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Abstract. In this contribution we present a new methodological framework and 
first results for real-time monitoring of object behaviour in aircraft servicing 
scenes, such as arrival preparation, unloading, tanking and others, based on video 
streams from several cameras. The focus is on incremental real-time interpretation 
of multiple object tracks. We show that the temporal structure of complex, 
partially coordinated object behaviour such as aircraft servicing can be modelled 
by a Bayesian Compositional Hierarchy (BCH). This is a recently developed kind 
of Bayesian Network where aggregates are modelled with unrestricted 
distributions, whereas the dependency structure between aggregates is restricted to 
correspond to the tree structure of the compositional hierarchy. This allows 
efficient updating when evidence is incorporated incrementally. For the domain of 
service operations, a BCH has been constructed for modelling the durations of 
activities and delays between them. The BCH is primarily used to provide a 
ranking of alternative partial interpretations and control the interpretation process 
according to the beam search paradigm. In addition, a BCH can provide estimates 
of missing data based on current evidence, for example, regarding the duration of a 
servicing operation. We explain the structure of aggregates constituting the aircraft 
servicing BCH and demonstrate evidence-based updates as well as predictions. 
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Introduction 

Aircraft servicing is an example of multi-object behaviour with interesting 
challenges for modelling and recognition. A single turnaround consists of a large 
number of activities, beginning with arrival preparation on the apron, diverse service 
activities such as unloading, loading, tanking and catering, and ending with a push-
back. Most activities can be decomposed into several subactivities and sub-
subactivities, hence it is natural to think of a turnaround in terms of a hierarchy of 
activities. Many of the components of the hierarchy are loosely related, for example 
tanking and catering are unrelated except for being part of a turnaround. Other 
components are strongly related, for example the arrival of a tanker, the tanking 
process and the departure of the tanker follow a strict sequence. Many details are 
probabilistic in nature, in particular the durations of and the delays between activities. 
The positions taken by servicing vehicles relative to an aircraft are essentially 
predetermined, but the paths leading to these positions may vary considerably. In 
addition to objects participating in regular servicing operations, there may be other 



"spurious" objects in the servicing area for unknown purposes, e.g. a technician 
performing a check. 

The goal in this work1 is to monitor servicing operations as a support for airport 
logistics. To this end, it is necessary to recognise individual operations and provide 
real-time estimates about the future of a turnaround. We focus here on the high-level 
part of activity recognition which takes the results of object tracking and recognition as 
input and generates high-level interpretations in terms of instantiated activity models. 
The interpretation process poses several challenges which in our belief are typical for 
real-time understanding of multi-object behaviour. First, primitive data entering the 
interpretation process are often ambiguous regarding their role in a hierarchical activity 
model. For example, a vehicle stopping on the apron may mark the beginning of 
several possible servicing activities. It highly depends on the available real-time 
context, to which degree this inherent ambiguity can be narrowed down. Second, real-
time processing does not allow a wait-and-see strategy where data is collected until 
enough evidence for safe decisions is available. Instead, the interpretation process must 
be able to entertain competing partial interpretations, each providing its own context 
for guiding the interpretation of the next incremental evidence.  

In principle, Bayesian Networks provide a well-understood way for obtaining 
estimates from incremental evidence. Here we are faced, however, with an application 
domain where activities are naturally modelled as a multilevel hierarchical structure 
composed of structured entities, called aggregates. Compositional hierarchies have 
been employed for high-level scene interpretation by many researchers [1, 2, 3, 4, 5] 
with basically non-probabilistic (crisp) frame-based representations, as commonly used 
in AI. Rimey [6] was the first to model compositional hierarchies with tree-shaped 
Bayesian Networks (BNs), requiring parts of an aggregate to be conditionally 
independent. Koller and coworkers [7, 8] extended BNs in an object-oriented manner 
for the representation of structured objects. Their Probabilistic Relational Models allow 
to augment a crisp relational structure with an arbitrary probabilistic dependency 
structure. Gyftodimos and Flach [9] introduce hierarchical BNs for multiple levels of 
granularity. While these contributions improve the expressive power of BNs, they do 
not specifically support compositional hierarchies of aggregates as required for context 
modelling in scene interpretation. For this purpose, Bayesian Compositional 
Hierarchies (BCHs) have been developed and first applied to static scenes [10]. An 
interesting alternative approach has been published by Mumford and Zhu [11] where a 
grammatical formalism takes the place of hierarchical knowledge representation and 
parsing algorithms are applied for scene interpretation, leading to efficient processing, 
but complicating the integration with large-scale knowledge representation. 

