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Zusammenfassung. Model fitting algorithms for the extraction of
3D point landmarks tend to run into local suboptima if the model param-
eters are poorly initialized. We therefore propose a generally applicable
novel hybrid optimization algorithm that combines the time efficiency of
conjugate gradient (cg-)optimization and the robustness of genetic algo-
rithms against local suboptima. We apply our algorithm to 3D MR and
CT images depicting tip-like and saddle-like anatomical structures in or-
der to demonstrate that the robustness of model fitting is significantly
improved in comparison to purely local cg-optimization.

1 Introduction

The extraction of 3D point landmarks is a prerequisite for point landmark-
based 3D image registration. While earlier approaches are based on differential
operators ([4]), an approach based on fitting deformable models to the image
data by minimizing a fitting measure has recently been proposed in [3]. However,
since local optimization is used in [3], a good model initialization is needed. To
overcome this drawback, we propose a hybrid optimization algorithm which is a
combination of a purely local conjugate gradient method and a genetic algorithm.
Exemplarily, we apply our fitting algorithm to the extraction of salient surface
loci (curvature extrema) of tip- and saddle-like structures such as the tips of the
ventricular horns or the saddle points at the zygomatic bones (see Fig. 1(a),(b)).

2 Model Fitting with Quadrics for Landmark Extraction

Quadrics for Surface Modeling To represent 3D tip-like structures, we uti-
lize bended and tapered half-ellipsoids, while for saddle-like structures we em-
ploy hyperboloids of one sheet (see Fig. 1(c),(d) for illustration and [1],[3] for
details). Hence, our model is described by the parameter vector p = (a1, az,as
(half-axes of the quadric), §,v (bending strength and - angle), px, py (tapering
parameters), X,Y, Z (translation parameters), a, 8,7 (Eulerian angles)).
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Abb. 1. (a),(b): Ventricular horns of the human brain and the skull. (c),(d): Quadrics
for modeling tips and saddle structures. Landmark positions are indicated by dots.
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Edge-Based Fitting Measures for Model Fitting As an edge strength-
based fitting measure, the gradient magnitude of the intensity function is inte-
grated over the model surface, while for an edge distance-based fitting measure,
the sum of first-order shortest distance approximations to the model surface is
calculated over the image data (see [1] for details).

Hybrid Optimization Local optimization algorithms such as the conjugate
gradient (cg-)algorithm (e.g., [3]) tend to run into local suboptima unless a good
model initialization is provided. Therefore, global algorithms such as genetic al-
gorithms (GAs) are frequently proposed (e.g., [2]), but often have inacceptably
slow convergence rates. As a combination of both, we propose a novel hybrid
optimization strategy. Similar to GAs, we consider a whole population of pa-
rameter vectors. However, our mutation strategy is more problem-specific: At
the end of each cg-step, a line search has to be performed. Instead of taking only
one local minimum, we here consider several of such local minima. This is moti-
vated by experiments - not reported here - where local suboptima resulting from
a line search procedure lead to the global optimum of the whole optimization
problem for model fitting. Depending on the optimization problem at hand, ei-
ther an in-depth-search with few population members or an in-breadth-search
with many population members is more successful. We therefore dynamically
adapt the population size to the problem complexity by increasing the popula-
tion size each time a population member converges to a local minimum. Several
parameters can be adapted to the specific optimization problem at hand as, e.g.,
the minimum and maximum population size and the criteria, when to discard
population members with too bad objective function values. We tried to exper-
imentally determine parameter values that are applicable to a broad class of
optimization problems (see [1] for details).

3 Experimental Results for 3D Tomographic Images
Scope of Experiments Our hybrid optimization algorithm has been compared
to purely local cg-optimization w.r.t. poorly initialized model parameters using
— different types of image data: 3D MR and CT images of the human head,
— different types of landmarks: frontal/occipital horns of the lateral ventricles,
zygomatic bones as part of the skull, and
— different fitting measures: edge distance-based and edge strength-based.

Experimental Strategy For obtaining poor initial values for model fitting, the
parameter values of an initial good fit are varied by adding Gaussian distributed
random numbers. In order to determine the landmark localization error e, the
landmark positions calculated from the fitted deformable models are compared
to ground truth positions that were manually specified in the 3D images. In
addition, we consider the root-mean-squared distance between edge points of
the image and the model surface, egprs- This procedure is iterated sufficiently
often (here: 100 times) with different, randomized model initializations.

