
Some Practical Issues in Building a Hybrid Deductive

Geographic Information System with a DL-Component

Michael Wessel

University of Hamburg, Computer Science Department,

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Email: mwessel@informatik.uni-hamburg.de

Abstract

We report about some preliminary issues from the DFG project “Description Log-
ics and Spatial Reasoning” (“DLS”, DFG Grant NE 279/8-1), one of whose goals
is to develop a prototypical deductive hybrid Geographic Information System
(GIS) with a DL-component. In this paper we discuss the multi-dimensionality
of the space of design decisions from a software engineering perspective. In order
to support appropriate representation of spatial and thematic aspects and, consid-
ering the different aspects of the geographic data, querying the GIS in a uniform
way, we are developing a hybrid representation and reasoning framework, offer-
ing support for different description languages (not necessarily being description
logics). In order to be applicable to a wide range of representation and reasoning
tasks, the exploited description languages are not fixed, but exchangeable. The
paper sketches our vision of a deductive GIS and we evaluate how standard de-
scription logic systems can be of value in this setting. We also introduce a class of
spatio-thematic conjunctive queries which is useful in our setting here and argue
that query satisfiability and containment are decidable.

1 Introduction

As part of the “DLS” project (“Description Logics and Spatial Reasoning”, DFG
Grant NE 279/8-1) we are developing an experimental prototypical deductive Geo-
graphic Information System (GIS). One of the principal goals of the the project is
to exploit “DL technology”, even though other techniques might be suitable as well,
especially from the “Logic Programming” or database (especially OODB) realm. The
plan of this paper is, one the one hand, to introduce the project to the public, to sketch
the vision of a deductive GIS and report about the preliminary prototype and its prag-
matic solutions (in terms of a progress report), and on the other hand, to explore the
multi-dimensionality of the space of design decisions of this endeavor and to evaluate
how standard description logic systems can be of value in this setting. In order to ex-
ploit the DL system RACER ([4]) for the system’s reasoning tasks, we are developing
a software framework which will also be suitable for similar hybrid representation and
reasoning tasks; e.g. the representation of large amounts of semi-structured data as
will be found in forthcoming semantic web applications ([2]).

We will show that our system will have to handle large amounts of heterogeneous data,
in principal spatial and thematic data. In order to support appropriate representation
of (and reasoning with) the various different aspects of the data in a uniform way, it
will turn out that we need an additional layer of software on top of, or in combination
with, a DL ABox (please refer to [1] in case any of these terms is not familiar). We
will call this layer a substrate layer ; in combination with a RACER ABox we call it a
RACER substrate.

In our GIS application the data base consists of a digital vector map of the city of
Hamburg. This map can be seen as semi-structured collection of instances of spatial
data types, e.g. polygons, lines, symbols, points, and aggregates of these. We will
call these objects map objects or geographic objects. Map objects are annotated with
thematic information. For example, in case of a map object of type lake, which is a
polygon, we have

Thematic aspects: its name as given in the map, its water quality, the amount of
water contained within it, a reference to its owner (if it is owned at all), etc., as
well as

Spatial aspects: its concrete geometric description, e.g. the polygon of the lake,
uniquely representing its geometric attributes, as well as probably additional
explicitly stored qualitative spatial relationships. Since these can always be com-
puted from the geometry of the objects, these explicitly stored edges might be
seen as an index (a special “materialized view”), supporting fast navigation
through the data. However, in combination with this qualitative index, we also
use a true spatial index, similarly to the ones found in conventional GIS (bucket
and R-tree structures).

The objects have multi-modal / hybrid flavor. We use the following terminology: a
thematic concept refers only to thematic aspects, similarly a spatial concept solely
to spatial aspects, whereas a spatio-thematic concept refers to both. We also talk of
thematic, spatial and spatio-thematic queries. A strict separation might be difficult
sometimes.