In this contribution, the application of a BCH to real-time scene interpretation is 
explored for the first time. Aggregates are used to represent the temporal structure of 
activities and their constituents in an object-centered manner. At the lowest level, the 
parts of an aggregate correspond to primitive events, such as Tanker-Stopped-
Inside-Tanking-Zone or Stop-Beacon, provided by the tracking system and 
the middle layer of the system. In general, a primitive event can be part of several 
aggregates, including a "clutter" model, and the probabilistic model is used to rank 
alternative evidence assignments. High-ranking alternatives are maintained in a beam 
search and provide MAP estimates of alternative scene interpretations throughout the  
___________________ 
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process. Besides incoming evidence, the progressing real-time can also be exploited for 
updating a BCH to the effect that missing evidence can only be expected in the future. 

In Section 1, we first describe the probabilistic framework for incremental scene 
interpretation using beam search in a general form. In Section 2, we present the BCH 
as a tree-shaped Bayesian Network with aggregates of arbitrary complexity as nodes. 
We also show that Gaussian probability density functions (PDFs) give rise to very 
efficient update operations. In Section 3, we  present examples from the aircraft service 
domain and demonstrate the predictive power of the model as well as the ranking of 
alternative partial interpretations. We conclude with a summary and an outlook on 
future work. 

1. Probabilistic framework 

1.1. Probabilistic scene model 

In a general form, probabilistic scene interpretation can be modelled as evidence-
based reasoning with large joint probability distributions (JPDs). Let us assume that the 
task is to determine which of M alternative models applies to a scene. Then a 
generative probabilistic model for a scene can be written as 

  (1) 

The random variable S with values from 1..M selects a model m with prior 
probability P(S=m) = qm. Each model is described by a JPD consisting of hidden 
variables X = [X1 .. XN] and observable variables Y = [Y1 .. YK]. The indices suggest 
distinct conceptual objects, each described by a vector of random variables (indicated 
by the underline). Values for observable variables are provided by evidence from low-
level processing, values of hidden variables are determined by probabilistic inference. 
Pclutter is a catch-all distribution for evidence not fitting a model. In our temporal model 
for the aircraft servicing domain, the observables could correspond to time points 
marking a primitive event such as Airplane-Stopped-Inside-ERA (ERA is 
the entrance-restricted area around an aircraft), whereas hidden variables could 
describe beginning and duration of higher-level activities such as Arrival-
Preparation. Pclutter could simply be a JPD modelling the occurrence of 
"unexplainable" evidence objects during a turnaround as independent events. 

To guide the interpretation process, we are interested in a ranking of alternative 
interpretations for given partial evidence e. Alternatives do not only arise from the 
models 1 .. M but also from alternative assignments of evidence within a model. For 
example, a Vehicle-Enters-ERA event  can be part of several service activities of 
a turnaround, in particular, if the type of vehicle is uncertain. Also, since low-level 
processing is not perfect, and tracking errors as well as misclassifications occur. To 
simplify the notation, we enumerate alternative evidence assignments together with 
alternative models using the index n. Further alternatives arise from assigning some of 
the evidence - say en

+ - to the model and the rest - say en
- - to clutter, possibly different 

for each model. Hence the ranking Rn of a scene model n is given by the probability of 
that model of having generated en

+ as part of the service model and en
- as clutter. This is 

captured by the following equation: 
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Eq. (2) shows that alternative rankings can be determined from Eq. (1) by 

marginalising the observables of each model m which have been chosen for evidence 
assignment, and computing the resulting probabilities. 

