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Abstract

In this contribution we present an empirical analysis of the perfor-
mance of the ALCNHR+ description logic system RACE applied to TBoxes
with a very large number of primitive concept definitions. Adaptions of
previously known techniques as well as new optimization techniques for
efficiently dealing with these kinds of knowledge bases are discussed.

1 Motivation

In application projects it is often necessary to deal with TBoxes with a large
number of axioms. In addition, in many applications only a small subset of the
axioms are true generalized concept inclusions (GCIs). In most cases, axioms are
concept introduction axioms. Usually it has been argued that only systems based
on incomplete calculi can deal with knowledge bases with more than 100,000
axioms of this kind. In this contribution we present an empirical analysis of the
performance of the ALCNHR+ description logic system RACE [4, 6] applied to
knowledge bases of this size.1 It is shown that description logic systems based
on sound and complete algorithms are particularly useful for simple but large
knowledge bases consisting mainly of primitive concept definitions. A knowledge
base is called simple if no meta constraints remain after the absorption phase
[9] and there exist (almost) no defined concepts.

As an example knowledge base we consider a reconstruction of important parts
of the UMLS (Unified Medical Language System) [12] using description logic
representation techniques. The reconstruction is described in [13] and intro-
duces a specific scheme that uses several concept names to represent subset as
well as composition aspects of each concept (word) mentioned in the UMLS
metathesaurus. For instance, for the notion of a ‘heart’, the following axioms

1A convenient pronunciation of ALCNHR+ is ALC-nature.



for heart structures (suffix ‘s’), heart parts (suffix ‘p’) and heart entities (no
suffix) are declared (see [13] for details):

ana heart � ana heart s � ana hollow viscus �
umls body part organ or organ component

ana heart s � ana hollow viscus s � ana cardiovascular system p

ana heart p � ¬ana heart � ana heart s � ∃≥1 anatomical part of ana heart

Note the disjointness declaration between ana heart p and ana heart. The fol-
lowing role axiom is generated as well.

anatomical part of ana heart � anatomical part of ana hollow viscus

It is beyond the scope of this paper to discuss the pros and cons of specific
modeling techniques used in the UMLS reconstruction. In the next section,
optimization techniques for efficiently dealing with these kinds of knowledge
bases are presented.

2 Optimization Techniques

Modern DL systems such as RACE offer (at least) two operations for TBoxes:
classification and coherence checking [7]. Classification is the process of com-
puting the most-specific subsumption relationships (“parents” and “children”) of
every concept name with other concept names mentioned in a TBox. Coherence
checking determines all concept names which are incoherent.

Our findings indicate that state-of-the-art techniques currently employed for
fast classification of TBoxes have to be extended in order to cope with large
knowledge bases of the above-mentioned kind. In the following we will give a
sketch of techniques that enable RACE to deal with very large knowledge bases.

2.1 Topological Sorting for Achieving Quasi Definition Order

For TBox classification the RACE system employs the marking and propagation
techniques introduced in [1]. The parents and children of a certain concept name
are computed in so-called ‘top search’ and ‘bottom search’ traversal phases, re-
spectively. For large knowledge bases it is particularly important to avoid as
many traversals as possible. Let us assume, a TBox to be classified can be
transformed such that no meta constraints but maybe cyclic (primitive) concept
definitions exist. Then, if concepts are classified in a so-called ‘definition order’,
the bottom search phase can be omitted for concept names for which only a
primitive concept definition exists [1]. According to [1] we assume that a con-
cept name A ‘directly uses’ a concept name B if B occurs in the concept on the
right-hand side of the definition of A. The relation ‘uses’ is the transitive closure
of ‘directly uses’. If A uses B then A comes before B in the definition order. For



acyclic TBoxes (i.e. the uses relation is irreflexive) with concept introduction
axioms only, the set of concepts can be processed in definition order, i.e. a con-
cept is not classified until all of the concepts used in its definition are classified.
In this case the set of children of a concept name consists only of the bottom
concept. Thus, a common syntactical restriction for description logic systems
is to accept only TBox declarations that do not include so-called forward refer-
ences. However, for a language such as ALCNHR+ , which offers cyclic axioms
and GCIs, in general, the bottom search phase cannot be skipped [9, page 103].