In our software framework reasoning works on so-called substrates. A substrate
offers uniform protocols and reasoning services in a flavor similar to a DL system. As
it turns out, a substrate is a quite general notion:

Definition 1 A substrate is an edge- and vertex-labeled directed graph (V,E,LV , LE),
with V being the set of substrate nodes, and E being a set of substrate edges. The
vertex labeling function LV : V → LV maps vertices to descriptions in an appropriate
vertex description language LV , and likewise for LE : E → LE , where LE is an edge
description language.

�

The languages LV and LE are not fixed and can be seen as subsets of predicate logic
(in appropriate syntax). The framework provides software infrastructure for various
representation and reasoning tasks, including query processing in a uniform way (see
below), in forms of generic protocols and classes. We make heavy use of inheritance
to derive specializations of substrates and/or description languages.

Figure 1: Screen Shot of the “Map Viewer” Component of the GIS Prototype

In order to represent the spatial aspects of a geographic map, we use inheritance to
get a geometric substrate. In this specialized substrate, the nodes would be instances
of spatial data types (polygons and the like). Additionally, a spatial index would be
used to support spatial selection operations. The languages LV and LE would be
(variable free) ground terms; in fact, the geometric substrate is just a re-
lational structure; neither disjunctions, variables nor complex descriptions
are present. It should be noted that a DL system (equipped with ABox support)
with an appropriate spatial concrete domain could also be used as a representation
device for the concrete geometry of the map, but none of the DL reasoners we know
of offers yet the ability to define new concrete domains, especially not the ones we
would find useful in this scenario. Despite this we believe that the performance in
our application scenario would not be very good, since handling of a spatial concrete
domain would need spatial index structures and the like, and it is unlikely that a
generic DL system will offer these services sufficiently performant.

Alternatively, we could decide not to represent the geometry of the map at all,
but just exhaustively represent certain selected qualitative spatial aspects of the map,
using a predefined qualitative spatial description vocabulary. In this case a DL ABox
would suffice. But still it would be a pity to throw the geometry of the map away.
Nevertheless we performed such an experiment with RACER since we also wanted to
evaluate how good a system like RACER performs on the resulting very large ABoxes,
containing only very simple relational descriptions (see below).

Without doubt, a RACER ABox will be fine to represent the thematic aspects of the
geographic map. An ABox might also be seen as a special substrate – LE would be just
a set of role symbols resp. conjunctions build from them, and similarly for the nodes.
In contrast to a geometric substrate, LV would be complex formulas, namely concept
expressions from a DL. Ideally, in order to get a map substrate as the representation
medium for the spatial DB, we would like to derive a common subclass (using multi-
inheritance) of the classes RACER ABox and geometric substrate and use appropriate
products or combinations of the thematic and spatial description languages LV thematic

and LVgeometric, LE thematic and LEgeometric and even allow for interaction between
them, but unfortunately RACER is not extendible in this way, and the concrete
domain interface is also not extendible. We can therefore either start implementing
our own spatio-thematic DL-reasoner, or try to get a “RACER substrate” by writing
a “wrapper class” and use association instead of inheritance:

Definition 2 A RACER substrate is a triple ((V,E,LV , LE), � , ∗), where
(V,E,LV , LE) is a substrate, and � is a RACER ABox. “∗” is a partial function such
that ∗ : V → individuals(�) injectively associates some substrate nodes with ABox
individuals. If a ∈ V we write a∗ =def ∗(a) to refer to its associated ABox individual
(if defined), and given a∗ ∈ individuals(�), we use a ∈ V to refer to its associated
substrate node a = ∗−1(a∗) (if defined).

�

Finally, a further specialization called map substrate, which is basically a RACER
substrate ((V,E,LV , LE), � , ∗) with (V,E,LV , LE) being a geometric substrate will
be used as the representation medium for the “spatial DB” of the GIS application.
Note that there might be substrate nodes without associated ABox individuals, as
well as ABox individuals without associated substrate nodes. A geographic object
can be seen as a tuple of a spatial object (the substrate node) and a ABox individual.