The final interpretation is given in terms of values xn* for hidden variables and 
evidence assignment en for observables of the highest-ranking model obtained by the 
following maximizations: 
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Note that the probabilistic model given by Eq. (1) does not explicitely account for 
missing evidence, for example due to occlusion or tracking limitations. To deal with 
this, the range of observables could be extended to include "missing evidence" as a 
possible "value", but an assignment and probabilistic appreciation will necessarily 
depend on the context. The issue of missing information will not be treated in the 
sequel. 

1.2. Real-time updates 

In our application, a scene model as given by Eq. (1) will involve temporal random 
variables representing observable events on a quantitative time scale relative to some 
common reference event, for example relative to an initial observation. Real-time 
processing using such a model implies that we have a current time tc which progresses 
as we observe a concrete scene, and that modelled events not observed so far are bound 
to happen at times t > tc, if at all. This should influence our ranking of alternatives to 
the effect that reduced chances for an event cause a reduced ranking. 

Let e be evidence assigned up to time tc, and Tn 

€ 

⊆  Y be unassigned temporal 
observables of a service model. Then the rank of model n at time tc is given by 
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Eq.	   (5)	  shows	  that	   the	  ranking	  of	  an	  alternative	  model	  changes	  according	   to	  
its	   share	   in	   the	   probability	   space	   for	   the	   remaining	   temporal	   variables.	   This	  
refines	   Eq.	   (2)	   which	   implied	   that	   the	   complete	   probability	   space	   was	   left	   for	  
unassigned	   variables.	   Note	   that	   real-‐time	   updating	   does	   not	   apply	   to	   hidden	  
temporal	  variables	  which	  may	  take	  values	  t	  <	  tc.  

1.3. Interpretation using beam search  

In the preceding sections, we have shown how real-time incremental evidence 
assignments in a probabilistic framework provide a dynamic ranking for alternative 
scene models. This can be exploited by a parallel search strategy called beam search 
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[15], where only promising alternative partial interpretations are kept (in the "beam"), 
while improbable ones are discarded.  

For real-time scene interpretation with beam search, the following steps have to be 
executed: 

A Initialise the beam with all alternative models given by Eq. (1). Wait for an initial 
event to start the real-time clock. 

B Wait for next evidence e. While waiting, perform real-time updates according to 
Eq. 5 following an update schedule. 

C Determine possible assignments of e for each model in the beam, clone models in 
case of multiple assignments. 

D Rank models using Eq. 5, discard unlikely models from the beam. 
E Repeat B to E until all evidence is assigned. 
F Select highest-ranking model and determine final interpretation using Eq. 3. 

Efficient storage of Pscene and computation of the marginalisations in Eqs. 2 and 5 
may easily become a bottleneck for realistic tasks. Therefore, Bayesian Network 
technology is required and the dependency structure of object properties plays an 
important part. In the following section, we will present Bayesian Compositional 
Hierarchies [10] which allow arbitrary dependencies within aggregates but are 
restricted to a tree-shaped dependency structure between aggregates, thus providing 
efficient computational procedures in tune with compositional hierarchies. 

2. Bayesian Compositional Hierarchies 

As pointed out in the introduction, compositional hierarchies are often used as a 
natural conceptual framework for scene interpretation tasks. It is therefore useful to 
adapt the general approach decribed in Section 1 to hierarchical models.  Rimey [6] has 
been the first in Computer Vision to develop tree-shaped Bayesian Networks (BNs) for 
compositional hierarchies. To ensure efficient processing, he had to assume that parts 
of an aggregate are statistically independent given the parent aggregate. In [10] a more 
powerful hierarchical probabilistic model has been presented, called Bayesian 
Compositional Hierarchy (BCH). In the following, we briefly summarise the definition 
of a BCH for arbitrary probability distributions. Thereafter, we describe the structure of 
a Gaussian BCH which is the kind used for modelling the temporal structure of aircraft 
services in our work.  

