
Towards Integration of Software Case Reuse and Modelling of Variability

Katharina Wolter, Lothar Hotz, Thorsten Krebs
HITeC e.V. c/o University of Hamburg

Vogt-Kölln-Str. 30
22527 Hamburg, Germany

{hotz|krebs|kwolter}@informatik.uni-hamburg.de

Abstract

This paper introduces a novel approach to integrate
reuse of software cases and dynamic variability modelling.
Software cases comprise a complete definition of a software
product and its development. This includes the problem de-
scription in form of a requirements specification as well as
the solution in form of architecture, design and code. Pre-
vious software cases are identified based on the require-
ments specification and can be reused for different but sim-
ilar problems.

The approach presented in this paper introduces a tight
integration of reusing and modelling variability. During
requirements specification, previously defined requirements
can be reused and new requirements can be modelled – i.e.
integrated into the variability model at the same time.

This paper describes work in progress. The ideas stem
from research work within the EU-funded project ReD-
SeeDS (Requirements-driven Software Development)1.

1. Introduction

The necessity to enhance reuse in software development
is known. Software product lines and variability modelling
are well-known approaches to reach this goal [1, 2, 7].
Adopting these approaches, the variability of the domain
is modelledin advanceto software development and reuse
during application engineering.

In this paper, we propose an approach where reuse is
based on software cases and variability is modelleddur-
ing software development. Using this approach, the addi-
tional effort for variability modelling is kept minimal and
only slight changes to ”traditional” software development
processes are required. This approach can be seen as a com-
plement or alternative to the strict separation of application

1http://www.redseeds.eu

and domain engineering in software product lines.2

According to [10] asoftware casecomprises a problem
statement (requirements) and a solution (design and imple-
mentation). The precisely defined requirements are mapped
onto appropriate elements of the solution. Between the el-
ements of the solution (architectural model, design model,
code) a mapping is defined (see Figure 1). These mappings
enable traceability from requirements to code elements. For
a more detailed description of this approach we refer to [10].

Figure 1. A Software case: Mapping require-
ments to architecture, design and implemen-
tation (taken from [10]).

All software cases are collected and summarized in one
commonsoftware knowledge model. The single software
cases do not contain variability. However, with each new
software case additional variability is introduced in the soft-
ware knowledge model. Software cases or parts of software
cases can be reused based on theirsimilarity to the software
under development. Starting with some requirements, soft-
ware cases with similar requirements can be retrieved and
partially reused and / or adapted [10](see Figure 2).

In order to compute the similarity between software
cases based on (partial) requirements specifications it is
necessary to keep the software cases consistent. Each cus-
tomer uses his own terminology, however. To keep re-
quirements understandable for the customer, his terminol-
ogy should be used in the requirements specification (e.g.
scenarios). In order to ensure that the similarity between

2For a definition of software product lines (SPLs) see e.g. [2]

Figure 2. Reuse of software cases exploiting
the variability defined in the software knowl-
edge model (taken from [10]).

software cases can be computed these different terminolo-
gies can be managed in oneconsolidated vocabulary. Dur-
ing requirements specification this consolidated vocabulary
is extended whenever a term is not yet defined or used with
a different meaning.

Thus, in the consolidated vocabulary the variability of
used terms and their relations to each other are summarized.
Parts of the software knowledge model represent the con-
solidated vocabulary. Since the software knowledge model
(including the consolidated vocabulary) can be very large,
consistency ensuring tool support is essential for this task.

In the following we give some examples from the do-
main of a fitness club. This domain models the software
to manage a fitness club, club members, staff members,
classes and courses, the billing, etc.

The remainder of the paper is organised as follows. Sec-
tion 2 illustrates how software development looks like using
a software knowledge model defining the variability of all
former software cases. Section 3 specifies the ingredients
for this development process. Section 4 discusses the ap-
proach and compares it to other approaches, Section 5 sum-
marises the main benefits.

2. The Vision

Using the ReDSeeDS approach [10], reuse already starts
during requirements specification. New variability is intro-
duced during software development, i.e. application engi-
neering and domain engineering are closely integrated. In
the following we illustrate how software development looks
like using this approach.

The Requirements Engineer (RE) defines the require-
ments e.g. in a set of scenarios. Each scenario is a se-
quence of sentences written in restricted English. The sen-
tences describing the system to be developed are calledre-

quirements statementsor shortstatementsin the following.
A tool supports the RE during requirements specification.
When the RE enters a new sentence the tool checks the
software knowledge model for each term and displays the
relevant part. The following cases need to be distinguished:

1. The term is already defined in the software knowledge
model

(a) The term has the same meaning in the software
knowledge model and the current software case
The term can be reused and the software knowl-
edge model does not need to be changed.