For what follows, we make the following basic assumptions. Considering
the geometric substrate which is just a relational structure, we exploit a spatial closed
domain assumption: all spatial objects are explicitly known in this structure and
coincide with V , as well as all their geometric properties from which we can derive
any qualitative spatial description (probably reflected in E and LE). Considering the
logical theory of this structure, it is clear that its theory is complete - we therefore
also assume a spatial closed world assumption. Please note that this is a consequence
of the closed domain assumption and the assumptions that the languages LV and
LE are just variable free ground terms; i.e. that the geometric substrate is just a
relational structure. However, these assumptions are not hard-wired into the software
framework - it all depends on the languages LV and LE . In contrast to an ABox, we
neither have disjunctive information nor can we assert the pure existence of spatial
objects in terms of an existential quantor “∃” within LV .

Within this framework, we foresee the following components of the deductive GIS:

The extensional component E, which has been described with the notion of a
“spatial DB” or map substrate above (and the operations it provides). Recall
that a closed domain assumption is exploited for the spatial part, but not for
the ABox part.

The intensional component I, offering intensional reasoning capabilities. This
component should offer the ability to model ontologies, in the flavor of DL
TBoxes. The language used to describe the relevant concepts from the ap-
plication domain will be called a spatio-thematic concept language. The objects
in the database can be classified resp. realized according to the definitions pro-
vided by the ontology. Subsumption relationships between concepts should be
computed, resulting in a subsumption taxonomy.

The query component Q, aimed at extracting relevant objects (tuples of data ob-
jects) from E , satisfying certain criteria, posed in terms of a query language.
The query language should allow to reference the concepts defined in the in-
tensional component as additional vocabulary. Whereas these queries refer to
the extensional component, other types of queries might address the intensional
component (e.g. to retrieve the set of subconcepts of “public park”, like in DL
systems).

Each of these components might use its own language, and each language might refer
to spatial and/or thematic aspects of the geographic objects. We are faced with a
multi-dimensional space of design possibilities here. Which kinds of aspects should be
addressable in each of the languages, and which spatio-thematic interactions should
be permitted? This question has to be evaluated more thoroughly in the future.

It seems that the closed domain assumption makes only sense w.r.t. the compo-
nents E and Q. After all one wants to define spatio-thematic concepts in I inde-
pendently of any actual database resp. domain. Consider the spatio-thematic concept
“public park containing a lake”. We have no doubt that this concept is satisfiable
(i.e., we can easily imagine a world where there is such a park, witnessing the satisfia-
bility of this concept), even if we do not have such an object in our current database,
or have never seen such a park. But the same concept would be unsatisfiable over
a DB with no such object if we assume a closed world assumption over a fixed DB.
In contrast, DL systems use the open domain assumption as well as the open world
assumption. All standard DL inference services are based on these assumptions. If we
assume the closed world assumption we will run into problems computing satisfiability
and subsumption relationships within I. These problems have not been sufficiently
solved yet. In the following we will therefore assume that the intensional component
I models only purely thematic aspects of the data, see below.

Considering query answering it turns out that, due to the concreteness of the
geometric substrate, query answering w.r.t. the spatial part of the DB will be some
kind of spatial model checking, in contrast to query answering in the thematic part.
However, in order to compute query entailment and satisfiability (see below), we should
also resort to the open world assumption, since these are really intensional reasoning
tasks.