General Results Common to all experiments is that the final value of the
fitting measure is better by about 10-50% for hybrid optimization than for purely
local cg-optimization. In most cases, the landmark localization and the model



fitting accuracy also improve significantly. Thus, hybrid optimization turns out
to be superior to purely local cg-optimization at the expense of an increase in
computational costs by a factor of 5-10 (30s-90s for local cg-optimization and
150s—900s for hybrid optimization on a SUN SPARC Ultra 2 with 300MHz CPU).

Results for the Ventricular Horns The tips of the frontal and occipital horns
of the lateral ventricles are considered here. Typical examples of successful model
fitting are shown in Fig. 2. As can be seen from the averaged quantitative results
in Table 1, hybrid optimization is superior to purely local cg-optimization and
yields in most cases better model fitting (egaps) and landmark localization (e)
results (cf. also Figs. 2(a),(b)). Note that rather coarsely initialized model pa-
rameters have been used (€;nitiar = 7---9vox), and thus some unsuccessful fit-
ting results — particularly in the case of the less pronounced occipital horns —
deteriorate the average accuracy of model fitting as shown in Table 1.

Results for the Zygomatic Bones All results for the zygomatic bones were ob-
tained with our edge strength-based fitting measure. Model fitting for the saddle
points at the zygomatic bones (e.g., Fig. 2(c)) in general is not as successful as it
is for the tips of the ventricular horns. However, the mean landmark localization
error € can be reduced from initially €;pitiq1 = 6.4...6.9vortoe =2.5...3.2vox
and the accuracy of model fitting is €gars = 1.5. .. 1.8 vox (voxel size =1.0mm?).

4 Conclusion

Experimental results demonstrate the applicability of our hybrid algorithm as
well as its increased robustness for the case of poorly initialized model parameters
as compared to a purely local cg-method.
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Model initi-| Edge dist.-b. fitt. meas.|Edge strength-b. fitt. meas.

alization |local cg-opt.|hybrid opt.|local cg-opt.| hybrid opt.
Frontal e |7.71 £ 3.16(3.28 &+ 2.99 |1.40 £+ 1.18|3.54 + 2.18| 2.49 £ 2.21
horn (left) [€rms|2.22 + 1.10|1.00 + 0.63 |0.65 + 0.22|1.04 + 0.31| 0.87 £ 0.35
Frontal € |6.57 + 3.18(3.87 £ 2.16 3.15 £+ 2.18|6.55 + 3.53| 5.19 £+ 3.70
horn (right)|erms|2.12 + 1.11|1.05 + 0.60 |0.78 + 0.25|1.56 + 1.26 | 1.28 £+ 0.79
Occipital e 19.08 &+ 4.4216.90 + 3.89 |6.68 + 3.93|4.74 £ 4.33| 4.61 + 4.31
horn (right)|{erms|3.00 + 1.40|2.06 + 0.93|2.04 + 0.87|1.34 + 0.87| 1.29 £+ 0.78

Tabelle 1. Fitting results averaged over 100 model fittings with randomized poor
model initializations for 3D MR images of the frontal/occipital ventricular horns using
18 model parameters (€: mean landmark localization error (in voz), erams: RMS distance
between deformable model and image data (in voz), voxel size =0.86 x 0.86 x 1.2mm?®).



(a) 3D MR image of the frontal horn of the left lateral ventricle, edge distance-
based fitting measure, ROI size 15.0 voz

(b) 3D MR image of the occipital horn of the right lateral ventricle, edge strength-
based fitting measure, ROI size 15.0 voz

(c) 3D CT image of the left zygomatic bone, edge strength-based fitting measure,
ROI size 15.0 voz

Abb. 2. Examples of successfully fitting tapered and bended half-ellipsoids to
3D MR images of the frontal and occipital horns of the lateral ventricles (Fig. 2(a-b))
as well as of fitting a half-hyperboloid with no further deformations to a 3D CT image
of the zygomatic bone (Fig. 2(c)). Contours of the model surfaces in axial, sagittal,
and coronal planes are depicted here (from left to right). Black: model initialization,
grey: fitting result for local cg-optimization, and white: fitting result for our hybrid op-
timization algorithm. The ground truth landmark positions are indicated by a @-sign.



