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Abstract. We present a new approach to the localization of 3D anatom-
ical point landmarks in 3D tomographic images based on deformable
models. In comparison to existing differential approaches to landmark
localization, the localization accuracy is significantly improved and also
the number of false detections is reduced.

1 Introduction

We address the problem of extracting 3D anatomical point landmarks from
3D tomographic images, focusing on anatomical structures of the human head.
The driving task is landmark-based 3D image registration, which is fundamental
to computer-assisted neurosurgery. Existing work on the extraction of 3D point
landmarks from images is based on differential approaches (e.g., [16],[10]). How-
ever, while being computationally efficient, differential approaches are relatively
sensitive to noise, which results in false detections and affects the localization
accuracy. In this contribution, we introduce a new approach to 3D landmark ex-
traction based on deformable models, which takes into account more global image
information and thus opens the possibility of increasing both the robustness and
the accuracy. Previously, deformable models have been applied to segmentation,
tracking, and image registration (see [8] for a survey), whereas the localization
of 3D point landmarks based on such models has not been considered so far.
Exemplarily, we here focus on two different types of 3D point landmarks,
namely, salient surface loci (curvature extrema) of tips and saddle struc-
tures. Examples of these types of landmarks of the human head are the
tips of the ventricular horns or the saddle points at the zygomatic bones
(see Fig. 1). To represent such structures, we utilize 3D surface models
(e.g., [14],[12],[3],[13],[7],[15],[18],[1]). Note that in comparison to previous work
on deformable models, we are here interested in the accurate localization of
salient surface loci. Central to an efficient solution of this specific problem is
that the model surface exhibits a unique point whose position can be directly
computed from the model parameters. As a compromise between generality and
efficiency, we here use quadric surfaces as 3D shape prototypes, which are com-
bined with additional global deformations to enlarge the range of shapes (Sec. 2).

* This work was supported by Philips Research Hamburg, project IMAGINE (IMage-
and Atlas-Guided Interventions in NEurosurgery).
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Fig.1. Ventricular system of the human brain (from [11]) and the human skull
(from [2]). Examples of 3D point landmarks are indicated by black dots.

Model fitting is formulated as an optimization problem. As fitting measure,
we here use an edge-based measure that incorporates the strength as well as
the directions of the intensity variations (Sec. 3). Usually, only the strength
of the intensity variations is incorporated (e.g., [18],[13]). To determine initial
values for the model parameters, we have developed a semi-automatic differential
approach, which is described in Sec. 4. Experimental results for 3D tomographic
data are presented in Sec. 5. In particular, we compare the localization accuracy
of our new approach with that of an existing differential approach.

2 Geometric Models of Tips and Saddle Structures

As 3D shape prototypes, we here use quadric surfaces, namely, ellipsoids for
3D tip-like structures and hyperboloids of one sheet for 3D saddle structures.
However, real structures in general show deviations from these prototypes (e.g.,
the ventricular horns generally have a bended shape and partly show a taper-
ing). To take into account bending in the case of tip-like structures, we here
additionally apply a quadratic bending deformation along the centerline of the
ellipsoid (i.e., the z-axis) [3]: B(x) = (z + dcosv 22,y + dsinv 22,2)T, where
x = (¢,y,2)7 denotes an arbitrary surface point, and § > 0 determines the
strength and v the direction of bending. To transform the object-centered model
coordinate system to the image coordinate system, we here use a rigid transfor-
mation, R(x) = Rx + t, where t = (X,Y, Z)T denotes the translation vector
and R the rotation matrix depending on the rotation angles o, 3, 7.

Tips. The parametric form of our model is obtained by applying the bending
deformation and the rigid transformation to the parametric form of an ellipsoid:

Z+tip(0,9) = R o B o (a1 cosf cos @, as cos 0 sin @, az sin 07, (1)

where 0 < § < 7/2 and —7 < ¢ < 7 are the latitude and longitude angle pa-
rameters, resp., and a1, as,a3 > 0 are scaling parameters. Hence, the model is
described by the parameter vector p = (a1, az,as3,6,v,X,Y, Z, a, 3,v). The land-
mark position of our model, i.e., the position of the curvature extremum of the de-
formed ellipsoid, is given by x; = x4, (7/2,0; p) = R(§ cosva?,dsinva?,az)T +
t. Fig. 2 (left) shows an example of a bended tip-like structure.



Saddle structures. The parametric form of our model is obtained by applying
the rigid transformation to the parametric form of a hyperboloid of one sheet:

X saadie (0, ¢) = R o (a1 sech cos ¢, as secHsin ¢, as tan )7, (2)

where |0] < 7/2 and 0 < ¢ < 7. Thus, the model is described by the parameter
vector p = (ai1,a2,a3,X,Y, Z,a,,7). The landmark position is given by x; =
Zs0ddic(0,7/2;p) = R(0,a3,0)T +t. Fig. 2 (right) shows a saddle structure.

Fig. 2. Geometric models based on quadric surfaces as 3D shape prototypes. The
3D landmark positions are indicated by a black dot.