2.1. General structure of a BCH 

A BCH is a probabilistic model of a compositional hierarchy. It consists of 
aggregates, each modelled individually by an unrestricted JPD in an object-centered 
manner. The hierarchy is formed by using the aggregate headers as part descriptions in 
aggregates of the next hierarchical level, abstracting from details of parts at the lower 
level.  

Figure 1 illustrates the schematic structure of a BCH. Each aggregate is described 
by a JPD P(A B1..BK C) where A is the aggregate header providing an external 
description to the next higher level, B1..BK are descriptions of the parts, and C 
expresses conditions on the parts. The hierarchy is constructed by taking the aggregate 



headers at a lower level as part descriptions at the next higher level, hence B1
(1) = A(2)  

etc.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Structure of a BCH. Triangles represent aggregates, circles represent parts. Aggregate models 
overlap, their headers represent parts of aggregates at the next higher level. 

In our aircraft servicing domain, for example, a Turnaround aggregate consists 
of a header which provides an external description of a turnaround in terms of its 
duration (abstracting from details about the parts), and an internal description of the 
temporal structure of the three parts Arrival, Services and Departure. The 
parts are also described as aggregates themselves, for example Arrival is an 
aggregate with parts Arrival-Preparation, Airplane-Enters-ERA and 
Stop-Beacon. The complete hierarchy is shown in Table 1. 

In general, the JPD of a complete hierarchy is given by 

 (6)
  

This remarkable formula shows that the JPD of a BCH can be easily constructed 
from individual aggregate representations, and belief updates can be performed by 
propagation along the tree structure. Let P'(Bi) be an update of P(Bi), by evidence or 
propagation from its parts below. Then the updated aggregate JPD is 

P'(A B1 .. BK C) = P(A B1 .. BK C) P'(Bi)/P(Bi) (7)
  

A similar equation holds when P(A) is updated by propagation from its parent 
above. 

Storage and updating operations for large hierarchies can be computationally very 
expensive. We have therefore developed an implementation for aggregates with 
multivariate Gaussian distributions. The propagation formulas for a Gaussian BCH are 
summarised in the following. 

2.2. Propagation in a Gaussian BCH  

Roughly symmetric, unimodal distributions can often be approximated by a 
Gaussian in a range corresponding to -2σ .. +2σ , where σ is the standard deviation.  
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Table 1. Aggregates of Turnaround hierarchy 