Unfortunately, in the UMLS examples there are many forward references in-
volved in value restrictions and existential restrictions (i.e. modalities). Thus,
the definition order of concept names has to be computed in a preprocessing
step. In addition, a slightly less strict notion of definition order has been de-
veloped. We assume a relation ‘directly uses non-modal’ similar to ‘directly
uses’ but with references occurring in the scope of quantifiers not considered.
Again ‘uses non-modal’ is the transitive closure of ‘directly uses non-modal’. For
acyclic concepts the ‘uses non-modal’ relation induces a partial order relation on
concept names. All concept names involved in a cycle are treated as one node
(i.e. a set Si) w.r.t. the partial order. Using a topological sorting algorithm the
partial order can be serialized such that a total order between concept names (or
sets of concept names) is defined. We call the serialization a “quasi definition
order”.

During classification of a TBox with RACE the concept names are processed in
the order given by the linearization w.r.t. topological sorting. For each primi-
tive concept that is not a member of a set Si, we claim that the bottom search
can be disabled. The ‘uses non-modal’ relation and the quasi definition order
serialization ensures that either all concepts that are potential subconcepts of a
certain primitive concept A are inserted after A has been inserted into the sub-
sumption lattice or the bottom search is indeed performed. The quasi definition
order is conservative w.r.t. the potential subsumers (note that ALCNHR+ does
not support inverse roles). Moreover, in a basic subsumption test the subsump-
tion lattice under construction is never referred to. Thus, strict definition order
classification is not necessary.

Topological sorting is of order n + e where e is the number of given ‘uses non-
modal’ relationships. Thus, we have approximately O(n logn) steps while the
bottom search procedure requires O(n2) steps in the worst case. Note that in
[1] no experiments are discussed that involve the computation of a serialization
given a TBox with axioms not already in (strict) definition order.

2.2 Dealing with Domain and Range Restrictions

In order to avoid disjunctions, GCIs for domain restrictions are dealt with by
RACE with a generalized kind of lazy unfolding. In a similar way as for names,



all situations where unfolding of concept terms ∃R . D w.r.t. axioms of the form
∃R .
 � C must occur can be easily identified, i.e. unfolding of a domain re-
striction for a role R is applied whenever an assertion i :∃R . C for an arbitrary
ALCNHR+ concept term is found in an ABox (see [6] for the ALCNHR+

tableaux calculus).2 If lazy unfolding is applied, domain restrictions have to
be considered w.r.t. the ‘directly uses non-modal’ relation in a special way.

Although it is possible to absorb a domain restriction such as the one expressed
by ∃ anatomical part of ana heart .
 � ana heart p into an equivalent inclusion
¬ana heart p � ∀ anatomical part of ana heart .⊥, lazy unfolding cannot be eas-
ily applied if an inclusion axiom for ana heart p � . . . exists. However, this is
the case for UMLS. Hence, in order to apply the topological sorting optimiza-
tion, incorporating domain restrictions into the tableaux calculus was necessary
because meta constraints must not exist for topological sorting to be a valid
optimization.

Note that, in principle, RACE also supports absorption of GCIs into inclusions
¬A � C1 (but only if no inclusion A � C2 or definition A

.
= C2 exists). Some

knowledge bases can only be handled effectively with ¬A � C1 absorptions.

In contrast to domain restrictions, range restrictions for roles do not introduce
disjunctions. However, in a practical implementation it is advantageous to keep
the number of internal data structures to be managed as small as possible.
Therefore, range restrictions ∀R . C are “considered” only if an existential re-
striction for R or a subrole of R are imposed for a certain individual i. These
cases can also be easily detected.

2.3 Clustering

A problem with large knowledge bases is that the set of children of some concept
names can get very large. Thus, the top search procedures exhibits worst case
performance, i.e. the optimization techniques presented in [1] are not effective.
Therefore, in the implementation of RACE a special clustering technique is
employed.