(b) The term has a different meaning in the software
knowledge model and the current software case
An example for this arehomonyms. The term
’enter’ for example can describe that a person
goes into a room or that a person types in data.
The software knowledge model needs to be ex-
tended with the new meaning.

2. The term is not yet defined in the software knowledge
model

(a) The meaning is already defined in the software
knowledge model using a different term
An example for this aresynonyms. The term ’en-
ter’ for example is already defined but ’typing’ is
not. The software knowledge model needs to be
extended with the new term.

(b) The meaning is not yet defined in the software
knowledge model
The software knowledge model needs to be ex-
tended with the new term and its meaning.

The vocabulary used for specifying requirements of di-
verse customers can be very large. Thus, those vocabularies
are consolidated and represented with the software knowl-
edge model. By using this model, adaptation and mainte-
nance of the vocabulary used in an organisation can be sim-
plified.

The RE can use a query engine to search for similar soft-
ware cases [10]. This search can be based on all require-
ments defined so far or on a subset that is of special inter-
est. The RE can browse one or more of the most similar
software cases and select requirements for reuse in the cur-
rent software case. Because of the mapping between re-
quirements, architectural models, detailed design models
and code it is possible to reuse also the related parts of
the problem solutions. This means that the RE can reuse
parts of problem descriptions with the associated parts of
the problem solutions from several former software cases.
These partial problem descriptions with associated problem
solutions are calledsubcasesin the following.

Figure 3. The software knowledge model.

In order to reuse subcases it is necessary to adapt them
to the current software case and to integrate subcases from
different former software cases. The mappings defined be-
tween the different models within one software case enable
tool support for this task. As soon as the current software
case development is finished, it is automatically included in
the software knowledge model, i.e. no separate modelling
activity is needed.

The software development process used in an organisa-
tion needs to be adapted to this approach. It is not necessary
to establish a new development process, however. A main
adaptation is in the activities a software developer has to
perform. Besides traditional development, she has to com-
pare new customer-specific terms to existing terms in the
consolidated vocabulary and, if needed, extend this vocab-
ulary, i.e. the software knowledge model, at appropriate
places.

3. Ingredients

In this section we describe the software knowledge
model containing all knowledge about software cases (see
3.1). Using the software knowledge model during require-
ment specification is sketched in 3.2. Section 3.3 describes
how this model is reused and consistently evolved during
software development.

3.1. Software Knowledge Model

Thesoftware knowledge modelcontains a representation
for complete software cases: requirements, architecture, de-
tailed design, and code. In this paper we present a first step
towards this uniform representation of various information
sources. We therefore limit ourselves to modelling the re-
quirements in this paper.

However, we propose to use a generic logical represen-
tation for the software knowledge model and thus for rep-
resenting variability (see [6, 11] for examples of such lan-
guages). In this model,conceptsare used to represent re-
quirements, components, source code files, and other arte-
facts that are used for software development (see Figure 3).

A taxonomydefines an inheritance structure between a
concept and its specializations. Concepts can also be com-
posed of other concepts. This is modelled in apartonomy
that relates aggregates to their parts, respectively. Some
concepts are also restricted by constraint definitions. These
constraintscan define exclusion (e.g. when concepts are
incompatible to each other), inclusion (e.g. when the ex-
istence of a component is required), or other relations that
constrain concepts and their properties.

These modelling facilities are used to realise the con-
solidated vocabulary. Figure 3 depicts how a taxonomy of
terms used in requirement statements is modelled with con-
cepts and specialisation relations. Furthermore, concepts
are related to terms in the software cases they are used in,
with the relationoccurrence(i.e. instance-of).

3.2. Using the Software Knowledge model
for Requirements Specifications

For clarifying how a consolidated vocabulary repre-
sented in a software knowledge model can be used for
requirements specification, we extend the approaches de-
scribed in [10] and [9].

A RE enters requirements for a software case e.g. in
form of scenarios. A scenario contains requirements state-
ments that are formulated in restricted English. In linguis-
tic typology, subject-verb-object (SVO)(sometimes called
agent-verb-object (AVO)) is a sentence structure where the
subject (the agent) comes first, the verb second and the ob-
ject third [5]. A statement in SVO looks like this: ’staff

member enters club member address’. There are also other
approaches to restrict English text for expressing require-
ments, like theAttempto Controlled English (ACE)[3].

A consolidated vocabularydefines terms which can be
reused to formulate requirements in form of statements.
Structuring the vocabulary in a taxonomy has some key ben-
efits:

• The vocabulary can be browsed to better identify
reusable terms. The first distinction is made between
nouns and verbs. A noun can be both, subject and ob-
ject, depending on the role it plays in the given state-
ment. Specializations for nouns are for example ’per-
son’, ’thing’, etc. Specializations for verbs are for ex-
ample ’moving’, ’typing’, etc.