Turnaround! ! ! ! ! ! !
! Arrival! ! ! ! ! ! !
! ! Arrival-Preparation!! ! !
! ! ! GPU-Enters-GPU-Zone!! !
! ! ! GPU-Stopped-Inside-GPU-Zone! !
! ! ! Drop-Chocks! ! ! !
! ! Airplane-Enters-ERA!! ! !
! ! Airplane-Stopped-Inside-ERA! ! !
! ! Stop-Beacon! ! ! ! !
! Services! ! ! ! ! ! !
! ! Passenger-Activity! ! ! !
! ! ! Passenger-Stairs-Enters-PS-Zone! !
! ! ! Passenger-Stairs-Stopped! ! !
! ! Unload-Right! ! ! ! !
! ! ! Unload-Right-AFT! ! ! !
! ! ! ! Loader-Enters-Right-AFT-LD-Zone!
! ! ! ! Transporter-Enters-Right-AFT-TS-Zone!
! ! ! ! Unload-Motion-Right-AFT-Belt! !
! ! ! ! Transporter-Leaves-Right-AFT-TS-Zone!
! ! ! ! Loader-Leaves-Right-AFT-LD-Zone!
! ! ! Unload-Right-FWD! ! ! !
! ! ! ! Loader-Enters-Right-FWD-LD-Zone!
! ! ! ! Transporter-Enters-Right-FWD-TS-Zone!
! ! ! ! Unload-Motion-Right-FWD-Belt! !
! ! ! ! Transporter-Leaves-Right-FWD-TS-Zone!
! ! ! ! Loader-Leaves-Right-FWD-LD-Zone!
! ! Air-Conditioning! ! ! !
! ! ! Air-Conditioning-Unit-Enters-Air-Conditioning-Zone!
! ! ! Air-Conditioning-Unit-Stopped! !
! ! ! Air-Conditioning-Unit-Plugged-In! !
! ! Catering! ! ! ! ! !
! ! ! Catering-Van-Enters-Catering-Zone!!
! ! ! Catering-Van-Stopped! ! !
! ! ! Catering-Van-Raised!! !
! ! Refuelling! ! ! ! ! !
! ! ! Tanker-Enters-Tanking-Zone!!
! ! ! Tanker-Stopped! ! ! !
! ! ! Pumping-Operation! ! !
! ! Replace-Drinking-Water! ! ! !
! ! ! Drinking-Water-Tank-Enters-Drinking-Water-Zone!
! ! ! Drinking-Water-Tank-Stopped! !
! ! ! Drinking-Water-Plugged-In! ! !
! ! Waste-Removal!! ! !
! ! ! Waste-Removal-Vehicle-Enters-Waste-Removal-Zone!
! ! ! Waste-Removal-Vehicle-Stopped! !
! ! ! Waste-Removal-Unit-Plugged-In! !
! ! Load-Right! ! ! ! !
! ! ! Load-Right-AFT! ! ! !
! ! ! ! Loader-Enters-Right-AFT-LD-Zone!
! ! ! ! Transporter-Enters-Right-AFT-TS-Zone!
! ! ! ! Load-Motion-Right-AFT-Belt!!
! ! ! ! Transporter-Leaves-Right-AFT-TS-Zone!
! ! ! ! Loader-Leaves-Right-AFT-LD-Zone!
! ! ! Load-Right-FWD! ! ! !
! ! ! ! Loader-Enters-Right-FWD-LD-Zone!
! ! ! ! Transporter-Enters-Right-FWD-TS-Zone!
! ! ! ! Load-Motion-Right-FWD-Belt!!
! ! ! ! Transporter-Leaves-Right-FWD-TS-Zone!
! ! ! ! Loader-Leaves-Right-FWD-LD-Zone!
! Departure! ! ! ! ! !
! ! Start-Beacon! ! ! ! !
! ! Pushback!

 
 
Multivariate Gaussian aggregate models can be compactly represented by means 

and covariance matrices, and propagation in a BCH can be performed very efficiently 
by closed-form solutions, as shown in the following. 



Let G = [E F] be a vector of Gaussian random variables representing an aggregate. 
Let F be the subset whose distribution is changed by evidence or incoming 
propagation. F can be the aggregate header in the case of downward propagation or a 
part header in the case of upward propagation. We want to compute the effect of the 
changed distribution of F on G. Before propagation, the distribution of G is P(G) = 
N(µG, ΣG) where µG is the mean vector and ΣG the covariance matrix. The partitions 
corresponding to E and F, respectively, are denoted as shown: 
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For a probability update, we assume that the distribution of F is changed to P'(F) = 
N(µF', ΣF'). Then the new distribution of G is P'(G) = N(µG', ΣG') with 
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    where 

ΣE' = ΣE  -  ΣEF ΣF
-1 ΣEF

T  +  ΣEF ΣF
-1 ΣF' ΣF

-1 ΣEF
T  (8) 

ΣEF' = ΣEF ΣF
-1 ΣF' (9) 

µE' = µE +  ΣEF ΣF
-1(µF' - µF)                                                                                (10)

  

The Gaussian updating rules in Eqs. (8) to (10) have been first presented in [10]. It 
is evident that both upward and downward propagation for an aggregate with random 
variables A B1 ... BK C can be performed by fairly simple matrix computations.  

Multivariate Gaussians are also very convenient for implementing the 
interpretation procedure by beam search as described in Section 1. The 
marginalisations required for ranking alternative interpretations according to Eq. (2) 
are directly available from the aggregate covariances, and the final maximising 
interpretation according to Eq. (3) can be given in terms of the mean values of hidden 
variables. 

There are, however, clear limitations of the applicability of multivariate Gaussian 
BCHs, for example in connection with discrete random variables, range-limited flat 
distributions or the truncated distributions arising in real-time updates according to Eq. 
(5). In some cases it may be possible though to use Gaussians as approximations. This 
will be shown in the next section where the temporal structure of aircraft services is 
modelled by a BCH based on a multivariate Gaussian distribution. 