If more than θ concept names are found to be children of a certain concept
name, the θ children are grouped into a so-called bucket Anew, i.e. a (virtual)

2Implementation note: Due to our experiences, domain restrictions cannot be easily con-
sidered in the (recursive) encoding process for concepts. Encoding a concept term (some r
d) as C � ∃R . D (with C being the domain restriction for R) would cause all kinds of trouble
concerning the negation (not (some r d)) of this term. The negation of this term would still
be ∀R .¬D and not ¬C  ∀R .¬D as suggested when (some r d) were encoded as C � ∃R . D.
So, a special treatment is necessary for these terms. But what if C � ∃R . D happens to be
a concept term used in the knowledge base itself? Then, the negation definitely would be
¬C  ∀R .¬D. In this case, the encoding procedure can hardly guarantee uniqueness of the
encoding result (which is essential for clash detection).



concept definition Anew
.
= A1  . . .  Aθ is assumed and Anew is inserted into the

subsumption lattice with A1 . . . Aθ being its children. Note that bucket concepts
Anew are virtual concepts in the sense that they are not mentioned in the set of
children or parents of the concept names mentioned in a TBox.

Let us assume, a certain concept name A is inserted. Instead of testing whether
each Ai (i ∈ {1..θ}) subsumes A during the top search phase, our findings suggest
that it is more effective to initially test whether Anew does not subsume A using
the model merging technique. Since in most cases, no subsumption relation
can be found between any Ai and A, one test possibly replaces θ tests. On the
other hand, if a subsumption relation indeed exists, then clustering introduces
some overhead. However, since for almost all concept names only primitive
concept definitions are included in the TBox, the model of ¬Anew being used for
model merging is very simple because the model basically consists only of a set
of negated concept names (see [3] for further details about model merging in
RACE).

For best performance, the number of concepts to be kept in a bucket should
depend on the number of subconcepts of the concept. However, this can hardly
be estimated. Therefore, the following strategy is used. If more and more con-
cept names are “inserted” into the subsumption lattice, the number of buckets
increases as well. If a new bucket is to be created for a certain concept A and
there are already σ buckets clustering the subconcepts of A, then two buckets
(those buckets with the smallest number of children) are merged. Merging of
buckets Anew

.
= A1  . . .  An and Bnew

.
= B1  . . .  Bm means that the bucket

Anew is “redefined” as Anew
.
= A1  . . .  An  B1  . . .  Bm and the bucket Bnew

is reused for the new bucket to be created (see above).3 Whether hierarchical
clustering techniques lead to performance improvements is subject to further
research.

The current evaluation of clustering with buckets uses a setting with θ = 10 and
σ = 15.

2.4 Exploiting Disjointness Declarations

As has been discussed in [1], it is important to derive told subsumers for each
concept name for marking and propagation processes. Besides told subsumers,
RACE exploits also the set of “told disjoint concepts”. In the ‘heart’ example
presented above, ana heart is computed as a told disjoint concept of ana heart p
by examining inclusion axioms. If it is known that a concept B is a subsumer of
a concept A then A cannot be a subsumee of the told disjoints of B. This kind of
information is recorded (and propagated) with appropriate non-subsumer marks
(see [1] for details about marking and propagation operations) such that this

3Note that due to subsequent merging operations, n and m need not be equal to θ.



information is not rediscovered with a model merging or even a tableaux-based
subsumption test. Exploiting disjointness information has not been investigated
in [1].

Traversing the subsumption lattice is also needed for ABox realization. The
idea is to exploit disjointness information to speed-up the realization process as
follows. Whenever an instance checking test i :A returns ‘yes’, it is obvious that
i cannot be an instance of a concept that is a member of the set of told disjoint
concepts of A. Thus, in the subsumption lattice, the told disjoint concepts
are marked accordingly and an instance checking test for these concepts, which
possibly involves an “expensive” ABox consistency test, is not necessary. Since
a large number of instance checking tests must be performed, the exploitation
of disjointness information is particularly effective for ABox realization (see [3]
for experimental results).

2.5 Caching Policies

RACE supports different caching policies (see also [5] for caching in RACE). A
cache for finding information about (sorted) sets of concepts is used for checking
whether a set of concepts is satisfiable or unsatisfiable (so-called equal cache
implemented as a hash table). Furthermore, a pair of caches for satisfiable as
well as unsatisfiable concept sets is provided. These caches support queries
concerning already encountered supersets and subsets of a given set of concepts
[8]. For the UMLS benchmarks the (additional) equal cache had to be disabled
in order to reduce space requirements.4

3 Empirical Results for UMLS TBox Classifications

The performance of the RACE system is evaluated with different versions of the
UMLS knowledge base. UMLS-1 is a preliminary version that contains many
inconsistent concept names. UMLS-1 consists of approximately 100,000 concept
names and for almost all of them there exists a primitive concept definition
A � C with C not being 
. In addition, in UMLS-1 80,000 role names are
declared. Role names are arranged in a hierarchy.