• Homonyms can be distinguished by the specialization
paths that lead to the terms. The two meanings for
the term ’enters’ for example can be identified by the
path via ’moving’ for ’club member enters fitness club’
and ’typing’ for ’staff member enters club member ad-
dress’.

• The system’s knowledge of a term is defined by the
concept representing the term and it’s relations (spe-
cialisation, parts and constraints).

3.3. Combining Evolution with Case-based
Reuse

The software knowledge model representing the consoli-
dated vocabulary enables better reuse of existing terms. The
user interface for entering requirements statements can be
enriched with a vocabulary browser such that the RE can
browse the existing consolidated vocabulary while typing
in a scenario.

Figure 4. Scenario editor - consisting of SVO
editor and vocabulary browser.

Figure 4 shows how a scenario editor can be realized,
using the consolidated vocabulary. The editor consists of
two main components:

• TheSVO editoris used for entering requirement state-
ments in subject-verb-object notation. Each of these
statements belongs to a scenario.

• Thevocabulary browsershows that part of the vocab-
ulary, that is currently of interest. This means it filters
nouns or verbs, or shows possible specializations of a
term the RE has previously selected.

Entering statements, a RE can reuse terms from the con-
solidated vocabulary, or can enter new terms. The vocab-
ulary browser shows the available terms and if the RE can
not find a term describing what he wants to state, the edi-
tor can exploit the position of the browser to introduce the
new term into the vocabulary at a specific position. For ex-
ample, if the term ’staff member’ is to be entered, and no
related term can be found under ’person’, the editor uses
the browser position for ”knowing” that a ’staff member’ is
a ’person’.

Another input method for new terms is to create rela-
tions to existing terms. Let us assume a RE wants to use the
term ’employee’, which is not modelled. He can browse the
consolidated vocabulary and finds the term ’staff member’,
which is semantically the same. But both synonyms should
be kept because ’employee’ is part of the customer’s vocab-
ulary. Therefore, the term ’employee’ can be entered into
the consolidated vocabulary with a relation to ’staff mem-
ber’, which states that both terms are synonyms.

4. Discussion and Related Work

In case-based reasoning,cases(i.e. past experience) are
stored to be retrieved when similar problems arise [8]. The
processing required to analyze the experience is delayed un-
til the time the case is retrieved for solving a new problem.
At that time the problem is less haunting, because it is only
needed to understand how the differences between the prob-
lem in the recalled experience and the current problem af-
fect the solution proposed in the recalled experience. The
solution proposed in that case is examined and applied to
the current problem with suitable modifications.

Traditional case-based reasoning approaches also store
the problem and the corresponding solution together in one
case. But the information is not as well structured as it is
in the ReDSeeDS approach. Here, a case contains require-
ments, architecture, detailed design and code – and most
notably a mapping that represents transformations between
these elements of a software case. Thus, the transforma-
tions are traceable; during development and after retrieving
the case. This enhances identifying the corresponding (part
of the) solution from a former cases because for every part
of the solution (e.g. file, class, code fragment, etc.) it is
known for which requirement it has been developed.

Software Product Lines (SPLs) are a means for large-
scale reuse. A product line contains a set of products that
share a common, managed set of features satisfying the spe-
cific needs of a particular market segment or mission [1, 2].
Development effort is distributed over customers by manag-
ing an asset store and reusing assets for different customers.

In SPLs, domain engineering plays a key role. This in-
cludes analysing the product domain, building a common
architecture and planning reuse – in the sense that combi-
nations of reusable assets are managed. Domain engineer-
ing is done a-priori to product development. The approach
described in this paper enables dynamic extension of the
reusable asset repository. By integrating reuse and evolu-
tion, reuse does not have to be planned a-priori. Evolv-
ing the model during product development contains both,
evolving the problem description (vocabulary, scenarios,
etc.) and including the solution to the problem (i.e. archi-
tecture, design and code).

SAMOVAR (Systems Analysis of Modelling and Vali-
dation of Renault Automobiles) aims at preserving and ex-
ploring the memory of past projects in automobile design
[4]. A so-called Problem Management System (PMS) con-
tains structured knowledge about problem definitions and
with this enables the user to search and find similar prob-
lem descriptions that have been solved in the past. The sys-
tem relies on building ontologies, semantic annotations of
problem descriptions relatively to these ontologies, and the
formalisation of the ontologies and annotations.

The SAMOWAR approach is similar to the one de-
scribed in this paper in the sense that one model of past
cases is built and this model is used to query and find past
cases with similar problem descriptions. However, this ap-
proach does not include dynamic extension of this model
during product development. This integrated reuse and evo-
lution is one of the key benefits of our approach.