3. Temporal models for aircraft servicing 

To perform real-time interpretation of aircraft servicing operations, a BCH has 
been designed consisting of the aggregates shown in Table 1. The leaves of the 
hierarchy are primitive aggregates without parts which will be instantiated by evidence 
from lower-level processing. Spatial information is expressed in terms of qualitative 
positions in predefined zones. For example Airplane-Enters-ERA specifies that 



an airplane enters the entrance-restricted area (ERA) marked on the apron for aircraft 
servicing. Other zones, e.g. the loading zone in Loader-Enters-Right-AFT-
LD-Zone, are defined relative to the aircraft and depend on its type.  

Each (non-primitive) aggregate specifies the temporal structure of its parts in terms 
of correlated random variables for durations and delays. Figure 2 illustrates the 
structure of the aggregate Arrival as an example. The aggregate header is a random 
variable for the duration of Arrival. Its value is defined as the sum of the duration of 
Arrival-Preparation and the delays of the point events Airplane-Enters-
ERA, Airplane-Stopped-Inside-ERA and Stop-Beacon.  

 
 
 
 
 
 
 
 
 
 

Figure 2. Temporal structure of the aggregate Arrival. 

Figure 3 shows means and covariance of the Gaussian JPD, estimated from the 
data of 52 turnarounds. Note that the beginning and ending of Arrival is determined 
by the random variables describing the parts, leading to a singular covariance - this 
does not jeopardise the updating procedure. The positive correlation between some of 
the durations and delays reflects the observation that activities in some turnarounds  are 
generally faster than in others. 

         mean  covariance  
         
Arrival             17  32  11  18  1,5 1,5 
Arrival-Preparation        6  11  9  2   0  0 
Airplane-Enters-ERA-Delay     2  18  2  16   0  0 
Airplane-Stopped-Inside-ERA-Delay  1  1,5 0  0  1  0,5 
Stop-Beacon-Delay        1  1,5 0  0  0,5 1 

 

Figure 3. Multivariate Gaussian JPD for Arrival as a sum of the duration of Arrival-Preparation 
and the delays of the point events Airplane-Enters-ERA and Stop-Beacon (units in minutes). 

All aggregate models have a similar structure, with activities described by their 
durations and related to each other by delays. Gaussians are used with the 
understanding that only the range -2σ ... +2σ is valid in the model. To ensure that 
durations of activities take only positive values, their models are constrained by µ > 
2σ.  

To demonstrate the predictive power of the BCH, the estimated timeline for 
turnaround events, and the remaining uncertainty (measured in standard deviations) has 
been determined for two cases, (i) after observing the very first event, GPU-Enters-
GPU-Zone, and (ii) after observing all events up to a late Aircraft-Enters-ERA, 
see Table 2. Note that extended activities are marked with the suffix -Beg and -End 
indicating begin and end, respectively, while point events are marked  with  the  suffix 
-Eve. It can be seen that observations in Case 2 significantly change the expectations of 



future events due to the correlations within aggregate models. Also, as expected, the 
uncertainty of estimates decreases with additional evidence. 
Table 2. Estimated timeline of a turnaround after initial observation (Case 1) and after observations up to 
Airplane-Enters-ERA (Case 2). Columns show times T and uncertainties of estimates D (in standard 
deviations). 

 