3 Model Fitting Using an Edge-Based Fitting Measure

The geometric models introduced in Sec. 2 are fitted to the image data by op-
timizing an edge-based fitting measure w.r.t. the model parameters. Our fitting
measure, which is a 3D generalization of the 2D fitting measure in [19], exploits
(a) the similarity between the directions of the intensity gradient and the nor-
mals of the model surface as well as (b) the strength of the intensity variations.
As a result, the influence of neighboring structures during fitting is diminished
significantly, which increases the robustness. We consider the contributions of
the intensity gradient in the direction of the normal of the model surface, uti-
lizing the projection of the intensity gradient onto the unit normal of the model
surface:

Mup) = [ [ < Vole(6,650)), G x 5 > dodg — min, (3

where g denotes the intensity function, & denotes the parametric form of the
respective geometric model, which depends on 8, ¢, and the model parameter
vector p, and < -,- > denotes the inner product. The choice of the sign + of
the fitting measure depends on the appearance of the landmark at hand in the
image: In the case of a dark structure, where the intensity gradient points out-
ward, the sign is positive, while it is negative in the case of a bright structure. It
is worth noting that in our implementation, only those surface points in Eq. (3)
are considered where + < Vg(z(6, ¢; p)), g—‘; X g—z > is less than zero. That is,
surface points where the surface normal differs significantly from the direction
of the intensity gradient are excluded. As a result, the influence of neighboring



structures is further reduced. A similar 3D fitting measure was suggested in [5],
where, however, a discrete formulation of Eq. (3) was used. Also, different geo-
metric models based on Fourier surfaces were used in [5], and the approach was
applied to segmented data only, while here we do not require segmented data.
We optimize Eq. (3) by applying the conjugate gradient method ([9]).

4 Initialization of the Model Parameters

A central issue of fitting deformable models to the data is the determination of
suitable initial values for the model parameters. Often, initial values are manually
determined, which is tedious and time-consuming. Here, we initialize the model
parameters within a semi-automatic procedure. The model of the tip is initialized
using an undeformed ellipsoid. Thus, for both models from Sec. 2, we have to
find initial values for nine parameters (translation, rotation, and scaling).

An initial estimate of the landmark position is obtained by a differential
approach ([10],[6]). To initialize the rotation angles «, 8,~, we utilize the direc-
tion of the intensity gradient (estimate of the normal) as well as the principal
curvature directions of the local isointensity surface at the estimated landmark
position (see, e.g., [4],[16] for computing the curvature of isointensity surfaces).
The scaling parameters a1, as, az are initialized based on the principal curvatures
K1, k2 of the local isointensity surface at the estimated landmark position. In the
case of a tip, for example, we have the relations k1 = a3z/a? and k2 = a3/a3.
Note, however, that we have only two principal curvatures, while we have three
scaling parameters. To cope with this problem, we here initialize one scaling
parameter manually.

5 Experimental Results for 3D Tomographic Data

In this section, we present experimental results for different anatomical land-
marks of the human head in a 3D MR image and a 3D CT image of one patient.
In the case of the MR image, we consider the tips of the frontal and occipi-
tal ventricular horns as well as the saddle points at the zygomatic bones. The
field-of-view of the CT image captures only a part of the ventricular horns, and
therefore we here consider only the saddle points at the zygomatic bones.

5.1 Parameter setting

Initial estimates of the landmark positions were determined by applying the
semi-automatic differential approach in [10],[6]. Partial derivatives of the in-
tensity function were estimated using cubic B-spline image interpolation ([17])
and Gaussian smoothing, where the scale of the Gaussian filters was coarsely
adapted to the scale of the respective landmark: For the ventricular horns we
used ¢ = 1.bmm, while for the zygomatic bones we used ¢ = 1.0mm. In case
of several detections, we selected the candidate with the maximal operator re-
sponse. For computing the curvature of the local isointensity surface, the scale
of the Gaussian filters was the same as that used for landmark detection.



The fitting measure My, (p) as well as its derivative w.r.t. the model param-
eter vector p (VMp(p) is required for optimization) involve (a) the parametric
forms of the model surfaces as well as partial derivatives of the parametric forms
w.r.t. §,¢, and the model parameters and (b) image derivatives. Expressions
involving the parametric forms were determined analytically. Image derivatives
were computed using Gaussian filters with ¢ = 1.0mm. For numerical evalua-
tion of the integrals in Mgy(p) and VMg:(p), we adopted a scheme based on
equidistant sampling of the two-dimensional parameter space (6, ¢) and cubic
interpolation ([9]). The image derivatives were trilinearly interpolated. To di-
minish the influence of neighboring structures, model fitting was restricted to a
spherical region-of-interest (ROI) centered at the estimated landmark position,
where the ROI radius was set to 15 voxels.