2 The Data

Basically, we got some digital vector maps from the local government of Hamburg
(“Amt für Geoinformation und Vermessungswesen”), as a file in the proprietary “SQD”

DC EC

PO TPP / TPPI NTPP / NTPPI EQ

a)

◦ DR PO EQ PPI PP

DR *
DR
PO
PPI

DR
DR
PO
PPI

DR

PO
DR

PO
PP

* PO
PO
PPI

DR

PO
PP

EQ DR PO EQ PPI PP

PP
DR
PO
PP

PO
PP

PP

PO
EQ
PP
PPI

PP

PPI DR
DR
PO
PPI

PPI PPI *

b)

Figure 2: a) RCC8 Relations b) RCC5 Composition Table, DR =def {EC,DC},
PP =def {TPP,NTPP} aka “contained in”, PPI =def {TPPI,NTPPI} aka “con-
tains”

format (from Siemens). The map comprises 18.039 geometric objects, with 5.418 pri-
mary objects (the non-primary objects are component objects of the primary ones).
Part of this map is shown in Figure 1, showing the “Map Viewer” component of our
prototype. Each map object is annotated with a four digit number: the so-called ob-
ject key, describing its thematic aspects. These keys can be looked up in the so-called
object key dictionary which simply maps these numbers to concept names. The dic-
tionary contains concept names without definitions, such as “green area”, “meadow”,
“public park”, “lake”, “public park containing a lake”, etc. A few hundred concepts
are present. This is how thematic information is currently handled in commercial GIS.

3 Adding a Simple Ontology

Considering the dictionary, it becomes obvious that no taxonomic structure is mod-
eled, although it is implicitly present in the “intuitive semantics” of some of the
concept names: a user querying the system for instances of green area will not be
supplied with instances of the sub concepts meadow and public park. Thus, in a first
step, we model the purely thematic aspects of these concepts in a TBox with inclusion
axioms like meadow v green area, public park v green area, etc. This is not to say
that some concepts might not also have complex thematic descriptions, but we do
not want to go into detail here. Still the resulting TBox is quite simple and even
unfoldable. Basically, ALC suffices for some basic modeling of thematic aspects, and
RACER even offers ALCQHIR+(D−).

However, it should be mentioned that some of the concepts from the dictionary
in fact have a spatio-thematic character, e.g. concepts like “public park containing a
lake”. In this case we would like to put definitions like

public park containing a lake =def public park u ∃contains.lake,

into the intensional component I (the ontology) of our system, and we would need a
logic that is aware of the specific properties of qualitative spatial relationships (in the
following we will solely consider spatio-thematic descriptions referring to qualitative
spatial relationships). For example, the contains relationship should be interpreted as
a partial strict-order. Thus, independently of the content of the extensional “database
component” E , the system should infer that the concept

living area containing a park with a lake =def living area u
∃contains.public park containing a lake

is actually subsumed by the concept
area containing an area =def area u ∃contains.area,

due to the transitivity of the contains role, and assuming that park v area, lake v
area, living area v area, etc. Even though we could express the transitivity of the
contains relationship within ALCQHIR+(D−) (so RACER would actually find this
subsumption relationship!), most other properties of the qualitative spatial relation-
ships would be lost. However, nothing prevents us from putting definitions like

public park containing a lake =def public park u ∃contains.lake

into a RACER TBox. Surely incompleteness might arise, which means that w.r.t. the
intended semantics of the roles, the TBox might become inconsistent without being
noticed, and subsumption relationships might be missing as well.

Despite these problems with completeness in I we could still use its definitions
(assuming it is unfoldable) as additional vocabulary within queries; e.g. to retrieve all
instances of public park containing a lake. In this case we have to ensure that the
constraints in the ABox are complete, resp. closed, in such a way that the explicitly
present role membership assertions in the ABox mirror the exact semantics of the
spatial relationships. In case of the qualitative RCC relationships (see Figure 2), the
resulting ABox would have to take the form of a complete graph, satisfying the ap-
propriate RCC composition table as well as some other conditions, like irreflexiveness,
disjointness etc., forming a consistent and complete RCC network. Even though it
is easy to compute such an ABox from the explicit geometry of a map, the resulting
ABox will be very big (see below).

In order to overcome the incompleteness in the intensional component I if we
simply use ALCQHIR+(D−), we have proposed to use a language called ALCIRCC

(see [7]) as the DL for a deductive GIS using qualitative spatial RCC relationships.
However, other spatial description logics / languages might be suitable as well.