UMLS-2 is a new version in which the reasons for the inconsistencies have been
removed. The version of UMLS-2 we used for our empirical tests uses approxi-
mately 160,000 concept names and 80,000 roles.

Originally, the UMLS knowledge base has been developed with Loom 4.0 [11].
If Loom is given a cyclic definition for a certain concept, then Loom does not

4If the equal cache is enabled, it is the first reference. Only if a cache lookup fails, the
superset or the subset caches are consulted. All retrieval results from the superset of subset
caches are also entered into the equal cache. Due to our findings, the setting with maximum
performance uses both an equal cache and a subset as well as a superset cache.



classify this concept (and the concepts which use this concept). Due to Loom’s
treatment of cycles, in [13] the cycle-causing concepts are placed in a so-called
:implies clause, i.e. these restrictions are only asserted to individuals in an
ABox via the rule mechanism. For the same reason, the UMLS reconstruction
uses :implies for domain and range restrictions for roles, i.e. domain and range
restrictions are only asserted in the ABox.

With RACE, none of these pragmatic distinctions are necessary. However, in
order to mimic the Loom behavior and to test more than one TBox with RACE,
for each of the knowledge base versions, UMLS-1 and UMLS-2, three different
subversions are generated (indicated with letters a, b and c). Version ‘a’ uses
axioms of the style presented above, i.e. the :implies parts are omitted for
TBox classification (and coherence checking). In version ‘b’ the :implies part
of the Loom knowledge base is indeed considered for classification by RACE.
Thus, additional axioms of the following form are generated.

ana heart � ∃ has developmental fo . ana fetal heart �
∃ surrounded by . ana pericardium

Version ‘c’ is the hardest version. Additional axioms provide domain and range
restrictions for roles. For example, the following axioms are generated for
anatomical part of ana heart.

∃ anatomical part of ana heart .
 � ana heart p


 � ∀ anatomical part of ana heart . ana heart

Thus, for the performance evaluation we have tested 6 different knowledge bases.
All measurements have been performed on a Sun UltraSPARC 2 with 1.4 GByte
main memory and Solaris 2.6. RACE is implemented in ANSI Common Lisp
and for the tests Franz Allegro Common Lisp 5.0.1 has been used. The results
are as follows:

Without clustering and topological sorting, classifying UMLS-1a can be done
in approximately 11 hours (1636 concepts are incoherent). With clustering and
topological sorting enabled, only 5.5 hours are necessary to compute the same
result for UMLS-1a. The second version UMLS-1b requires 3.6 hours (with
optimization) and 6.1 hours (without optimization). The reason for enhanced
performance with more constraints is that in this version already 47855 concepts
are inconsistent. With domain and range restrictions we found that even 60246
concepts are inconsistent. The computation times with RACE are 3.4 hours
(with optimization) and 8.7 hours (without optimization). Up to 500 MBytes
of memory are required to compute the classification results. For UMLS-1,
checking TBox coherence (see above) requires approximately 10 minutes.

The new second version UMLS-2 contains an additional part of the UMLS and,
therefore, is harder to deal with. Furthermore, there are no inconsistent con-
cepts, i.e. classification is much harder because there are much more nodes in the



Table 1: Evaluation of the classifications of the UMLS-2 knowledge bases (T =
topological sorting, C = clustering, R = runtime [hours:minutes], NST = number of
subsumption tests, NM = number of cached models, MaxNC = maximal number of
children, NB = number of buckets).