 Case 1 Case 2 
                                               T  D  T  D  

Turnaround-Beg 0 0 0 0 
Arrival-Beg 0 0 0 0 
Arrival-Preparation-Beg 0 0 0 0 
GPU-Enters-GPU-Zone-Eve 0 0 0 0 
GPU-Stopped-Inside-GPU-Zone-Beg 1 0,5 1 0 
Drop-Chocks-Eve 6 3 6 0 
Arrival-Preparation-End 6 3 6 0 
Airplane-Enters-ERA-Eve 9 6 15 0 
Airplane-Stopped-Inside-ERA-Beg 9 6 15 0  
Stop-Beacon-Eve 17 6 23 1 
Arrival-End 17 6 23 2 
Services-Beg 19 8 26 3 
Passenger-Activity-Beg 19 8 26 3 
Passenger-Stairs-stopped-Inside-PS-Zone-Beg 19 8 26 3 
Passenger-Stairs-stopped-Inside-PS-Zone-End 55 16 62 15 
Passenger-Activity-End 58 17 65 15 
Unload-Right-Beg 23 9 30 5 
Unload-Right-AFT-Beg 23 9 30 5 
Loader-Stopped-Inside-Right-AFT-LD-Zone-Beg 23 9 30 5 
Transp.-Stopped-Inside-Right-AFT-TS-Zone-Eve 25 9 32 5 
Unload-Motion-Right-AFT-Belt-Beg 29 9 36 6 
Unload-Motion-Right-AFT-Belt-End 39 10 46 7 
Transp.-Stopped-Inside-Right-AFT-TS-Zone-End 41 10 48 7 
Loader-Stopped-Inside-Right-AFT-LD-Zone-End 43 10 50 7 
Unload-Right-AFT-End 43 10 50 7 
Unload-Right-FWD-Beg 24 12 31 10 
Loader-Stopped-Inside-Right-FWD-LD-Zone-Beg 24 12 31 10 
Transp.-Stopped-Inside-Right-FWD-TS-Zone-Beg 25 12 33 10 
Unload-Motion-Right-FWD-Belt-Beg 29 13 36 11 
Unload-Motion-Right-FWD-Belt-End 39 13 46 11 
Transp.-Stopped-Inside-Right-FWD-TS-Zone-End 41 13 48 11 
Loader-Stopped-Inside-Right-FWD-LD-Zone-End 43 14 50 12 
Unload-Right-End 43 13 50 11 
Refuelling-Beg 33 31 40 30 
Tanker-Stopped-Inside-Tanking-Zone-Beg 33 31 40 30 
Pumping-Operation-Beg 36 31 43 30 
Pumping-Operation-End 43 31 50 30 
Tanker-Stopped-Inside-Tanking-Zone-End 47 31 54 30 

(further service operations omitted for brevity) 

Services-End 55 23 62 22 
Departure-Beg 57 24 69 21 
Start-Beacon 57 24 69 21 
Pushback-Beg 58 25 70 22 
Pushback-End 60 25 72 22 
Departure-End 60 25 72 22 
Turnaround-End 60 25 72 22 



We now describe a concrete scene interpretation task based on real data to 
demonstrate the ranking provided by the BCH in a beam search. The input data has 
been obtained from one of 80 turnarounds recorded at the Blagnac Airport in Toulouse 
by low-level processing of project partners in France and England. Interpretation with 
beam search was performed by the system SCENIOR developed in the group of the  
authors [13].     

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Interpretation alternative No. 4 generated by SCENIOR after 3 minutes real-time  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Interpretation alternative No. 6 generated by SCENIOR after 10 minutes 



Here, we describe the initial phase where two competing interpretations of the 
activity Arrival are presented from 13 alternative interpretations generated by 
SCENIOR. Figures 4 and 5 show the evidence received so far (yellow boxes at the 
bottom), the instantiated parts of the arrival model (green boxes) and expected further 
events (dark blue boxes). The Drop-Chocks event could not be observed and was 
inferred from the context. The figures do not show any of the several clutter events 
which did not fit the partially instantiated models. 

The clutter probability has been set to 0,01 to favour more complete 
interpretations. Since the ratings are naturally decreasing with each step and may reach 
very small numbers, a scaling factor of 100 is applied at each step. Thus, a clutter 
assignment renders ratings nominally unchanged.  

The main difference between the interpretations is an erroneous Airplane-
Enters-ERA event generated by low-level processing for a tanker crossing the ERA 
shortly before the arrival of the airplane. Figure 6 shows the corresponding video 
frames taken by one of the eight cameras. The crossing tanker is visible in the far 
background of the image on the left.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Snapshots of the ERA (Entrance Restricted Area) after completing Arrival-Preparation. 
The GPU (Ground Power Unit) and shocks are in place. The tanker crossing the ERA in the background 
(left) causes an erroneous interpretation thread (see text). 

