster algo-
rithm which serves both to weed out many wrong matches,
as well as providing the following stages with accurate ini-
tial values, can provide a considerable speedup. Having an
algorithm available which is based solely on distinguished
points is also of particular importance for SHGCs, where no
better algorithm is known.

In this paper 48 different algorithms for this intermediate
step have been compared and it has been demonstrated that
using an explicit error model can considerably improve the
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results, in particular where many features of varying accu-
racy are used. This can mean the difference between com-
pletely useless results in the naive — but widely used —
case on the one side and highly reliable results on the other.

There is, however, still room for improvements. We
have seen in Sec. 5 that the proposed method, while already
of very high accuracy even in the worst case, could most
likely be further improved by the use of a curvature-based
error model. While easily enough done in theory it unfortu-
nately suffers from the fact that curvature for low-curvature
regions cannot be calculated accurately in practice [19].
We are currently working on an error-model which would
nonetheless be able to take these effects into account.

Once such an error-model is in place it would also enable
us to use an additional kind of distinguished point, namely
inflections, isolated points of zero curvature. All the prop-
erties of bitangent-points given above also hold for inflec-
tions; it is however difficult to accurately compute their ori-
entation (needed for the intersection) and position (needed
for crosspoints, inter-pair intersections and the calculation
of the vertex). A curvature-based error-model would allow
us to quantify this uncertainty and take it into account.

This paper concentrated on the calculation of an SOR’s
axis of symmetry. In order to become truly comprehen-
sive, additional tests should be run on SHGC’s and planar
symmetric objects; the latter will also allow a more detailed
study of algorithms for the calculation of the vertex.

Additionaly, a different error measure could be devel-
oped based on the fact that for truly symmetric objects the
crossratrio between two corresponding points, the vertex
and a point on the axis along a line through the other three
points should have a crossratio of−1; such an error measure
could be based, e. g., on the work done in [18].

Due to the duality between lines and points it is straight-
forward to extend the above to point-symmetry.
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