5.2 Results for the ventricular horns and the zygomatic bones

Ventricular horns. We consider four different landmarks, namely, the tips of the
frontal and occipital ventricular horns in both hemispheres. For each landmark,
the semi-automatic differential approach in [10],[6] yielded a reasonable initial
estimate of the landmark position. The rotation angles a, 3,7 as well as the
scaling parameters a; and as were automatically determined based on the dif-
ferential characteristics of the local isointensity surface at the position estimates
(see Sec. 4). Only the scaling parameter a; was manually initialized. The bend-
ing parameters were initially set to zero. Fig. 3 (top) visualizes the initialization
result for the left frontal ventricular horn; for the other landmarks, we obtained
similar initialization results. Given the relatively large number of parameters,
model fitting was performed in two steps for reasons of robustness: To achieve
a coarse adaption, we first fitted only the six parameters of the rigid transfor-
mation, while the other parameters were kept constant. In the second step, all
eleven parameters including scaling and bending were considered. Model fitting
took in total between 34 and 184 seconds (SUN Ultra 2) and succeeded in all
cases. Fig. 3 (middle) exemplarily shows the fitting result for the left frontal
ventricular horn. One can see that the fitted model surface well agrees with the
ventricle surface. The localized landmark positions derived from the fitted model
turned out to be good. Figs. 3 (bottom) and 4 show the localization results for
the tips of the left frontal and occipital horn, resp. Please note that for visual-
ization, the model surfaces and the landmark positions are represented by voxel
positions only, while the fitting results yield subvoxel positions.

Zygomatic bones. In both modalities, we obtained reasonable initial values for
the model parameters. In contrast to the experiments using the ventricular horns,
we here performed model fitting in a single step in which all nine parameters
were adapted. Model fitting took between 35 and 117 seconds and gave in all
cases good results. The localized landmark positions derived from the fitting
results are in all cases satisfying as visual inspection revealed. Fig. 5 shows the
localization results for the saddle point at the left zygomatic bone.

Localization accuracy. We now analyze the localization accuracy of our new
approach in the case of the MR image, using as ground truth positions that



Fig. 3. Localization of the tip of the left frontal ventr. horn in a 3D MR image. Or-
thogonal sections at the ROI center depicting the surface initialization (top) and the
fitting result (middle). The considered spherical ROLI is highlighted. Bottom: Orthogo-
nal sections at the localized landmark position (white cross) based on the fitted model.

Fig. 4. Localization of the tip of the left occ. ventr. horn in a 3D MR image. Orthogonal
sections at the localized landmark position (white cross) based on the fitted model.

were manually determined in agreement with up to four persons. Note that only
voxel positions were determined manually, while our new approach yields sub-
voxel positions. For comparison, we use the results obtained with a differential
approach ([10],[6]). Tab. 1 summarizes the computed Euclidean distances to the
ground truth positions for six landmarks. One can see that for each landmark,
the locus obtained with our new approach is better (i.e., closer to the refer-
ence position) than the locus obtained with the differential approach. The mean
Euclidean distance of the positions localized with our new approach to the refer-



Fig. 5. Localization of the saddle point at the left zygomatic bone in a 3D MR image
(top) and a 3D CT image (bottom). Orthogonal sections at the localized landmark
position (white cross in MR and black cross in CT) based on the fitted model.

€differential| €new €differential| €new

Left frontal horn 1.92mm |0.90mm Right frontal horn 1.72mm |1.28mm
Left occipital horn | 3.32mm |1.23mm Right occipital horn | 2.58mm |1.61mm
Left zygomatic bone| 0.86mm |0.78mm Right zygomatic bone| 2.26mm |1.52mm

Table 1. Comparison of the localization accuracy of a differential approach to land-
mark localization (€g;ferentiar) and our new approach based on deformable models (enew)
for six landmarks in a 3D MR image.

ence positions is €,¢, = 1.22mm, whereas for the differential approach we have
€differential = 2.11mm. Thus, the localization accuracy was improved by 0.89mm.

False detections. One problem with differential approaches is that often more
than one landmark candidate is detected, i.e., we have to ensure that a correct
candidate is selected for model initialization. To this end, we studied the suit-
ability of using the fitting results to automatically identify false detections. For
each landmark from above, we used all detected candidates to determine a set
of initial values for the model parameters: For the left and right frontal ventric-
ular horn as well as for the right occipital horn in the MR image we obtained
two candidates, while for the left (right) zygomatic bone in the MR image we
obtained three (five) candidates. In the case of the other landmarks, only one
correct candidate was detected. We then compared the fitting results obtained
for each candidate based on the value of the fitting measure divided by the sur-
face area (the normalization was done to avoid a bias due to the surface area).
We found that in all cases but one, the selection of a correct candidate actually
resulted in the best fitting result. For the right occipital horn, it turned out that
the detected two candidates are both correct in the sense that they refer to two
different prominent anatomical loci at the tip of the occipital horn.
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Summary

In this paper, we presented a new approach to the localization of 3D anatomi-
cal point landmarks in 3D tomographic images based on deformable geometric
models. By fitting these models to the surface at the landmark at hand, we
obtain accurate estimates of the 3D landmark positions. Initial values for the
model parameters are determined by a differential approach. Experimental re-
sults for 3D MR and CT images showed that in comparison to a pure differential
approach to landmark extraction, our new approach significantly improves the
localization accuracy and also reduces the number of false detections.
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