4 Representing the Data - An Experiment With RACER

We have already sketched above that we can simply “mirror” computed qualitative
spatial relationships into a RACER ABox and pose standard DL queries (instance
retrieval queries). To do so, we use our map substrate, and arrange for automatic
mirroring of RCC8 relationship. Since every object is in relation with every other
object (including itself, note the EQ relation), we have E = V ×V , and LE : E → LE
would be LE =def {EQ,DC,EC,PO, TPP, TPPI,NTPP,NTPPI}.

Optionally, we can then “close” the generated ABox � - for each ABox individual
i ∈ individuals(�) and each RCC role R we simply count the number of R-successors
in the generated ABox and add a role number restriction i : (≤ R n) u (≥ R n)
to � , effectively constraining the fillers of the role R to the be present ones, where
n =def |{ j | (i, j) : R ∈ � }| . This closing of roles is required if we want to have
queries involving the “∀”-quantor correctly answered (e.g., retrieve all instances of
living area u ∀EC.¬industrial area).

Using a smaller map resulting in only 130.321 role membership assertions, we tried to

A

B

C

D

E

a)

A

B

CD

E

DC

PPIPO

b)

A

B

CD

E

DC

PPIPO

c)

Figure 3: a) Scene, b) corresponding RCC5 net, c) edge-reduced RCC5 net

pose instance retrieval queries to RACER like
retrieve concept instances(public park u (∃TPPI.lake t ∃NTPPI.lake)).

RACER 1.6 was unable to answer such queries, apparently due to the immense size
of the ABoxes: even the simpler query retrieve concept instances(public park) re-
mained unanswered after more than 2 hours. However, RACER 1.7 processes these
queries nearly instantaneously, apparently due to additional index structures (personal
communication with Ralf Möller, one of the developers of RACER).

Nevertheless the size of the generated ABoxes may become a serious problem if
bigger maps are considered. The map depicted in Figure 1 gives rise to over 29 million
role membership assertions. By observing that most of the present relations are of
type DC (disconnected) and that queries resorting to this spatial relationship do not
appear to be very meaningful, we can remove the DC-assertions, resulting in a much
smaller ABox.

Alternatively, instead of precomputing and mirroring the RCC relationships into
an ABox, the geometry of the objects in the geometric substrate could be used to
compute the required spatial relationships on the fly while query processing proceeds.
On the one hand, this computation of RCC relationships during query evaluation is
expensive. On the other hand, precomputation of the relations needs lots of memory
(and initial preprocessing time). However, in the case of RCC5, a clever trade-off
can be found. Consider the scene depicted in 3a. Its corresponding RCC5 network
is depicted in 3b. By exploiting the properties of the RCC5 relationships (especially
PPI◦PPI ⇒ PPI, DR◦PPI ⇒ DR), it is sufficient to precompute and store only the
edges depicted in 3c, from which 3b can uniquely be reconstructed. The representation
is sparse, on the one hand, and frees us from expensive runtime-computations at
query execution time, on the other hand. But it seems that these “representation and
indexing tricks” can only be implemented within the geometric substrate, since the
source code of RACER ist not available. In order to avoid the precomputation of these
really big ABoxes and to support more expressive queries than RACER currently offers
(e.g., conjunctive queries), we therefore decide to use a truly hybrid representation
and query language which we will describe next. We also sketch how a (restricted
form of) reasoning could work in such a hybrid representation system.