 
Table 3. Initial ratings of the two alternative interpretations shown in Figures 4 and 5 

e1 = mobile-inside-zone-86 
e2 =  mobile-stopped-90 
e3 = mobile-inside-zone-131 
e4 = mobile-inside-zone-155 
est = estimated event 
 
Evidence   Time Interpretation 4    Ranking 4    Interpretation 6      Ranking 6 
  

e1 17:10:31 GPU-Enters.. 100 GPU-Enters..     100 
e2 17:10:32 GPU-Stopped.. 1154 GPU-Stopped.. 1154 
e3 17:13:35 Airpl.-Enters-ERA 4885 Clutter    1154 
e4 17:20:35 Clutter 4885 Airpl.-Enters-ERA  6143 
est 17:20:35 Airpl.-Stopped.. 194898 
est 17:21:35 Stop-Beacon   4489092 
est 17:27:35   Airpl.-Stopped.. 245082 
est 17:28:35   Stop-Beacon 5644964 



The ratings for the partial interpretations of both alternatives are shown in Table 3. 
Interpretation 4 is the erroneous and Interpretation 6 the correct one. Initially, the 
arrival of the GPU sets a context where a vehicle is expected to enter the ERA, hence 
the crossing tanker is a candidate. But as soon as the true airplane enters, an alternative 
arises and is favoured because the probabilistic model expects an Airplane-
Enters-ERA event 8 minutes after GPU-Enters-GPU-Zone-Eve, and the airplane's 
arrival is closer to that estimate than the tanker's. Note that clutter events not assigned 
to either of the two interpretations are not shown in the table.  

The table also includes the estimated times of the next events Airplane-
Stopped-Inside-ERA and Stop-Beacon together with the expected ratings of 
the competing interpretations. Considering that Stop-Beacon will occur after the 
true aircraft arrival and not at the time expected in Interpretation 4, the rating of this 
interpretation will surely be much lower than the estimated value, further increasing the 
distance between the right and the wrong interpretation.   

Our experiments with concrete data have just begun, and we expect further 
interesting interpretations in the near future. However, it is safe to say that the 
probabilistic temporal model alone will not suffice to clearly separate good from bad 
interpretations, if the low-level data are very noisy. Another insight regards the quality 
of the model. If the model does not sufficiently match the ground truth, the ranking will 
be bad and false alternatives may win. 

4. Summary and Outlook 

We have described a novel probabilistic framework for real-time interpretation of 
multi-object scenes. It is based on the expectation that, as a scene evolves, several 
alternative interpretations may be possible initially and must be maintained in parallel. 
We have proposed a beam search paradigm where a limited number of alternatives is 
kept based on a probabilistic ranking. For domains with a hierarchical compositional 
structure, the probabilistic model can be realised as a Bayesian Compositional 
Hierarchy (BCH) which allows efficient updating for the incremental computation of 
ratings and for predictions of future events. An operational scene interpretation system 
called SCENIOR has been implemented which performs beam search guided by a BCH 
modelling the temporal relations of aircraft service activities. First results have been 
presented demonstrating the feasibility of the approach. 

The work will be extended into several directions. First, more turnaround scenes 
will be interpreted and analysed to better tune the probabilistic model. Unfortunately, it 
cannot be expected to automatically learn a model for lack of a database with 
sufficiently many annotated scenes. Second, the characteristics of low-level errors will 
be analysed. So far, we are aware of many wrong classifications of the vehicle types (in 
our example, a tanker was mistaken for an airplane), of lost tracks at occlusions and of 
uncertain zone positions. Our basic approach to low-level uncertainty is to allow 
alternative interpretations, for example for ambiguous type classifications. But from 
our experiments we know that the number of parallel interpretation threads should stay 
below about 50 to guarantee real-time computer performance. This can only be 
achieved by judicious ranking and discarding of low-ranking alternatives.  
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