UMLS T C R NST (×106) NM (×103) MaxNC NB
2a on on 10:13 232 251 26,874 3,110

on off 25:06 2,341 237 ” NA
off on 22:40 1,256 362 ” 2,740
off off 31:26 2,796 281 ” NA

2b on on 10:11 232 251 26,874 3,110
on off 24:33 2,341 237 ” NA
off on ∼22:00 ∼1,200 ∼360 ” ∼2,700
off off 30:18 2,796 281 ” NA

2c on on 14:53 222 255 21,298 3,273
on off 40:54 3,723 240 ” NA
off on >50:00 ? ? ” ?
off off >50:00 ? ? ” NA

subsumption lattice. In UMLS-1, due to the large number of inconsistent con-
cepts, the subsumption lattice is rather small because many concept “disappear”
as synonyms of the bottom concept. For UMLS-2, checking TBox coherence (see
above) requires between 15 and 50 minutes (2a: 16 min, 2b: 19 min, 2c: 51 min).

More detailed performance evaluations of RACE applied to UMLS-2 and TBox
classification are presented in Table 1. In order to provide a machine-independent
evaluation, not only runtimes are given but also the number of subsumption tests
as well as other indicators are presented. It should be noted that the tableaux
algorithm is needed only for computing models [9, 3]. In other words, all sub-
sumption tests are decided by deep model merging tests [3]. A comparison of
setting 1 (both topological sorting and clustering enabled) and setting 2 (clus-
tering disabled) reveals that clustering is a very effective optimization technique
for the UMLS-2 TBoxes. The result for setting 3 (topological sorting disabled)
and UMLS2a supports the fact that topological sorting is also very effective.5

The preliminary runtime result for setting 3 and UMLS3c is due to removed
buckets. A bucket is removed if a member of this bucket gets a new parent
assigned. This is very likely if topological sorting is disabled. If, in setting 4,
both clustering and topological sorting are disabled, runtimes increase only to
a limited extent.6 Moreover, according to the evaluation results, the second
version UMLS-2b does not require more computational resources than UMLS-
2a (see the discussion about :implies from above). Only the incorporation of

5The result for setting 3 and UMLS2b is estimated due to lack of evaluation time, the test
for setting 3 and UMLS3b is in progress at the time of this writing.

6The evaluation of setting 4 and UMLS2c is in progress at the time of this writing.



domain and range restrictions cause runtimes to increase. For UMLS-2 up to
800 MBytes are required. For other benchmark TBoxes (e.g. Galen with ap-
prox. 3000 concepts) our results suggest that there is neither overhead imposed
by the clustering and topological sorting optimization techniques nor is there a
significant gain to be observed.

In summary, the results for the UMLS TBoxes clearly demonstrate that clus-
tering is only effective in conjunction with topological sorting establishing a
quasi-definition order. The work reported here indicates that sound and com-
plete description logic systems can now effectively deal with some instances of
very large knowledge bases.

4 Conclusion

In this paper new optimization techniques which are essential for an initiative
towards sound and complete high performance knowledge base classification are
presented. Thus, fast classification even of simple but very large terminologies
now has become possible with description logic systems based on sound and
complete algorithms.

Even with all of the discussed optimization techniques enabled, dealing with
160,000 concept names reveals even slightly less optimal algorithms used for
specific subproblems. For instance, in the Common Lisp implementation used
for the performance tests described in this paper the algorithm for removing the
duplicates found in a list exhibited quadratic time complexity. Hence, the library
function (which worked perfectly in another Common Lisp implementation) had
to be replaced by a more specific version using a hash table for indicating an el-
ement previously encountered (rather than linear search). With quadratic time
complexity for the function that used the remove-duplicates function, no eval-
uation results could be computed within a reasonable amount of time. Other
examples in which quadratic behavior had to be replaced by n logn behavior
have been encountered as well. Thus, in a large system such as RACE, exper-
iments with very large knowledge bases also provide feedback concerning lurk-
ing performance bottlenecks not becoming apparent when dealing with smaller
knowledge bases such as Galen.

A final comment concerning the significance of the UMLS knowledge bases used
for the empirical evaluation is appropriate. Even though all knowledge bases
are “simple” in the sense defined above, a large number of “simple” concept
definitions can be called the standard case in practical applications. The sim-
ple concepts might be used as a basis for more demanding concept definitions
exploiting the real expressive power of ALCNHR+ . If description logics are to
be successful in large-scale practical applications, being able to deal with large
knowledge bases such as those based on the UMLS is mandatory. We would like
to thank Stefan Schulz for making the UMLS reconstruction available.
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