5 Hybrid Conjunctive Queries

Suppose the company “Agricultural Products” (AP) is looking for new sub-contractors:
farmers that can supply potatoes, corn, and wheat, such that their farm lands are lo-
cated directly adjacent to the company’s factory. We could come up with a query like
this one:

query(?farmer∗, ?factory area, ?cropland, ?potatoland, ?wheatland)←
farmer(?farmer∗), has factory(AP ∗, ?factory∗),
owns farmland(?farmer∗, ?cropland∗), (∀grows.crop u ∀harvest.high)(?cropland∗),
owns farmland(?farmer∗, ?potatoeland∗), (∀grows.potatoes . . .)(?potatoeland∗),
owns farmland(?farmer∗, ?wheatland∗), (∀grows.wheat . . .)(?wheatland∗),
(TPPI(?factory area, ?factory) ∨NTPPI(?factory area, ?factory)),
EC(?factory area, ?cropland), EC(?factory area, ?potatoeland),
EC(?factory area, ?wheatland)

AP∗ is a named ABox individual, representing the company. The items prefixed
with “?” are variables; ?cropland∗ is a variable ranging over ABox individuals, and
?cropland is automatically bound to its corresponding substrate node (and vice versa).
The system will return a set of 5-tuples as answer to this query.

Actually, we defined the hybrid queries for racer substrates; since a map substrate
is a specialization of a racer substrate, the queries work on map substrates as well, but
use special query vocabulary (e.g., the RCC predicates are only “understood” by the
geometric substrate). Note that the vocabulary used within the hybrid queries has to
be “matched” against the appropriate vocabulary with is used within the substrate
(LV , LE , as well as the ABox language). We define the hybrid conjunctive queries as
follows:

Definition 3 (Hybrid Conjunctive Queries) Let ((V,E,LV , LE), � , ∗) be a racer sub-
strate. Let VS =def {x1, . . . , xn} be a set of substrate variable names, and VT =def

{x∗
1
, . . . , x∗

n} be a set of ABox variable names, such that the sets VS , VT , V and
individuals(�) are pairwise disjoint. Whenever we use xi we mean the xi from VS ,
and likewise if we use x∗

j . If we say u ∈ VS , we mean any of the variables from VS
(analogously for VT).

A substrate vector (n-tuple) (u1, . . . , un) with ui ∈ VS∪V is denoted by ~U ; likewise
an ABox vector (v∗

1
, . . . , v∗m) with v∗j ∈ VT ∪ individuals(�) by ~V ∗. Note that vectors

might refer to specific substrate nodes as well as to ABox individuals. Each vector is
either a substrate vector or an ABox vector; there are no “mixed vectors”. If v ∈ V ,
then v∗ ∈ individuals(�) denotes its corresponding ABox individual (if it exists); and
likewise, if v∗ ∈ individuals(�), then v denotes its corresponding substrate node (if it
exists). We refer to the set {u1, . . . , un} ∩ (VS ∪ VT) as vars(~U). Intuitively, variables
named x∗

i are bound to ABox individuals, whereas variables without asterix, e.g xi,
are bound to substrate individuals / nodes.

A substrate query conjunct SQC(~U) is a sentence of a substrate query language
SQL to be specified by the user, where ~U is a substrate vector. An ABox query

conjunct AQC(~V ∗) is a sentence of an ABox query language AQL to be specified by
the user and/or exploited DL reasoner, where ~V ∗ is an ABox vector.

Then, a hybrid conjunctive query is an expression of the form

query(~U, ~V ∗)← SQC1(~U1), SQC2(~U2) . . . SQCn(~Un),

AQC1(~V ∗
1
), AQC2(~V ∗

2
) . . . AQCm(~V ∗

m),

where the SQCi ∈ SQL are substrate query conjuncts, and the AQCj ∈ AQL are
ABox query conjuncts. The antecedent of the implication is called the body. Addi-
tionally, vars(~U) ⊆

⋃
i∈1...n vars(~Ui) and vars(~V ∗) ⊆

⋃
i∈1...m vars(~V ∗

i) (i.e., the query

predicate does not mention variables that don’t appear in the body of the query).
�

Considering SQL and AQL in the example given above, AQC(~V ∗) is either a role
query conjunct of the form R(x∗

i , x
∗
j) or a concept query conjunct of the form C(x∗

i).
Obviously, one can also think of other expressions (e.g. ¬R(x∗

i , x
∗
j)), but this is not the

point here. W.r.t. the SQL, we only used (disjunctions of) binary RCC8 predicates.
In fact, a disjunction of binary RCC8 predicates can be seen as an RCC8 predicate
as well; this makes no problems (see below). We can also process arbitrary boolean
formulas build from RCC8 predicates. Due to the so-called JEPD property of the
RCC relations, a negation of the form ¬R(x1, x2) is again equivalent to a disjunction∨

S∈RCC Relationships\{R} S. Basically, the semantics of the queries is very simple:

Definition 4 (Semantics of Queries) Let DB =def ((V,E,LV , LE), � , ∗) be a map

substrate, and query(~U, ~V ∗) be given, ~U = (u1, . . . , un), ~V ∗ = (v∗
1
, . . . , v∗m). Then, the

set of query results (answer tuples) is

{ (α(u1), . . . , α(un), α(v∗1), . . . , α(v∗m)) |
there is some injective α such that for all i ∈ 1 . . . n, j ∈ 1 . . . m :

(V,E,LV , LE) |= SQi(α(~Ui)), � |= AQj(α(~V ∗
j)) },

where α(a) needs to satisfy: α(a) ∈ V iff a ∈ VS , α(a) ∈ individuals(�) iff a ∈ VT ,
and α(a) = a iff a ∈ individuals(�) ∪ V . That is, we are using the active domain
assumption; variables range over explicitly mentioned objects in V ∪ individuals(�),
and (ABox) individuals / nodes are mapped to themselves. Note that α is injective -
therefore, the unique name assumption for variables is assumed (two different variables
can never be bound against the same object).

The meaning of � |= AQC(α(~V ∗)) is the standard one; � |= AQC(α(~V ∗)) iff
for all models I, whenever I |= � , also I |= AQC(α(~V ∗)), that is, α(~V ∗

j)I ∈ AQCI .
Since AQC is a sentence from a unknown AQL, we only require that the test is de-
cidable; it will be delegated to the DL reasoner, e.g. RACER. The same applies to
(V,E,LV , LE) |= SQC(α(~U)). For example, simple model checking might be enough
in some circumstances (e.g., if the substrate uses only ground terms). In the frame-
work, it is completely left open for the application to define satisfaction in I, i.e. when
I |= SQC(α(~U∗)) holds. All what matters is that the test should be decidable.

�

Suppose SQL is given by all boolean formulas which can be build from the set of
RCC8 base relations over a set of variables, like in the example query above. We can
then state that

Proposition 1 Satisfiability of spatio-thematic queries is decidable.

The proof is more or less trivial, since there is (yet) no interaction between the two
languages AQL and SQL. First we collect all substrate query conjuncts SQCi and
check for their satisfiability. In case SQL comprises only descriptions of RCC net-
works, we simply construct the RCC network as specified by the SQCi’s and check for
its consistency. In case the SQCi’s refers to individuals, we can of course only check
satisfiability w.r.t. a given substrate; in this case we simple look-up the relationships.
For AQL, we just build an ABox, one individual for each variable; in case an AQC

refers to an ABox individual, we just copy the relevant parts from the referred ABox
(its connected component). In case we have AQCi’s using disjunctions, we perform
case analysis over the disjuncts (resulting in eventually exponentially many ABoxes).

In case we have an AQCi like ¬R(x∗, y∗) we add {y∗ : y∗ , x∗ : ∀R.¬ y∗ } to the ABox

to check, where y∗ is a new concept name. Finally, we check each of the constructed
ABoxes for satisfiability. The only problems that might arise come from the possibility
to refer to individuals from � , but they can be fixed (the only problematic constructs
might be number restrictions).

�

Proposition 2 Query containment of spatio-thematic queries is decidable.