The AMPL (Asset Modelling for Product Lines) lan-
guage developed in the ConIPF (Configuration in Industrial
Product Families)3 project defines a language to fully rep-
resent product structures (incl. features, context, software
and hardware artefacts) [6]. These modelling facilities can
be extended to also formalize requirements definitions (e.g.
use cases, scenarios, statements) and architecture, design
and code.

5. Summary

In this paper, we have introduced a novel approach that
integrates reuse of software cases and variability modelling.
A software case comprises the problem description in form
of a requirements specification and a solution description
in form of architecture, detailed design and code artefacts.

3http://www.conipf.org

Reusing software cases is enabled with a query engine that
compares the requirements specification of past cases and
the current problem. Variability is modelled implicitly by
the set of past software cases.

Requirements are specified through scenarios that con-
sist of requirement statements formulated in restricted En-
glish; namely subject-verb-object (SVO) [9]. Our approach
explicitly supports the definition of statements in SVO by
managing a consolidated vocabulary. This vocabulary is
represented with a logic-based software knowledge model,
where each term is represented by a concept. While defin-
ing new statements, the concepts in this model (which
are defined through former cases) can be reused and new
concepts can be entered dynamically. This integration of
requirements specification and evolution of the modelled
reusable variability leads to dynamic domain engineering.
Our approach therefore complements the static (a priori)
variability modelling that is typical for product development
in software product lines.

The approach described in this paper is close to ”tradi-
tional” software development processes. Dynamic domain
engineering has the benefit that evolution of the product line
does not have to be planned before product development
takes place. Evolving the reusable artefacts can be done
during product development.

Traditional case-based reasoning is concerned with iden-
tifying one case or more cases from the case library that are
most similar to the current problem. Afterwards these cases
are modified according the new requirements. Using our ap-
proach it is possible to reuse subcases – i.e. parts of stored
software cases. Subcases from different former cases can
be identified and combined for reuse.

Acknowledgement This work is partially funded by the
EU: Requirements-driven Software Development System
(ReDSeeDS) (contract no. IST-2006-33596 under 6FP).

The project is coordinated by Infovide, Poland with tech-
nical lead of Wasaw University of Technology and with
University of Koblenz-Landau, Vienna University of Tech-
nology, Fraunhofer IESE, University of Latvia, HITeC e.V.
c/o University of Hamburg, Heriot-Watt University, PRO
DV, Cybersoft and Algoritmu Sistemos.

References

[1] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H. Obbink,
and K. Pohl. Variability Issues in Software Product Lines. In
Proc. of the Fourth International Workshop on Product Fam-
ily Engineering(PFE-4), Bilbao, Spain, October 3-5 2001.

[2] P. Clements and L. Northrop.Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2002.

[3] N. Fuchs, U. Schwertel, and R. Schwitter. Attempto Con-
trolled English (ACE). Language Manual, Version 2.0,
1992.

[4] J. Golebiowska, R. Dieng-Kuntz, O. Corby, and
D. Mousseau. Building and Exploiting Ontologies for
an Automobile Project Memory. InProc. of First Inter-
national Conference on Knowledge Capture (K-CAP),
Victoria, BC, Canada, October 23-24. 2001. ACM.

[5] I. Graham. Task scripts, use cases and scenarios in ob-
ject oriented analysis.Object Oriented Systems, 3:123–142,
1996.

[6] L. Hotz, K. Wolter, T. Krebs, S. Deelstra, M. Sinnema, J. Ni-
jhuis, and J. MacGregor.Configuration in Industrial Prod-
uct Families - The ConIPF Methodology. IOS Press, Berlin,
2006.

[7] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature-oriented Domain Analysis (FODA) Feasibility
Study.Technical Report CMU/SEI-90-TR-021, 1990.

[8] M. Sasikumar. Case-based Reasoning for Software Reuse.
In Knowledge Based Computer Systems-Research and Ap-
plications (International Conference on Knowledge-Based
Computer Systems), pages 31–42, Bombai, India, Decem-
ber 12-15 1996. Narosa Publishing House, London.

[9] M. Smialek. Acoomodating Informality with Necessary Pre-
cision in Use Case Senarios.Journal of Object Technology,
4(8):59–67, 2005.

[10] M. Smialek. Towards a Requirements driven Software De-
velopment System. InModels 2006, 2006.

[11] T. Soininen, J. Tiihonen, T. M̈annisẗo, and R. Sulonen. To-
wards a General Ontology of Configuration.Artificial Intel-
ligence for Engineering Design, Analysis and Manufactur-
ing (1998), 12, pages 357–372, 1998.