For example, the system will deduce that the query

query(?germany, ?city, ?sea)←
germany(?germany∗), federal division(?division∗), german city(?city∗),
(baltic see t north sea)(?sea∗),
PPI(?germany, ?division), PPI(?division, ?city), DC(?division, ?sea)

entails the query
query(?country, ?city, ?ocean)←

country(?country∗), city(?city∗), ocean(?ocean∗),
DC(?ocean, ?city), PPI(?country, ?city)

To see this, consider the textual substitution ?country←?germany, ?ocean←?sea ap-
plied to the latter query. Assume that germany |= country, (baltic seetnorth sea) |=
ocean due to a reasonable ontology, and (PPI(?division, ?city)∧DC(?division, ?sea))
|= DC(?city, ?sea), DC(?city, ?sea) |= DC(?sea, ?city), (PPI(?germany, ?division)∧
PPI(?division, ?city)) |= PPI(?germany, ?city) simply by the semantics of the RCC
relationships.

Proof Sketch: Given two queries A and B, we first check whether their query

head predicates have the same arity; if so, we rename the variables referenced in B’s
query-predicate in such a way to match A’s query-predicate. Individuals cannot be
renamed; if there is a naming clash, the answer to the query containment problem
is already “No”. Otherwise, check for the un-satisfiability of A ∧ “¬B ′′. Collect all
SQCi’s from A, and all SQCj ’s from B. Then test, for each SQCj from B, if adding
its negation ¬SQCj to A’s SQC’s yields an unsatisfiable RCC network. If not, return
“No”. Otherwise proceed by applying the analogue test (adding B’s negated AQCj ’s
to the AQC’s of A) and check for ABox satisfiability using the translation sketched

above. If any of the ABoxes is satisfiable, return “No”, otherwise “Yes”. More detailed
proofs can be found in a forthcoming report.

�

As a final example, suppose that A =def query(?x∗)← (∃R.C)(?x∗), and B =def

query(?x∗) ← R(?x∗, ?y∗), C(?y∗). Please note that, due to the given semantics,
A 6|= B, but B |= A.

6 Conclusion

We have reported about work carried out in the context of the “DLS” project and
have argued that a lot of interesting things can be done in a setting as ours with a
DL system, but it is not trivial to get a working hybrid system. DLs are no silver
bullet for deductive information systems. In order to get a working hybrid infor-
mation system, appropriate combinations of techniques will be needed, control over
application-dependent index structures (see also [6]), appropriate classes of queries
and query answering strategies, etc. The space of design decisions is very large. We
claim that applications in the context of the future semantic web, will need similar
hybrid representation and reasoning techniques in order to perform sufficiently good.
Eventually, we plan to augment the system with non-recursive DATALOG clauses (see
also [3], [5]), either in the extensional component, or solely in the query component.

References

[1] F. Baader. Description logic terminology. In Franz Baader, Diego Calvanese, Deborah
McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, The Description Logic
Handbook: Theory, Implementation, and Applications, pages 485–495. Cambridge Univer-
sity Press, 2003.

[2] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics as ontology languages
for the semantic web. In Dieter Hutter and Werner Stephan, editors, Festschrift in honor of
Jörg Siekmann, Lecture Notes in Artificial Intelligence. Springer-Verlag, 2003. To appear.

[3] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. AL-log:
Integrating datalog and description logics. Journal of Intelligent Information Systems,
10(3):227–252, 1998.

[4] Volker Haarslev and Ralf Möller. Description of the RACER system and its applications.
In Description Logics, 2001.

[5] Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language combining
horn rules and description logics. In European Conference on Artificial Intelligence, pages
323–327, 1996.

[6] Albrecht Schmiedel. Semantic indexing based on description logics. In Knowledge Repre-
sentation Meets Databases, 1994.

[7] M. Wessel. On spatial reasoning with description logics - position paper. In Ser-
gio Tessaris Ian Horrocks, editor, Proceedings of the International Workshop on De-
scription Logics 2002 (DL2002), number 53 in CEUR-WS, pages 156–163, Toulouse,
France, April 19–21 2002. RWTH Aachen. Proceedings online available from
http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-53/.

